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Quote of the Week

“A common mistake people make when 

trying to design something completely 

foolproof is to underestimate the 

ingenuity of complete fools.”

D. Adams
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Mobile Robot Localization (5.1)

 Navigation is one of the most challenging 

mobile robot competencies

 Successful navigation requires

Perception

Localization

Cognition

Motion control

"Position" 
Global Map
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Real World
Environment
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PathEnvironment Model
Local Map
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Mobile Robot Localization (5.1)

 Perception

 The robot must interprets its sensors to extract meaningful 

data

 Localization

 The robot must determine it‟s position in the environment

 Cognition

 The robot must decide how to act to achiever its goals

 Motion Control

 The robot must modulates its motor outputs to achieve the 

desired trajectory
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Localization, Where am I? (5.1)
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What‟s the problem?
 WHERE AM I? 

 But what does this mean, really?

 Frame of reference is important

Local/Relative: Where am I vs. where I was?

Global/Absolute: Where am I relative to the 

world frame?

 Location can be specified in two ways

Geometric: Distances and angles

Topological: Connections among landmarks
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Localization: Absolute
 Proximity-To-Reference

 Landmarks/Beacons 

 Angle-To-Reference

 Visual: manual triangulation from physical points

 Distance-From-Reference

 Time of Flight

 RF: GPS

 Acoustic:

 Signal Fading

 Electromagnetic

 Radio frequency

 Acoustic
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Localization: Relative

 If you know your speed and direction, you can 

calculate where you are relative to where you were 

(integrate).

 Speed and direction might, themselves, be absolute 

(compass, speedometer), or integrated (gyroscope, 

accelerometer)

 Relative measurements are usually more accurate in 

the short term -- but suffer from accumulated error in 

the long term

 Most robotics research seems to focus on this  
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Localization Methods

 Markov Localization:

 Represent the robot‟s belief by a probability 

distribution over possible positions and uses Bayes‟ 

rule and convolution to update the belief whenever the 

robot senses or moves

 Monte-Carlo methods

 Kalman Filtering

 SLAM (simultaneous localization and mapping)
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Localization and Map Building (5.1)

 Odometry, Dead Reckoning

 Localization based on external sensors, 

beacons or landmarks

 Probabilistic Map Based Localization
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Challenges of Localization (5.2)

 Knowing the absolute position (e.g. GPS) is not 

sufficient

 Localization may also be required on a relative 

scale with respect to humans

 Cognition may require more than position, it may 

need to build an environmental model, map, to 

plan a path to a goal
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Sensor Noise (5.2)

 Perception (sensors) and motion control (effectors) play 

an integral role in localization

 Sensor noise

 Sensor aliasing

 Effector noise

Odometric position estimation
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Sensor Noise (5.2.1)

 Sensor noise induces a limitation on the consistency of 

sensor readings

 Sensor noise is mainly influenced by 

 environment (e.g. surface, illumination)

 the measurement principle itself

(e.g. interference between ultrasonic sensors)

 Sensor noise drastically reduces the useful information 

of sensor readings. The solution is:

 to take multiple reading into account

 employ temporal and/or multi-sensor fusion 
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Sensor Aliasing (5.2.2)

 Sensor Aliasing describes the phenomena of the non-uniqueness  

of sensors readings.  This is the norm in mobile robot sensors. 

 Even with multiple sensors, there is a many-to-one mapping from 

environmental states to robot‟s perceptual inputs

 Therefore the amount of information perceived by the sensors is 

generally insufficient to identify the robot‟s position from a single 

reading

 The robot‟s localization is usually based on a series of readings

 This series may be sufficient information to recoever the robot‟s 

position over time



ECE 497: Introduction to Mobile Robotics -

Localization 15C.A. Berry

Effector Noise (5.2.3)

 Robot effectors are also noisy

 Effectors produce uncertainty about future states

 Cognition may be used to minimize uncertainty in motion

 Sensory feedback can also be used to compensate for 

uncertainty

 Odometry and dead reckoning error

 Position update is based on proprioceptive sensors

 Robot is unable to estimate its own position over time using 

knowledge of its kinematics and dynamics

 True source of error ia an incomplete model of the environment

 Odometry uses wheel sensors only

 Dead reckoning also uses heading sensors
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Effector Noise (5.2.3)

 The movement of the robot, sensed with wheel encoders and/or 

heading sensors is integrated to get position.

