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Quiz on Monday, 5/04/09 on Navigation 
and Localization

Lab 5 Demo due Thursday, 4/30/09

Lab 5 Memo and code due by midnight 
on Friday, 5/01/09

Upload memo and code to Angel

Bring your laptop and robot everyday

DO NOT unplug the network cables from 
the desktop computers or the walls
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“We are what we repeatedly do. 
Excellence, then, is not an act, but a 
habit.”
Aristotle

“Genius is 1 percent inspiration and 99 
percent perspiration. As a result, genius is 
often a talented person who has simply 
done all of his homework.”
Thomas Edison
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Navigation is one of 
the most challenging 
mobile robot 
competencies

Successful 
navigation requires
 Perception

 Localization

 Cognition

 Motion control
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 Perception

 The robot must interprets its sensors to extract 
meaningful data

 Localization

 The robot must determine it’s position in the 
environment

 Cognition

 The robot must decide how to act to achiever its goals

 Motion Control

 The robot must modulate its motor outputs to 
achieve the desired trajectory
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Navigation refers to the way a robot finds its way 
in the environment

 This is a difficult problem because it is rooted in 
uncertainty

 It is difficult for a robot to know exactly where it is 
and how to get to its next destination
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 The robot may need to use a map for path 
planning assuming that the map is correct or that 
the world does not change

 The robot may need to also find itself on a map 
and this is the localization problem

 If the robot is trying to find a location on a map 
without prior knowledge and it must use a good 
search strategy this the coverage problem

 If the robot does not have a map of its world then 
it must build a map as it goes along and this is the 
mapping problem (i.e. SLAM)
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How to navigate between A and B,
 Use localization with respect to a map to navigate to the 

goal B

 Use behavior-based navigation without hitting obstacles
 Follow walls with obstacle avoidance

 Detect the goal location
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One way for a robot is to use odometry or path 
integration

 Because of accumulation error, the robot will 
eventually need to recognize a landmark to reset 
the odometer

 This is localization relative to the start or reference 
point (i.e. GPS map)

 Localization is also treated as a state estimation 
problem

 State estimation is the process of estimating the 
state of a system from measurements
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Odometry

Using external sensors (beacons or landmarks)

 Probabilistic Map Based Localization
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The estimation 
process is indirect

Measurements are 
noisy

Measurements may 
not be available all 
the time
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Frame of reference is important
 Local/Relative: Where am I vs. where was I?

 Global/Absolute: Where am I relative to the world 
frame?

Location can be specified in two ways
 Geometric: Distances and angles

 Topological: Connections among landmarks
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 Proximity to reference
 Landmarks/Beacons 

 Angle to reference
 Visual: manual triangulation from physical points

 Distance from reference
 Time of Flight

 Radio frequency (RF)

 Global positioning system (GPS)

 Acoustic

 Signal Fading
 Electromagnetic

 Radio frequency

 Acoustic
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 If you know your speed and direction, you can 
calculate where you are relative to where you 
were (integrate).

 Speed and direction might, themselves, be 
absolute (compass, speedometer), or integrated 
(gyroscope, accelerometer)

 Relative measurements are usually more accurate 
in the short term -- but suffer from accumulated 
error in the long term

Most robotics research seems to focus on this  
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 Knowing the absolute position (e.g. GPS) is not 

sufficient

 Localization may also be required on a relative scale 

with respect to humans

 Cognition may require more than position, it may need 

to build an environmental model, map, to plan a path 

to a goal
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 Perception (sensors) and motion control (effectors) 

play an integral role in localization

 Sensor noise

 Sensor aliasing

 Effector noise

 Odometric position estimation
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 The fundamental issue that differentiates map-based 
localization systems is representation

 Map representation

 Robot’s model of the environment, or a map

 At what level of fidelity does the map represent the 
environment?

 Belief representation

 Robot’s belief of its position on the map

 Does the robot identify a single unique position?

 Does the robot describe its position in terms of a set of 
possible positions?

 How are multiple positions ranked
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 Markov Localization:

 Represent the robot’s belief by a probability 

distribution over possible positions and uses Bayes’ rule 

and convolution to update the belief whenever the 

robot senses or moves

 Gaussian

 Represents the continuous hypothesis belief as a normal 

distribution



 Continuous

 Precision bound by sensor 
data

 Typically single hypothesis 
pose estimate

 Lost when diverging (for 
single hypothesis)

 Compact representation 
and typically reasonable in 
processing power.

 Discrete

 Precision bound by 
resolution of discretization

 Typically multiple 
hypothesis pose estimate

 Never lost (when diverges 
converges to another cell)

 Important memory and 
processing power needed. 
(not the case for 
topological maps)
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(Markov)
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(Markov)



Advantages:
 Given a unique belief, there is no position ambiguity

 Facilitates decision-making at robot’s cognitive level 
(e.g. path planning)

Disadvantages:
 Robot motion induces uncertainty due to effector 

and sensor noise

 Forcing the position update to always generate a 
single hypothesis of position is challenging
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The robot tracks an infinite set of possible 
positions

This set can be described geometrically as a 
convex polygon positioned on a 2D map 
(continuous or discrete)

 In this method, the possible robot positions 
are not ranked

To rank the positions requires a model of the 
beliefs as a mathematical distribution 
(Gaussian probability density function)
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 There are discrete 
markers for each 
possible position

 Each position is noted 
along with a  
confidence or 
probability parameter

 Thousands of possible 
positions for a highly 
tessellated map
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 Advantages:

 Robot maintains a sense of position while explicitly annotating its own 

uncertainty about the position

 Partial information from sensors and effectors can update the belief

 Robot is able to explicitly measure its own degree of uncertainty 

regarding position

 Disadvantages:

 In decision making, how does the robot decide what to do next?

