The Hill－Keller Model

Kurt Bryan and SIMIODE

A Mathematica notebook to fit the Hill－Keller model $v^{\prime}(t)=P-k^{*} v(t)$ to the data from Usain Bolt＇s 2008 Beijing gold medal Olympic race．This is a minor extension of the worksheet＂hill＿keller＿model1．nb＂ Here we fit both P and k ．

The Data：Here is the data for Usain Bolt＇s 2008 Beijing race．The data consists of times for $0,10,20, \ldots$ ， 100 meters and t is the corresponding split time．

$\ln [1]:=$

bolttimes $=\{0.165,1.85,2.87,3.78,4.65,5.50,6.32,7.14,7.96,8.79,9.69\}$
A quick plot，after putting the data into（time，distance）pairs：
$\ln [2]:=$
$\ln [3]:=$
$\ln [7]:=$

```
ode = v'[t] == P - k*v[t]
t0 = 0.165;
sol = DSolve[{ode, v[t0]== 0}, v, t]
```

Define this as a function of t
vsol $=$ v $/$. sol【1】
Integrate to find position
dis＝Integrate［vsol［tau］，\｛tau，t0，t\}]
Make this into a function of t
$X\left[t_{-}\right]=d i s$
Let＇s guess a value of P and k and plot $X(t)$ with the data．
$p l t 2=P \operatorname{lot}[X[t] / .\{k \rightarrow 1, P \rightarrow 11\},\{t, 0,9.69\}, P l o t S t y l e \rightarrow\{R e d\}] ;$
Show［plt1，plt2］
The Optimal Choice for \mathbf{k} and P：Not bad，but we can do better by forming a sum of squares SS and minimizing

SS＝Sum［（X［bolt【i，1】］－bolt【i，2】）＾2，\｛i，1，11\}]
We already know that k somewhere around 1 and P around 11 yields a reasonable fit．Plot SS as a
function of P and k to get a better estimate of where $S S$ is minimized. Although plotting $\ln (S S)$ is even better:
$\operatorname{In}[17]]=\mathrm{Plot} 3 \mathrm{D}[\log [\mathrm{SS}],\{\mathrm{k}, 0.7,1.1\},\{\mathrm{P}, 8,12\}]$
Rotating the graph around shows k around 0.85 and P around 10.3 looks promising. So set $d(S S) / d k=0$ and $\mathrm{d}(\mathrm{SS}) / \mathrm{dP}=0$ and use Mathematica's FindRoot command to find a good solution
$\ln [25]:=$ dSSdk $=$ D[SS, k];
dSSdP = D[SS, P];
sol $=$ FindRoot [\{dSSdk $==0, d S S d P==0\},\{k, 1\},\{P, 11\}]$
The residual is
SS /. sol
Use the optimal k and P values to plot and compare to the data
plt2 $=$ Plot[X[t] /. sol, \{t, 0, 9.69\}, PlotStyle \rightarrow \{Red\}];
Show[plt1, plt2]
Alternatively, we can use Mathematica's built-in routines to perform the minimization and achieve the same result.

In[31]:= NMinimize[SS, \{k, P\}]