 Pro

 straight forward and easy

 Con

 errors are integrated and grow unbounded

 To correct robot pose

 the position must be updated periodically by other localization 

mechanisms

 Using additional heading sensors (e.g. gyroscope) might help to 

reduce the accumulated errors, but the main problems remain 

the same
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Odometry Error sources (5.2.3)
 Major Error Sources:

 deterministic (systematic)

 can be eliminated by proper calibration of the system. 

 non-deterministic (random)

 errors have to be described by error models and will always 

lead to uncertain position estimation

 Major Error Sources:

 Misalignment of the wheels [deterministic]

 Unequal wheel diameter [deterministic]

 Limited resolution during integration (time increments, 

measurement resolution …) [random]

 Variation in the contact point of the wheel [random]

 Unequal floor contact (slipping, not planar …) [random]
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Odometry: 

Classification of Integration Errors (5.2.3)
 Range error

 integrated path length (distance) of the robots movement

 sum of the wheel movements

 Turn error

 similar to range error, but for turns

 difference of the wheel motions

 Drift error

 difference in the error of the wheels leads to an error in the robots 

angular orientation

Over long periods of time, turn and drift errors 

far outweigh range errors because they are nonlinear!

 Consider moving forward on a straight line along the x axis. The error in 

the y-position introduced by a move of d meters will have a component 

of dsinDq, which can be quite large as the angular error Dq grows.
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Error Model:

Odometric Position Estimation (5.2.4)

 The pose of a robot is given by [x y q]T

 The position can be estimated by 

starting from a known position and 

integrating the movement (sum the 

incremental travel distances)

 For a discrete system with a fixed 

sampling interval, Dt, the incremental 

travel distances are (Dx, Dy, Dq)

 Dsr , Dsl are the travelled distances for 

the right and left wheels

 b is the distance between the 2 wheels 

of the robot 
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Odometric position update (5.2.4)

Kinematics
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Error propagation (4.2.2)

 Error propagation is used when a series of 

measurements, all uncertain, can be fused to extract 

information about the environment 

 If Xi are n input signals 

with known probability 

distribution and Yi are m 

outputs

 What is the probability 

distribution of the output 

signals if the inputs are 

a function of fi?
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The Error Propagation Law (4.2.2)

Error propagation in a multiple-input multi-output 

system with n inputs and m outputs.

X1

Xi

Xn

System

…
…

Y1

Yi

Ym

…
…
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The Error Propagation Law (4.2.2)

 Imagine extracting a line based on 

point measurements with 

uncertainties.

 The model parameters  ri (length of the 

perpendicular) and qi (its angle to the 

abscissa) describe a line uniquely

 The question:

 What is the uncertainty of the 

extracted line knowing the 

uncertainties of the measurement 

points that contribute to it ?


r

xi = (ri, qi)
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The Error Propagation Law (4.2.2)

 It can be shown, that the output covariance matrix CY is given by 

the error propagation law, CY = FXCXFX
T, where

 CX: covariance matrix representing the input uncertainties

 CY: covariance matrix representing the propagated uncertainties 

for the outputs.

 FX: is the Jacobian matrix defined as:
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Error model for integrated position (p ) 

(5.2.4)

 The covariance matrix for 

the error is given by

 kr and kl are the error 

constants for the 

nondeterministic parameters 

of the motor drive and 

wheel-floor interaction
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Odometry: Growth of Pose uncertainty for Straight 

Line Movement

Note: Errors perpendicular to the direction of movement are 

growing much faster!
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Odometry: Growth of Pose uncertainty for 

Movement on a Circle

Note: The uncertainty perpendicular to the movement grows faster 

than in the direction of movement.  The main axis of the uncertainty 

ellipse does not remain perpendicular to the direction of movement!
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Odometry:  Calibration of Errors I
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Odometry: Calibration of Errors II
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Odometry: Calibration of Errors III
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To localize or not? (5.3)
 How to navigate between A and B,

