The Mathematics of Marriage

Kurt Bryan and SIMIODE

LLoad in plots package:
> restart;
with(plots) :
[Here is the data from Table 3.11 for the male 1940-44 cohort, percentage data rescaled to fractions:
$\left[>\right.$ men $4044:=\left[\left[0, \frac{21.1}{100}\right],\left[5, \frac{66.1}{100}\right],\left[10, \frac{83.1}{100}\right],\left[15, \frac{88.8}{100}\right],\left[20, \frac{91.2}{100}\right],\left[25, \frac{92.7}{100}\right],[30\right.$,

$$
\begin{gathered}
\left.\left.\frac{94.0}{100}\right]\right] ; \\
N:=\operatorname{nops}(\text { men4044 })
\end{gathered}
$$

[A plot of the data
[> plt1 $:=$ pointplot(men4044, symbol $=$ solidcircle, symbolsize $=20$, color $=$ red $)$
The function $\mathrm{P}(\mathrm{t})$ that might fit this data, according to the model, is
$>P 0:=$ men $4044[1,2]: \# F r a c t i o n ~ o f ~ m e n ~ m a r r i e d ~ a t ~ 20 . ~$

$$
\begin{aligned}
& P(t):=\frac{P 0}{P 0+(1-P 0) \cdot \exp \left(-\frac{A \cdot\left(b^{t}-1\right)}{\ln (b)}\right)}: \\
& P(t)
\end{aligned}
$$

Form a sum of squares to fit the data
$\left\lceil>S S:=\operatorname{add}\left((P(\operatorname{men} 4044[j, 1])-\operatorname{men} 4044[j, 2])^{2}, j=1 . . N\right):\right.$
Now minimize in A and b . A contour plot of $\log (\mathrm{SS})$ may be helpful.
$[>$ contourplot $(\ln (S S), A=0 . .1, b=0 . .1$, filled $=$ true, contours $=20$, coloring $=[" Y e l l o w "$, "Red"])
Something near $\mathrm{A}=0.6, \mathrm{~b}=0.9$ looks promising. We can set $\mathrm{dSS} / \mathrm{dA}=0$ and $\mathrm{dSS} / \mathrm{db}=0$ to find this point.
$>d S S d A:=\operatorname{diff}(S S, A):$
$d S S d b:=\operatorname{diff}(S S, b):$
Absol $:=f$ solve $(\{d S S d A=0, d S S d b=0\},\{A, b\},\{A=0.4 . .0 .7, b=0.8 . .1\})$
=Plot $\mathrm{P}(\mathrm{t})$ with these values, compare to the data
$[>\operatorname{plt} 2:=\operatorname{plot}(\operatorname{subs}($ Absol, $P(t)), t=0 . .30$, color $=$ blue $):$
$>$ display (plt1, plt2)
[Here is the data for the 1945-49 men
$\left\lceil>\right.$ men $4549:=\left[\left[0, \frac{22.3}{100}\right],\left[5, \frac{65.5}{100}\right],\left[10, \frac{80.1}{100}\right],\left[15, \frac{86.1}{100}\right],\left[20, \frac{89.3}{100}\right],\left[25, \frac{91.3}{100}\right],[30\right.$, $\left.\frac{92.5}{100}\right]$];
CFor the 1940-44 women:
$\left[>\right.$ women $4044:=\left[\left[0, \frac{48.1}{100}\right],\left[5, \frac{78.2}{100}\right],\left[10, \frac{86.8}{100}\right],\left[15, \frac{89.7}{100}\right],\left[20, \frac{91.4}{100}\right],\left[25, \frac{92.5}{100}\right]\right.$,

