Direction Fields

Kurt Bryan and SIMIODE

A script to illustrate how to draw a direction field for an ODE, and superimpose a solution curve.

We'll use $u^{\prime}(t)=t^{*} \cos (u(t))-\sin (t)$ as an example. Define the right side $t^{*} \cos (u)+\sin (t)$ as a function of t and u :

$$
f=@(t, u) t \cdot * \cos (u)-\sin (t)
$$

Now construct the direciton field on the range $0<=\mathrm{t}<=5,0<=\mathrm{u}<=5$. First

$$
[t, u]=\text { meshgrid }(0: 0.25: 5,0: 0.25: 5) ;
$$

sets up a grid in the (t, u) plane on the given region with 0.25 spacing between grid points in each direciton. Then compute the slope "s" at each grid point with

$$
s=f(t, u) ;
$$

Finally, have Matlab plot arrows at the appropriate grid points, with the appropriate slopes. We can scale the arrows to have an appealing length using a final argument "2" (you can choose it as you wish):

```
plot1 = quiver(t,u,ones(size(s)), s, 2);
axis tight
```

To superimpose solution curves, solve the ODE numerically. For example, to show a solution curve with initial data $u(1)=2$, call Matlab's solver

```
inittime = 1.0; ic = 2.0; finalT = 5.0;
[tm,um] = ode45(f,[inittime,finalT], ic); %Matlab's solver
hold on;
plot2 = plot(tm,um,'-r');
hold off
```

Alternatively, use the supplied subroutine "draw_dirfield" in the form draw_dirfield(f, range ,ics) where "range" is of the form [lowt, hight, lowu, highu] and ics is an optional $\mathrm{n} \times 2$ matrix of initial conditions with kth row tk, uk ($w h e r e ~ u(t k)=u k$.)

```
ics = [0 1;1 2;1 4];
draw_dirfield(f,[0,5,0,5],ics)
```