 Use localization with respect to a map to navigate to the goal B

 Use behavior-based navigation without hitting obstacles

 Follow walls with obstacle avoidance

 Detect the goal location
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Behavior Based Navigation (5.3)

 Advantage:

 Implemented quickly for a single environment

 Disadvantages:

 Does not scale directly to different or larger environments

 Navigation code is location-specific

 Behaviors must be carefully designed

 May have several active behaviors at once
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Model Based Navigation (5.3)

 Disadvantages:

 Requires more up-front development 

effort to create a navigating mobile 

robot

 An internal representation rather than 

the real-world itself is being constructed 

and trusted by the robot

 If the model diverges from reality, the 

robot‟s behavior will be undesirable 

even if the sensor values are 

transiently incorrect

 The map-based approach includes both localization and cognition

 Advantages:

 Make‟s the robot‟s belief about position transparent to the human operator

 The existence of the map represents a medium of communication between the 

human and robot

 The map can be used by humans as well as the robots

 Can map and navigate a variety of environments
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Belief

Representation

(5.4)
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Representation

 The robot internal state that stores information about the 

world is called a representation

 Environment: maps

 Objects: people, doors, other robots

 Tasks: what needs to be done and in what order

 Self: goals, sensors, plans, proprioception

 Representations or internal models influence the 

complexity of a robot‟s “brain”
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Belief Representation (5.4)

 The fundamental issue that differentiates map-based 

localization systems is representation

 Map representation

 Robot‟s model of the environment, or a map

 At what level of fidelity does the map represent the 

environment?

 Belief representation

 Robot‟s belief of its position on the map

 Does the robot identify a single unique position?

 Does the robot describe its position in terms of a set of 

possible positions?

 How are multiple positions ranked
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Belief Representation (5.4)

Continuous 

Single hypothesis belief 

(Gaussian)

Continuous 

Multiple hypothesis belief 

(Gaussian)

Discretized grid map

with probability values

for all possible robot positions 

(Markov)

Discretized topological map

with probability values

for all possible robot nodes

(Markov)
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Belief Representation: 

Characteristics (5.4)

 Continuous

 Precision bound by sensor 

data

 Typically single hypothesis 

pose estimate

 Lost when diverging (for 

single hypothesis)

 Compact representation 

and typically reasonable in 

processing power.

 Discrete

 Precision bound by 

resolution of discretization

 Typically multiple 

hypothesis pose estimate

 Never lost (when diverges 

converges to another cell)

 Important memory and 

processing power needed. 

(not the case for 

topological maps)
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Single-hypothesis Belief (5.4.1)

Continuous 2D geometric

line-based map
Real-world map with walls, 

doors, and furniture
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Single-hypothesis Belief (5.4.1)

Discrete, tessellated map

Level of fidelity = cell size
The map is not geometric, but

abstract and topological

Identify a single node
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Single-hypothesis belief (5.4.1)

 Advantages:

 Given a unique belief, there is no position ambiguity

 Facilitates decision-making at robot‟s cognitive level 

(e.g. path planning)

 Disadvantages:

 Robot motion induces uncertainty due to effector and 

sensor noise

 Forcing the position update to always generate a 

single hypothesis of position is challenging
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Multiple-hypothesis belief (5.4.2)

 The robot tracks an infinite set of possible positions

 This set can be described geometrically as a convex 

polygon positioned on a 2D map (continuous or discrete)

 In this method, the possible robot positions are not ranked

 To rank the positions requires a model of the beliefs as a 

mathematical distribution (Gaussian probability density 

function)



ECE 497: Introduction to Mobile Robotics -

Localization 43C.A. Berry

Multi Hypothesis Grid-based 

Representation (5.4.2)

 Discrete markers for each possible 

position

 Each position is noted along with a  

confidence or probability parameter

 Thousands of possible positions for a 

highly tessellated map
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Multi Hypothesis Grid-based 

Representation (5.4.2)
 Advantages:

 Robot maintains a sense of position 

while explicitly annotating its own 

uncertainty about the position

 Partial information from sensors and 

effectors can update the belief

 Robot is able to explicitly measure its 

own degree of uncertainty regarding 

position

 Disadvantages:

 In decision making, how does the robot 

decide what to do next?

