Fish Harvesting Revisited

Kurt Bryan and SIMIODE

ENotebook for fish logistic-growth harvesting project in Section 3.5.2.
> restart;
with(plots) :
[The Data: The data from Table 3.10, starting with 1978, which we will call year 0 .
$>$ udata $:=\operatorname{Array}(0 . .29,[72148,73793,74082,92912,82323,59073,59920,48789,70638$, 67462, 68702, 61191, 49599, 46266, 34877, 28827, 21980, 17463, 18057, 22681, 20196, 25776, 23796, 19240, 16495, 12167, 21104, 18871, 21241, 22962]) :
Note that the data is indexed from 0 to 29.
Harvest rates from Table 3.10.
$>h d:=\operatorname{Array}(0 . .29,[0.18847,0.149741,0.21921,0.17678,0.28203,0.34528,0.20655,0.33819$, $0.14724,0.19757,0.23154,0.20860,0.33565,0.29534,0.33185,0.35039,0.28270,0.19928$, $0.18781,0.19357,0.18953,0.17011,0.15660,0.28179,0.25287,0.25542,0.08103$, $0.087397,0.081952,0.10518])$:
EEach list has data points from year $\mathrm{t}=0$ to year $\mathrm{t}=\mathrm{n}$ with
[> $n:=29$:
Plot of the population data
$>$ pdat $:=[\operatorname{seq}([k-1$, udata $[k]], k=0 . . n)]:$
ppop $:=$ plot(pdat, color = red, labels = ["Time (years)", "Biomass (tons)"], labeldirections $=[$ horizontal, vertical $]$)
[Harvest rate by year:
$>h d a t:=[\operatorname{seq}([k-1, h d[k]], k=0 . . n)]:$
plot $($ hdat, color $=$ red, labels $=[" T i m e ~(y e a r s) ", ~ " H a r v e s t ~ r a t e " ~], ~ l a b e l d i r e c t i o n s ~=~[h o r i z o n t a l, ~$ vertical])

Fitting the Data to the ODE: Form finite difference approximations $(u(k+1)-u(k)) / 1$ from the population data,
for $\mathrm{k}=0$ to $\mathrm{k}=28(=\mathrm{n}-1)$. This approximates $\mathrm{u}^{\prime}(\mathrm{t})$ when $\mathrm{t}=\mathrm{k}$:
$[>\operatorname{udiffdata}:=\operatorname{Array}(0 . .28,[\operatorname{seq}(u d a t a[k+1]-u d a t a[k], k=0 . . n-1)]):$
Next substitute $\mathrm{u}=\mathrm{udata}[\mathrm{k}]$ into the harvested logistic $\operatorname{ODE} \mathrm{u}^{\prime}(\mathrm{t})=\mathrm{r}^{*} \mathrm{u}(\mathrm{t})^{*}(1-\mathrm{u}(\mathrm{t}) / \mathrm{K})-\mathrm{h}(\mathrm{t})^{*} \mathrm{u}(\mathrm{t})$ for $\mathrm{k}=$ 0 to $\mathrm{k}=\mathrm{n}-1$, to approximate the right side of the ODE at time $\mathrm{t}=\mathrm{k}$ for $\mathrm{k}=0$ to $\mathrm{k}=\mathrm{n}-1$. This expression depends on r and K .

$$
\left[\begin{array}{l}
>\text { udiffdata } 2:=\operatorname{Array}\left(0 . .28,\left[\operatorname { s e q } \left(r \cdot u d a t a[k] \cdot\left(1-\frac{u d a t a[k]}{K}\right)-h d[k] \cdot u d a t a[k], k=0 . . n\right.\right.\right. \\
-1)]):
\end{array}\right.
$$

[Form a sum of squares that depends on r and K
[> SS:=add $\left((\text { udiffdata }[k]-\text { udiffdata } 2[k])^{2}, k=0 . . n-1\right)$:
[Finding the optimal \mathbf{r} and K: Start with a plot of $\mathrm{SS}(\mathrm{r}, \mathrm{K})$, or $\log (\mathrm{SS})$.

$$
\xrightarrow[L]{\perp} \operatorname{plot} 3 d(\log (S S), K=40000 . .300000, r=0.1 . .0 .5, \text { labels = ["K", "r", "S(r,K)"]) }
$$

Or a contour plot:
[> contourplot $(\log (S S), K=40000 . .300000, r=0.1$.. 0.5 , contours $=100)$
Something near $\mathrm{r}=0.3, \mathrm{~K}=200000$ might be a good initial guess at a minimizer for SS .
If we use these values for r and K (but you should find the true minimizer) we could compare the predicted cod population to the data by following the suggestion of Modeling Exercise 5.2.3. Let U be an array to hold our numerical estimates of the cod population:
[> $U:=\operatorname{Array}(0 . . n-1)$:
Set $\mathrm{U}[0]$ equal to the cod biomass at time $\mathrm{t}=0$:
[> U[0]:= udata [0]
Now use the harvested logistic ODE with our estimates for r and K to march the predicted cod biomass out in time (this is essentially Euler's method):

```
\(>\) for \(k\) from 0 to \(n-2\) do
    \(U[k+1]:=\operatorname{subs}\left(r=0.3, K=200000, U[k]+r \cdot U[k] \cdot\left(1-\frac{U[k]}{K}\right)-h d[k] \cdot U[k]\right):\)
    od:
    \(\operatorname{ppred}:=\operatorname{plot}([\operatorname{seq}([k, U[k]], k=0 . . n-1)]\), color \(=\) blue \():\)
    display(ppop, ppred, legend = ["data", "model"], linestyle = [1, 3 ], labels = ["year",
        "population"])
```

