Fish Harvesting Revisited

Kurt Bryan and SIMIODE

Script for fish logistic-growth harvesting project in Section 3.5.2.

The Data: The data from Table 3.10, starting with 1978 , which we will call year 0 . Note Matlab indexes arrays starting with index 1 , however.

```
udata = [72148, 73793, 74082, 92912, 82323, 59073, 59920, 48789, 70638, 67462, 68702, 61191, 49
```

Harvest rates from Table 3.10.

$$
\text { hd }=[0.18847,0.149741,0.21921,0.17678,0.28203,0.34528,0.20655,0.33819,0.14724,0.1975
$$

Plot of the population data, indexed as years 0 to 29:

```
plot([0:29],udata)
```

And a plot of the harvest rates

```
plot([0:29],hd)
```

Fitting the Data to the ODE: Form finite difference approximations $(u(k+1)-u(k)) / 1$ from the population data, for $k=1$ to $k=29$). This approximates $u^{\prime}(t)$ when $t=k$:

```
udiffdata = udata(2:30)-udata(1:29);
```

Next substitute $u=u d a t a[k]$ into the harvested logistic ODE $u^{\prime}(t)=r^{*} u(t)^{*}(1-u(t) / K)-h(t)^{*} u(t)$ for $k=0$ to $k=n-1$, to approximate the right side of the ODE at time $t=k$ for $k=0$ to $k=n-1$. This expression depends on r and K .

```
syms r;
syms K;
u1 = udata(1:29);
udiffdata2 = r*u1.*(1-u1/K)-hd(1:29).*u1;
```

Form a sum of squares that depends on r and K

```
SS(r,K) = sum((udiffdata-udiffdata2).^2);
```

Finding the optimal \mathbf{r} and K: Start with a plot of $\mathrm{SS}(\mathrm{r}, \mathrm{K})$, or $\log (\mathrm{SS})$.

```
fsurf(log(SS), [0.1 0.540000 300000])
```

Or perhaps a contour plot, with contours in steps of 0.05 from 21.5 to 24:

```
fcontour(log(SS), [0.1 0.5 40000 300000],'LevelList',[21.5:0.05:24])
```

Something near $\mathrm{r}=0.3, \mathrm{~K}=200000$ might be a good initial guess at a minimizer for SS.

If we use these values for r and K (but you should find the true minimizer) we could compare the predicted cod population to the data by following the suggestion of Modeling Exercise 5.2.3. Let U be an array to hold our numerical estimates of the cod population:

```
U = zeros(1,30);
U(1) = udata(1);
```

Now use the harvested logistic ODE with our estimates for r and K to march the predicted cod biomass out in time (this is essentially Euler's method):

```
r = 0.3;
K = 200000;
for k=1:29
    U(k+1) = U(k) + r*U(k)*(1-U(k)/K) - hd(k)*U(k);
end
```

Plot the resulting predicted population along with the data

```
plot([0:29],udata)
hold on
plot([0:29],U,'-r')
hold off
```