 Each position must have an associated 

probability

 Computationally expensive
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Map

Representation

(5.5)
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Map Representation (5.5)

 The problem of representing the robot‟s environment is 

the dual of representing the possible robot position(s)

 Three fundamental relationships:

 Map precision vs. application precision for robot to achieve 

goals

 Feature type and map precision vs. sensor precision and data 

types

 Map or computational complexity vs. reasoning (i.e. mapping. 

localization, navigation)
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Environment Representation and Modeling:

Techniques
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Environment Representation: 

Map Categories
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Environment Models

 Continuous versus Discrete Data

 Position in x, y, q

 Metric or topological grid

 Raw Data versus Features

 Raw data represents information that is perceived by 

a sensor

 A feature (or natural landmark) is an environmental 

structure which is static, and always perceptible with 

the current sensory system
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Environment Representation

world 

map continuous 

metric

metric 

grid
topological 

metric
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Methods for Localization:

Quantitative Metric Approach
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Methods for Localization:

Grid-Based Metric Approach
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Grid-Based

Localization
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Grid tracking

 Another strategy for position estimation is to do 

grid tracking

 Place a grid on the floor with clearly identifiable 

cells

 The robot senses change from one cell to 

another
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Grid design

 A robot is equipped with a light sensor

 Grid must be designed to distinguish changes from one 

cell to another

 Must maximize the contrast between adjacent cells

 Grid cells must be larger when the robot moves faster
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Grid tracking

 Advantages

 Can re-confirm location after short distances, eliminate errors 

within 1 cell range

 Simple to implement

 Disadvantages

 Cell size limits accuracy

 Requires many sensor readings and large cells for truly reliable 

estimations

 Requires modification of the environment

 Result depends on print quality and sensor calibration
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Active Beacons
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Active Beacons

 An active beacon is a stationary device that 

transmits and/or receives signals

 Multiple beacons must be installed for proper 

position estimation

 The robot estimates position and orientation by 

determining distance and angle to each of these 

beacons
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Active Beacons
 Beacon systems are based on triangulation

 Two types of triangulation techniques

 Lateration

 Determine robot‟s position based on distance from 

beacons

 2D requires 3 non-collinear points

 Angulation

 Determine robot‟s position and angle based on 

angle to beacons

 2D requires 2 angles and 1 known distance
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Triangulation - Lateration

 3 or more beacons emit a signal, robot obtains distance 

to each beacon

 Direct Measurement

 Robot physically moves or sends probe

 Simple, but difficult to implement

 Time of Flight

 Measure time it takes to travel to known point at specific velocity

 Usually measure the difference in transmission and arrival time of 

an emitted signal

 Attenuation

 Measure signal strength which decreases as distance from 

emission source increases
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Triangulation - Lateration

 Location is the intersection of 3 circles using distances 

as radii

 Accuracy depends on precision of distances
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Triangulation - Lateration

 The following 3 equations 

represent the 3-beacon 

scenario

 The intersection point is the 

intersection of the 3 circles

 (x – x1)
2 + (y-y1)

2 = r1
2

 (x – x2)
2 + (y-y2)

2 = r2
2

 (x – x3)
2 + (y-y3)

2 = r3
2

[x = 2y(y1 – y2) – x1
2 + x2

2 – y1
2 + y2

2 + r1
2 + r2

2]/(-2(x1 – x2))
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Triangulation - Lateration

 Must be careful not to have a divide by 

zero condition when placing beacons

 Some beacons are fixed and yield fixed 

pre-computed constants

(x, y) = Co + C1r1
2 + C2r2

2 + C3r3
2
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Triangulation – Lateration using 

ultrasonic pings
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Triangulation - Angulation

