Notebook to support Exercise 3．4．8，modeling yeast population growth．

The data，in time／population pairs．
$\ln [14]:=$

```
data = {{0, 9.6}, {1, 18.3}, {2, 29}, {3, 47.2}, {4, 71.1}, {5, 119.1},
    {6, 174.6}, {7, 257.3}, {8, 350.7}, {9, 441}, {10, 513.3}, {11, 559.7},
    {12, 594.8}, {13, 629.4}, {14, 640.8}, {15, 651.1}, {16, 655.9}, {17, 659.6}}
```

A plot：
$\ln [15]:=$
plt1＝
ListPlot［data，AxesLabel \rightarrow \｛＂time（hours）＂，＂Population（millions）＂\}, PlotStyle \rightarrow \｛Red\}]
The number of data points is
$\ln [16]:=\quad \mathbf{n}=$ Length［data］
Given that $u(0)=9.6$ ，the solution to the logistic equation with intrinsic growth rate＂r＂and carrying capacity＂ K ＂is
$\ln [17]:=u\left[t_{-}\right]=K /(1+\operatorname{Exp}[-r * t] *(K / 9.6-1))$
A least－squares function can be formed as
SS＝Sum［（u［data【j，1】］－data【j，2】）＾2，$\{\mathbf{j}, 1, n\}]$
Now adjust r and K to minimize this．

