[Worksheet to support Exercise 3.4.11, modeling a cooling potato with an ODE $u^{\prime}(t)=-k^{*}(u(t)-A)^{\wedge} r$. restart; with(plots) :
[The data, in time/temperature pairs:
$>$ data $:=[[0,204],[2,193],[4,184],[8,169],[10,162],[13,156],[17,149],[20,143]$, [24, 138], [30, 130]]:
ENumber of data points is
[> $N:=$ nops (data)
[A plot
> plt1 $:=$ pointplot(data, color $=$ red, symbol $=$ solidcircle, symbolsize $=20$, labels
= ["time (minutes)", "Temperature"], labeldirections $=$ [horizontal, vertical]) : display(plt1);
[We seek to fit a function
$[>A:=72 ; u 0:=204$;
$\left[>u(t):=A+\left((u 0-A)^{1-r}+k \cdot(r-1) \cdot t\right)^{\frac{1}{1-r}}\right.$
[A least-squares function can be formed as
$\left[>S S:=\operatorname{add}\left((u(\text { data }[j][1])-\operatorname{data}[j][2])^{2}, j=1\right.\right.$.. $\left.N\right)$
Now adjust k and r to minimize this.