 Angulation makes use of 

angles to beacons as opposed 

to distances to them

 Angles to beacons measured 

via rotation of receiver or 

transmitter on robot

 Assumes all beacons are 

visible
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Triangulation - Angulation

 d1sin(q + q1) = y1 – y

 d1cos(q + q1) = x1 – x

 Repeat for all triangles and 

setting the pairs equal yields

 (y1-y)cos(q + q1) = (x1 – x) sin (q + q1)

 Yields 3 equations and 3 unknowns
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Triangulation - Angulation

 Just need to solve for q

 In many real situations, the value of q is 

known

From a digital compass

Estimated from odometry
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Triangulation - Angulation

 Geometric triangulation

applications assume that the 

robot will be within the area 

defined by 3 or more beacons

 Make use of the formula

 a2 = b2 + c2 – 2bc cos

 (sin )/a = (sin )/b = (sin )/c
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Beacons

 Beacons must be extremely powerful to ensure 

omni-directional transmission over large 

distances

 Compromise is to focus the beam and rotate it 

via some pattern
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Beacons

 Beacons may not be visible in some areas due 

to obstructions from obstacles

 The robot may need to rely on odometry until a 

reading is available again
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Issues
 Triangulation is sensitive to 

smaller angular errors

 When observed angles are 

small

 When measured angles are 

indistinguishable

When the robot is far from 

beacons, it can be difficult to 

determine position accurately
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Topological

Localization
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Methods for Localization:

Quantitative Topological Approach



ECE 497: Introduction to Mobile Robotics -

Localization 74C.A. Berry

Map Building

Techniques:

 Manual

 Drawn by hand

 Static/predictable 

environment

 Costly

 Automatically

 Robot learns environment

 Dynamically/unpredictable 

changing

 Different look due to 

different perception

Requirements:

 Incorporates newly sensed 

information into the existing 

world model

 Contains information to 

estimate the robot‟s position

 Provides Information to do 

path planning and navigation 

tasks
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Map Building: Measure of Quality

 Topological correctness

 Metrical correctness

Most environments are a mixture of predictable

and unpredictable features (hybrid approach)

../Sample Curricula/Videos/Thrun_Mapping.AVI
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Representation of the Environment (5.5)

 Environment Representation

 Continuous Metric  x,y,q

 Discrete Metric metric grid

 Discrete Topological topological grid

 Environment Modeling

 Raw sensor data, e.g. laser range data, grayscale images

 large volume of data, low distinctiveness on the level of individual values

 makes use of all acquired information

 Low level features, e.g. line other geometric features

 medium volume of data, average distinctiveness

 filters out the useful information, still ambiguities

 High level features, e.g. doors, a car, the Eiffel tower

 low volume of data, high distinctiveness

 filters out the useful information, few/no ambiguities, not enough information
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Continuous representation (5.5.1)

 A continuous-valued map is one method for exact 

decomposition of the environment

 Continuous maps are only in 2D representations as 

further dimensionality can result in computational 

explosion

 Combine the exactness of continuous representation 

with the compactness of closed-world assumption

 The representation will specify all environmental objects 

in the map
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Continuous representation (5.5.1)

 a low-memory map is a 2D representation in which polygons 

represent all obstacles

 many simulations run exclusively in the computer memory and 

polygons are not used to describe a real-world environment

 When real environments must be captured, there are trends 

for selectivity and abstraction

 The human captures only objects 

that can be detected by the 

robot’s sensors

 This represents a subset of the 

features of the real world objects
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Continuous representation (5.5.1)

 Geometric maps represent the physical locations of objects 

without referring to their texture, color, elasticity, or any other 

secondary features that does not relate to position and space

 Memory usage can be reduce by capturing object geometry 

relevant to localization (i.e. continuous-valued line 

representation)

Architecture 

map

Infinite line 

representation
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Decomposition strategies (5.5.2)

 One method of simplification is to approximate the real world 

environment lines as a set of infinite lines

 A more dramatic form of simplification is abstraction

 A general decomposition and selection of environmental 

features

 The immediate disadvantage is the loss of fidelity between the 

map and the real world

 It may be useful if planned carefully to capture relevant, useful 

features of the world while discarding all other features
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Decomposition strategies (5.5.2)