 Each position must have an associated probability

 Computationally expensive
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 Another strategy for position estimation is to do grid 
tracking

 Place a grid on the floor with clearly identifiable cells

 The robot senses change from one cell to another
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 A robot is equipped with a light sensor

 Grid must be designed to distinguish changes from one cell to 
another

 Must maximize the contrast between adjacent cells

 Grid cells must be larger when the robot moves faster



 Advantages

 Can re-confirm location after short distances, eliminate errors 

within 1 cell range

 Simple to implement

 Disadvantages

 Cell size limits accuracy

 Requires many sensor readings and large cells for truly reliable 

estimations

 Requires modification of the environment

 Result depends on print quality and sensor calibration
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One geometric approach to multi-hypothesis

representation identifies the possible positions 

of a robot

Probabilistic techniques identifies probabilities 

with the possible robot positions

Two classes of probabilistic localization are:

 Markov localization

 Kalman filter localization
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 Markov localization

 Uses an explicitly defined probability distribution across all 

robot positions

 Kalman filter localization

 Uses a Gaussian probability density representation of robot 

position and scan matching for localization

 Unlike Markov, it does not independently consider each 

possible robot pose

 Kalman results from the Markov axioms if the robot’s position 

uncertainty is assumed to be Gaussian
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 The process of updating robot position based upon 

proprioceptive and exteroceptive sensor values are 

separated logically into a general two-step process

 Action Update

 Proprioceptive

 Represents the application of some action model

 Perception Update

 Exteroceptive

 Represents the application of some perception model
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 Markov localization is the robot’s belief state usually 

represented as separate probability assignment for 

every possible pose on the map

 Special case of probabilistic state estimation applied 

to mobile robot localization

 Kalman filter localization represents the robot’s belief 

state using a single, well-defined Gaussian probability 

density function

 It retains a and parameterization of the robot’s 

belief about position with respect to the map 
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 Markov

 Allows localization starting 
from any unknown position

 Recovers from ambiguous 
situations because the robot 
can track multiple, complete 
disparate possible positions

 Requires discrete 
representation of the space 
(geometric grid or topological 
graph)

 Required memory and 
computational power can 
limit precision and map size

 Kalman Filter

 Tracks the robot from a 
known position

 Is both precise and efficient

 Can be used in continuous 
world representations

 If robot uncertainty 
becomes too large and not 
unimodal, it can fail to 
capture the multitude of 
possible robot positions 
and can become 
irrevocably lost
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 Identical in abstraction 
and information to the 
environment map

 Decision involves 
assignment of nodes and 
connectivity between 
nodes

 Node boundaries are 
marked by doorways, 
hallways, and foyers

 Note there is no geometric 
information on the nodes
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Environment map

Topologic map



1. Start

 No knowledge at start, thus there 
is  
a uniform probability distribution

2. Robot perceives first pillar

 Seeing only one pillar, the 
probability
being at pillar 1, 2 or 3 is equal.

3. Robot moves

 Action model enables the 
estimate of the new probability 
distribution based 
on the previous one and the 
motion.

4. Robot perceives second pillar

 Based on all prior knowledge the 
probability being at pillar 2 
becomes
dominant

C.A. BerryECE 497: Introduction to Mobile Robotics -Navigation



 As the robot encounters one 

pillar and then a second pillar, 

the probability density function 

over possible positions becomes 

multimodal, unimodal and then 

sharply defined

 The ability of a Markov 

localization system to localize 

the robot from an initially lost 

belief state is its key 

distinguishing feature

 This is a challenging application 

because of the dynamic nature 

of the environment
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The robot is placed
somewhere in the
environment but it is not told its 
location

The robot queries its
sensors and finds out it is next to 
a door

The robot moves one meter 
forward. To account for inherent 
noise in robot motion the new 
belief is smoother

The robot queries its
sensors and again it finds itself 
next to a door



C.A. BerryECE 497: Introduction to Mobile Robotics -Navigation

j

r j

line j

raw data from the 
laser scanner at time 
k+1, extracted lines

lines extracted 
from the raw data

the extracted lines 
uncertainties represented 
in the model space



 Kalman filter estimation of the 
new robot position

 By fusing the prediction of 
robot position (magenta) with 
the innovation gained by the 
measurements (green)

 we get the updated estimate of 
the robot position (red)

 this final pose estimate 
corresponds to the weighted sum 
of the

 pose estimates of each 
matching pairing of observed 
and predicted features

 robot position estimation based 
on odometry and observation 
positions
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A robot that localizes successfully has the right sensors for detecting 

the environment and the robot ought to build its own map

 starting from an arbitrary initial point, 

 a mobile robot should be able to autonomously explore the 

environment with its sensors, 

 gain knowledge about it, 

 interpret the scene, 

 build an appropriate map 

 and localize itself relative to this map
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 When the robot does not have a map and does not know 
where it is and chooses to build a map as it goes along in 
order to localize this is called simultaneous localization and 
mapping (SLAM)

 SLAM is also referred to as concurrent mapping and 
localization (CML)

 Simultaneous Localization and Mapping (SLAM) is 
one of the most difficult problems specific to mobile 
robot systems

 SLAM is one of the most difficult tasks in 
robotics because it is based upon the interaction 
between the position updates it uses to localize and 
the mapping actions
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 If the robot updates its position based on an 
observation of an imprecisely known feature, the 
results position estimate becomes correlated with 
the feature location estimate

 The map becomes correlated with a position 
estimation if an observation taken from an 
imprecisely known position is used to update or add 
a feature to the map

 The complete and optimal solution has to consider 
correlations between position and feature location 
estimation

 Cross-correlated maps are called stochastic maps
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