Homework 1 Additional Problems

Recall that in a bar lying along the x-axis from $x=a$ to $x=b$ the temperature $u(x, t)$ (here t is time) obeys the PDE

$$
\begin{equation*}
u_{t}-\alpha u_{x x}=0 \tag{1}
\end{equation*}
$$

where α is the thermal diffusivity of the bar. For convenience let's assume that $\alpha=1$.

To nail down a unique solution we also need to supply boundary conditions, for example, $u(a, t)=0$ and $u(b, t)=0$ (the temperature at both ends is kept at zero at all times). We also need to specify an initial condition, say $u(x, 0)=u_{0}(x)$ for some given function $u_{0}(x)$.

1. Suppose the bar is defined by $0 \leq x \leq 1$ and $u_{0}(x)=\sin (\pi x)$. Verify that the function $u(x, t)=e^{-\pi^{2} t} \sin (\pi x)$ satisfies the heat equation (1) with the Dirichlet boundary conditions $u(0, t)=0, u(1, t)=0$, and of course the given initial condition. Plot the solution as a function of x on the interval $0 \leq x \leq 1$ at times $t=0,0.1$, and 0.5 (separate graphs for each). Interpret-what happens to the temperature in the bar?
2. Suppose we use "Neumann" or "insulating" boundary conditions $u_{x}(0, t)=$ 0 and $u_{x}(1, t)=0$ with initial data $u(x, 0)=2+\cos (\pi x)$. Repeat the last exercise steps to show that $u(x, t)=2+e^{-\pi^{2} t} \cos (\pi x)$ is the solution. Again, graph it at time $t=0,0.1,0.5$. What is happening to the temperature of the bar?
3. Suppose the bar is unbounded, say spanning the whole x-axis from $-\infty<x<\infty$, so "boundary conditions" don't come into play (at least not obviously). Verify that the function

$$
u(x, t)=\frac{e^{-\frac{x^{2}}{4 t}}}{2 \sqrt{\pi t}}
$$

satisfies the heat equation for $t>0$ (take $\alpha=1$ as above). Plot $u(x, t)$ as a function of x for $-5 \leq x \leq 5$ for $t=0.001,0.01,0.1,1.0$. Also, compute

$$
\int_{-\infty}^{\infty} u(x, t) d x
$$

for each t value (use Maple). What interpretation would you give to the "function" $u(x, 0)$?