 Advantage:

 the map representation is 

minimized

 With hierarchical decomposition, 

reasoning and planning may be 

computationally superior to a fully 

detailed world model

 A standard, lossless form of 

opportunistic decomposition is 

termed exact cell decomposition

selects boundaries between 

discrete cells based on geometric 

criticality

Obstacles are 

polygons

Tessellated into 

areas of free space

Robot‟s position 

in free space 

does not matter
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Fixed Cell Decomposition (5.5.2)

 In fixed cell decomposition, 

the world is tessellated into a 

discrete approximation of the 

continuous map

 The key disadvantage is the 

inexact nature

 Narrow passages are lost in 

this transformation
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Adaptive Cell Decomposition (5.5.2)

 Adaptive cell decomposition is 

extremely popular and the 

most common map 

representation in mobile 

robotics

 One version is called 

occupancy grid representation

 Every cell is either filled (part 

of an obstacle) or empty (part 

of free space)

White cells are outside the obstacles

Black cells are inside the obstacles

Gray cells are part of both regions
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Occupancy Grid Map representation (5.5.2)

 A counter is used to determine how many times a cell is 

hit by a ranging sensor

 As the counter is incremented, the cell is deemed an 

obstacle

 The darkness of the cell is proportional to the value of 

the counter
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Occupancy Grid Map representation (5.5.2)

 Disadvantages:

 The size of the map in robot memory 

grows with the environment size

 Small cell sizes make the size of the 

memory untenable

 Not compatible with the closed-world 

assumption which enables large, 

sparse environments to have small 

memory requirements

 Imposes a geometric grid on the world 

a priori, regardless of environment 

details
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Occupancy Grid

 Created with sonar data

 Each cell is either 

occupied or unoccupied
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Topological Decomposition (5.5.2)

 Avoid direct measurement of geometric environmental 

qualities

 Concentrates on characteristics of the environment that 

are most relevant to the robot for localization
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Topological Decomposition (5.5.2)

 Topological representations is a graph that 

specifies

 Nodes

 Areas in the world

 Connectivity arcs 

 Denotes adjacent pairs of nodes

 Adjacency is at the heart of the topological 

approach

 Nodes are not of a fixed size or 

specifications of free space

 Nodes document an area based on ay 

sensor discriminant

node

connectivity

arcs
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Topological Decomposition (5.5.2)

 To navigate a topological map robustly, a 

robot must satisfy 2 constraints

 It must have means for detecting its 

current position in terms of the nodes 

of the topological graph

 It must be able to travel between 

nodes using robot motion

 Node sizes and dimensions must be 

optimized to match the sensory 

discrimination of the mobile robot 

hardware

~ 400 m

~ 1 km

~ 200 m

~ 50 m

~ 10 m
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Topological Map

 Store what the robot needs to do at each landmark

 Landmark-based map

 The map can be stored (represented) in different forms

 Store all possible paths and use the shortest one

 Topological map

 describes the connections among the landmarks

 Metric map

 global map of the maze with exact lengths of corridors and 

distances between walls, free and blocked paths

 The robot can use this map to find new paths through the maze

 Such a map is a world model, a representation of the 

environment
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World Models
 Numerous aspects of the world can be represented

 self/ego

 stored proprioception, self-limits, goals, intentions, plans

 space

 metric or topological (maps, navigable spaces, structures)

 objects, people, other robots

 detectable things in the world

 actions

 outcomes of specific actions in the environment

 tasks

 what needs to be done, in what order, by when

 Ways of representation

 Abstractions of a robot‟s state & other information
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Model Complexity
 Some models are very elaborate

 They take a long time to construct

 These are kept around for a long time throughout the 

lifetime of the robot

 E.g.: a detailed metric map

 Other models are simple

 Can be quickly constructed

 In general they are transient and can be discarded 

after use

 E.g.: information related to the immediate goals of the 

robot (avoiding an obstacle, opening of a door, etc.)



