Notebook to support Exercise 3.4.10, modeling a cooling potato.

The data, in time/temperature pairs:
$\operatorname{In}[35]:=$ data $=\{\{0,204\},\{2,193\},\{4,184\},\{8,169\}$,
$\{10,162\},\{13,156\},\{17,149\},\{20,143\},\{24,138\},\{30,130\}\}$
The number of data points is
$\ln [36]:=$
n = Length[data]
However, we will operate on the quantities $(t, \log (u(t)-A)-\log (u(0)-A)$, with $u(0)=204$ and $A=72$.
$\ln [44]:=$
logdata $=$ Table[\{data $\mathbb{j}, 1 \rrbracket$, $\log [$ data $\llbracket j, 2 \rrbracket-72]-\log [204-72]\},\{j, 1, n\}]$
A plot:
plt1 =
ListPlot[logdata, AxesLabel \rightarrow \{"time (minutes)", "Temperature "\}, PlotStyle \rightarrow Red $\}$]
We seek to fit a line $y=-k^{*} t$ to this
$\ln [46]:=$
$u\left[t_{-}\right]=-k * t$
A least-squares function can be formed as
$\ln [47]:=$
SS $=\operatorname{Sum}\left[(u[\operatorname{logdata} \llbracket j, 1 \mathbb{I}]-\operatorname{logdata} \llbracket j, 2 \mathbb{I})^{\wedge} 2,\{j, 1, n\}\right]$
Now adjust k to minimize this.

