Butadiene Decomposition

Kurt Bryan and SIMIODE

[Worksheet for examining second order chemical reaction data for decomposition of butadiene.
restart;
with(plots) : \#Load in plots package
with(CurveFitting) : \#Maple's curve fitting package
Times at which data was taken (seconds)
$>$ times $:=[0,1000,1800,2800,3600,4400,5200,6200] ;$ \#Times, in seconds
Butadiene concentration, moles per liter at each time above
$>$ data $:=[0.01,0.00625,0.00476,0.0037,0.00313,0.0027,0.00241,0.00208] ;$ \#Butadiene concentrations, moles per liter
ENumber of data points
[> $N:=$ nops (data)
Plot the data versus time. Call the plot "plot1".
[> plot1 $:=\operatorname{pointplot}([\operatorname{seq}([\operatorname{times}[j], \operatorname{data}[j]], j=1 . . N)]$, symbol $=$ solidcircle, symbolsize $=20)$
Does not look 0th order. Is it first order? Try a logarithmic transformation of the data (as was done for H2O2).
>> log_of_data $:=[\operatorname{seq}(\ln ($ data $[j]), j=1 . . N)]$
Fit a line $\mathrm{y}=-\mathrm{k} * \mathrm{t}+\mathrm{b}$ to this data. We'll use Maple's built-in curve fitting (and examine how it works in Chapter 3).
$>$ bestline $:=$ LeastSquares(times, log_of_data, t, curve $=-k \cdot t+b$)
Plot this line and display with plot of log data
$>$ plot1log $:=$ pointplot $\left(\left[\operatorname{seq}\left(\left[t i m e s[j], \log _o f _d a t a[j]\right], j=1 . . N\right)\right]\right.$, symbol $=$ solidcircle, symbolsize $=20$) :
plot $2:=\operatorname{plot}($ bestline, $t=0 . .6000$, color $=$ blue $):$
display (plot1log, plot2)
LHmm, not too good. Doesn't appear to be first order...