ECE 497: Introduction to Mobile Robotics -

Localization 93C.A. Berry

Models and Computation

 Using models require significant amount of computation

 Construction

 the more complex the model, the more computation is needed to 

construct the model

 Maintenance

 models need to be updated and kept up-to-date, or they become 

useless 

 Use of representations

 complexity directly affects the type and amount of computation 

required for using the model

 Different architectures have different ways of handling representations
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Metric Maps

 Construction

 Requires exploring and measuring the environment 

and intense computation 

 Maintenance

 Continuously update the map if doors are open or 

closed

 Utilization

 Finding a path to a goal involves planning: find 

free/navigational spaces, search through those to find 

the shortest, or easiest path
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State-of-the-Art: Current Challenges in Map 

Representation (5.5.3)

 The real world is dynamic

 Cannot distinguish between permanent and transient 

obstacles

 Perception is still a major challenge

 Error prone 

 Extraction of useful information difficult

 Traversal of open space

 How to build up topology (boundaries of nodes)

 Sensor fusion
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Probabilistic 

Map-Based

Localization

(5.6)
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The Five Steps for Map-Based Localization

Observation

On-board sensors

Map

Database

Prediction of 

Measurement of 

Position (odometry)

P
er

c
ep

ti
o
n

Matching

Estimation

(fusion)

raw sensor data or 
extracted features

p
re

d
ic

te
d

fe
a

tu
re

o
b
s
e

r v
a

ti
o
n

s

position
estimate

matched predictions
and observations

YES

Encoder

1. Prediction based on previous estimate and odometry

2. Observation with on-board sensors

3. Measurement prediction based on prediction and map

4. Matching of observation and map

5. Estimation -> position update (posteriori position)
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Probabilistic Map-Based Localization 

(5.6.1)

 One geometric approach to multi-hypothesis 

representation identifies the possible positions of 

a robot

 Probabilistic techniques identifies probabilities 

with the possible robot positions

 Two classes of probabilistic localization are:

Markov localization

Kalman filter localization
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Probabilistic Localization Classes 

(5.6.1)

 Markov localization

 Uses an explicitly defined probability distribution across all robot 

positions

 Kalman filter localization

 Uses a Gaussian probability density representation of robot 

position and scan matching for localization

 Unlike Markov, it does not independently consider each possible 

robot pose

 Kalman results from the Markov axioms if the robot‟s position 

uncertainty is assumed to be Gaussian



ECE 497: Introduction to Mobile Robotics -

Localization 100C.A. Berry

Probabilistic Map-Based Localization (5.6)

1. Consider a mobile robot moving in a known environment.

2. As it starts to move from a precisely known location, it might keep 

track of its location using odometry. 

3. Due to odometry uncertainty, after some time the robot will get very 

uncertain about its position. 

4. To keep this uncertainty from growing unbounded, the robot must 

localize itself in relation to its environment map

5. The robot uses onboard sensors to make observations about its 

environment

6. Information from odometry and the exteroceptive observations can be 

combined for the robot to localize itself
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Probabilistic Map-based Localization 

(5.6.1)

 The process of updating robot position based upon 

proprioceptive and exteroceptive sensor values are separated 

logically into a general two-step process

 Action Update

 Proprioceptive

 Represents the application of some action model

 Perception Update

 Exteroceptive

 Represents the application of some perception model
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Action Update (5.6.1)

 Application of some action model, Act to the 

mobile robot‟s proprioceptive encoder 

measurements ot and prior belief state st-1 to 

yield a new belief state, st , representing the 

robot‟s belief about it‟s current position

st = Act (ot, st-1)
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Perception Update (5.6.1)

 Application of some perception, See to the 

mobile robot‟s exteroceptive sensor inputs it and 

updated belief state st to yield a refined belief 

state, st, representing the robot‟s belief about 

it‟s current position

st = See (it, st )
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Action versus Perception Update 

(5.6.1)

 The perception model See and sometimes the action 

model Act are abstract functions of both map and the 

robot‟s physical configuration

 The action update contributes uncertainty to the robot‟s 

beliefs about position because encoders have errors

 The perception update generally refines the belief state 

because sensors provide clues about the robot‟s 

possible position
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Markov Localization (5.6.1)

