The Mathematics of Marriage

Kurt Bryan and SIMIODE

Load in plots package: > restart; with(plots): Here is the data from Table 3.11 for the male 1940-44 cohort, percentage data rescaled to fractions: > $men4044 := \left[\left[0, \frac{21.1}{100} \right], \left[5, \frac{66.1}{100} \right], \left[10, \frac{83.1}{100} \right], \left[15, \frac{88.8}{100} \right], \left[20, \frac{91.2}{100} \right], \left[25, \frac{92.7}{100} \right], \left[30, \frac{91.2}{100} \right], \left[10, \frac{91.2}$ $\frac{94.0}{100}$]; $N \coloneqq nops(men4044)$ A plot of the data \rightarrow plt1 := pointplot(men4044, symbol = solidcircle, symbolsize = 20, color = red) The function P(t) that might fit this data, according to the model, is > P0 := men4044[1, 2]: #Fraction of men married at 20. $P(t) := \frac{P0}{P0 + (1 - P0) \cdot \exp\left(-\frac{A \cdot (b^t - 1)}{\ln(b)}\right)}:$ P(t)Form a sum of squares to fit the data SS := $add((P(men4044[j, 1]) - men4044[j, 2])^2, j = 1..N)$: Now minimize in A and b. A contour plot of log(SS) may be helpful. > contourplot($\ln(SS)$, A = 0...1, b = 0...1, filled = true, contours = 20, coloring = ["Yellow", "Red"]) Something near A = 0.6, b = 0.9 looks promising. We can set dSS/dA = 0 and dSS/db = 0 to find this point. > dSSdA := diff(SS, A) : dSSdb := diff(SS, b): $Absol := fsolve(\{dSSdA = 0, dSSdb = 0\}, \{A, b\}, \{A = 0.4 ..0.7, b = 0.8 ..1\})$ Plot P(t) with these values, compare to the data \rightarrow plt2 := plot(subs(Absol, P(t)), t=0..30, color = blue) : > display(plt1, plt2) Here is the data for the 1945-49 men > $men4549 := \left[\left[0, \frac{22.3}{100} \right], \left[5, \frac{65.5}{100} \right], \left[10, \frac{80.1}{100} \right], \left[15, \frac{86.1}{100} \right], \left[20, \frac{89.3}{100} \right], \left[25, \frac{91.3}{100} \right], \left[30, \frac{89.3}{100} \right], \left[10, \frac{89.3}$ $\frac{92.5}{100}$]; For the 1940-44 women: $> women4044 := \left[\left[0, \frac{48.1}{100} \right], \left[5, \frac{78.2}{100} \right], \left[10, \frac{86.8}{100} \right], \left[15, \frac{89.7}{100} \right], \left[20, \frac{91.4}{100} \right], \left[25, \frac{92.5}{100} \right], \left[10, \frac{86.8}{100} \right], \left[10, \frac{86.$

$$\begin{bmatrix} 30, \frac{93.2}{100} \end{bmatrix};$$

For the 1945-49 women:
> women4549 := $\left[\left[0, \frac{43.1}{100} \right], \left[5, \frac{76.9}{100} \right], \left[10, \frac{85.0}{100} \right], \left[15, \frac{88.4}{100} \right], \left[20, \frac{90.2}{100} \right], \left[25, \frac{91.5}{100} \right], \left[30, \frac{92.2}{100} \right] \right];$