Modeling Shuttlecock Data

Kurt Bryan and SIMIODE

Notebook to support Exercise 2.2.9, the fall of a shuttlecock with air resistance.

The data, in time/distance pairs:
$\ln [1]:=$ data $=\{\{0,0\},\{0.347,0.61\},\{0.47,1.00\},\{0.519,1.22\}$, $\{0.582,1.52\},\{0.65,1.83\},\{0.674,2.00\},\{0.717,2.13\}$, $\{0.766,2.44\},\{0.823,2.74\},\{0.87,3.00\},\{1.031,4.00\},\{1.193,5.00\}$, $\{1.354,6.00\},\{1.501,7.00\},\{1.726,8.50\},\{1.873,9.50\}\}$

A plot:
plt1 =
ListPlot[data, AxesLabel \rightarrow \{"Time (seconds)", "Distance (meters)"\}, PlotStyle \rightarrow \{Red\}]
Now use $g=9.8$, take a guess at $k(k=1$ is a good start), plot $\mathrm{d}(\mathrm{t})$ from part (b), and compare to the data.

