[Worksheet to support Exercise 3.4.10, modeling a cooling potato.
restart; with(plots) :
The data, in time/temperature pairs:
$>$ data $:=[[0,204],[2,193],[4,184],[8,169],[10,162],[13,156],[17,149],[20,143]$, [24, 138], [30, 130]]:
[Number of data points is
[> $N:=$ nops (data)
[However, we will operate on the quantities $(\mathrm{t}, \log (\mathrm{u}(\mathrm{t})-\mathrm{A})-\log (\mathrm{u}(0)-\mathrm{A})$, with $\mathrm{u}(0)=204$ and $\mathrm{A}=72$.
$\stackrel{>}{ } \operatorname{logdata}:=[\operatorname{seq}([\operatorname{data}[j][1], \log (\operatorname{data}[j][2]-72)-\log (204-72)], j=1 . . N)]$
[A plot
[> plt1 $:=$ pointplot $(\operatorname{logdata}$, color $=$ red, symbol $=$ solidcircle, symbolsize $=20$, labels
= ["time (minutes)", "Temperature"], labeldirections $=[$ horizontal, vertical $]$) : display(plt1);
WWe seek to fit a line $\mathrm{y}=-\mathrm{k} * \mathrm{t}$ to this
[> $u(t):=-k \cdot t$;
[A least-squares function can be formed as
[> SS $:=\operatorname{add}\left((u(\operatorname{logdata}[j][1])-\operatorname{logdata}[j][2])^{2}, j=1 . . N\right)$
Now adjust k to minimize this.

