Matlab Tutorial: Solving Ordinary Differential Equations

Kurt Bryan and SIMIODE

This is intended as a brief introduction to using Matlab to solve ordinary differential equations (ODEs). The focus is primarily on first-order equations, but there is a second-order example as well.

Example 1: Consider the ordinary differential equation $u^{\prime}(t)=u(t)+t$. The dsolve command can be used to find the general solution to this ODE, as

```
syms u(t); %Declare u(t) as symbolic function
ode = diff(u(t),t) == t + u(t) %Define the ODE
dsolve(ode) %General solution
```

Example 2: Let us solve the ODE from Example 1 but with an initial condition, specifically, $u(0)=2$. We already defined "ode" above. The command to solve the ODE is

```
dsolve(ode,u(0)==2) %Incorporate initial condition
```

We can define the solution as a function "usol(t)" with the command

```
usol(t) = dsolve(ode,u(0)==2) %Define solution as a function "usol(t)"
```

To plot the solution on the range $t=0$ to $t=5$, execute

```
tt = linspace(0,5,100); %Define t coordinates at which we evaluate usol(t)
plot(tt,usol(tt)) %Plot the points (t,usol(t))
```

Example 3: Let's solve the second order ODE $u^{\prime \prime}(t)+3^{*} u^{\prime}(t)+2^{*} u(t)=\sin (t)$ with initial conditions $u(0)=1$ and $u^{\prime}(0)=2$. Define the ODE as

```
ode = diff(u(t),t,2) + 3* diff(u(t),t) + 2*u(t) == sin(t)
```

and solve with the initial data as

```
Du = diff(u); %Defines the derivative u't) as a function
usol(t) = dsolve(ode,[u(0)==1 Du(0)==2])
```

