Modeling Yeast Growth

Kurt Bryan and SIMIODE

Notebook to support Exercise 2.2.8, modeling yeast population growth.

The data, in time/population pairs:

A plot:

In[20]:= **plt1 =**

ListPlot[data, AxesLabel \rightarrow {"time (hours)", "Population (millions)"}, PlotStyle \rightarrow {Red}] Given that u(0) = 9.6, the solution to the logistic equation with intrinsic growth rate "r" and carrying capacity "K" is

ln[6]:= $u[t_] = K/(1 + Exp[-r * t] * (K/9.6 - 1))$

Take a guess r = 1 and K = 600, plot, compare to the data

Perhaps we can do better...