A helpful notebook for Exercise 3.4.2.

Here is the data for Exercise 3.4.2:
$\ln [11]:=$
data $=\{\{0,1.0\},\{300,0.78\},\{1200,0.37\},\{3000,0.08\}\}$
However, we will work with the log of the concentration, so
$\ln [17]:=$ logdata $=\operatorname{Table[\{ data\llbracket j,1\rrbracket ,\operatorname {Log}[data\llbracket j,2\rrbracket]\} ,\{ j,1,4\}]}$
A plot
$\ln [18]:=$ ListPlot[logdata]
To fit a function $u(k, t)=k^{\star} t$ to this data by adjusting " k ", define
$\ln [19]=u\left[t_{-}, k\right]=k * t$
and form sum of squares
SS = Sum[(u[logdata $\left.\mathbb{i} \mathbf{i}, 1 \rrbracket, k]-\operatorname{logdata} \llbracket i, 2 \rrbracket)^{\wedge} 2,\{i, 1,4\}\right]$
Then minimize the resulting expression SS as a function of k .