 Markov localization is the robot‟s belief state usually 

represented as separate probability assignment for every 

possible pose on the map

 Special case of probabilistic state estimation applied to 

mobile robot localization

 Kalman filter localization represents the robot‟s belief state 

using a single, well-defined Gaussian probability density 

function

 It retains a  and s parameterization of the robot‟s belief 

about position with respect to the map 
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Markov vs. Kalman (5.6.1)

 Markov

 Allows localization starting from 

any unknown position

 Recovers from ambiguous 

situations because the robot 

can track multiple, complete 

disparate possible positions

 Requires discrete 

representation of the space 

(geometric grid or topological 

graph)

 Required memory and 

computational power can limit 

precision and map size

 Kalman

 Tracks the robot from a known 

position

 Is both precise and efficient

 Can be used in continuous world 

representations

 If robot uncertainty becomes too 

large and not unimodal, it can fail 

to capture the multitude of 

possible robot positions and can 

become irrevocably lost
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Markov

Localization

(5.6.2)



ECE 497: Introduction to Mobile Robotics -

Localization 108C.A. Berry

Markov Localization (5.6.2)

 Implements the generic belief representation by 

tessellating the robot configuration space into a finite, 

discrete number of robot poses in the map

 During each update, the belief state is computed that 

results when new information (encoder and sensor 

values) are incorporated into a prior belief state with an 

arbitrary probability density

 the probability theory of the solution is based upon 

Bayes formula
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Probability theory to robot localization 

(5.6.2.1)

 Given  a discrete representation of robot positions, assign a 

probability that the robot is indeed at that position, p(A)

 p(A) – prior probability of A

 Measures the probability that A is true independent of any 

additional knowledge we may have

 p(rt = l) – prior probability that robot r is at position l at time t

 To compute the probability given the encoder and sensor evidence

 p(A|B) – conditional probability of A given that we know B 

 p(rt = l|it) – prior probability that robot r is at position l at time t 

given hat the robot‟s sensor inputs i
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Markov Localization (5.6.2):

Bayes Rule

 Bayes rule is used to determine the robot‟s 

new belief state as a function of its sensory 

inputs and its former belief state

 The product rules states that the probability 

that A and B are both true is given by :

 From these expressions, Bayes rule is:
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Markov Localization (5.6.2):

Bayes Rule
 The See function expresses a mapping from a belief state and sensor 

input to a  refined belief state.  Update the probability associated with 

each position l in L.  p(l) = p(r = l)

 p(i|l) is the probability of a sensor input at each robot position and it 

must be computed from some model

 p(l) is the probability that the robot‟s belief state is at l before the 

perceptual update process 

 p(i) does not depend on l and is a constant and is usually dropped and 

at the end of the perception update, all probabilities in the belief state 

are re-normalized to sum to 1.0
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Markov Localization (5.6.2):

Bayes Rule
 The Act function maps a former belief state and encoder measurement 

(i.e. robot action) to a new belief state.

 To compute the probability of position l in the new belief state, integrate 

or sum all possible ways in which the robot may have reached l.

 The same location can be reached from multiple source locations with 

the same encoder measurement, o.  
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Markov Localization (5.6.2):

Markov assumption

 The Act and See equations from the basis of Markov 

localization and incorporate the Markov assumption

 The outputs are a function only of the robot‟s previous 

state and its most recent actions (odometry) and 

perception

 The assumption may not always be valid but it greatly 

simplifies tracking, reasoning and planning and it is 

an approximation
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Markov Localization (5.6.2.2): 

Case Study 1 - Topological Map

 Markov localization is possible when the 

environment provides an appropriate 

decomposition (i.e. topological) 

 Each robot receives a topological description of 

the environment (i.e. connectivity of hallway 

and rooms, no geometric information) [AAAI 

1994]

 Map contains several false arcs

 Robot was to move the map to navigate from a 

starting position to a target room

 The Dervish Robot used probabilistic Markov 

localization and a multiple-hypothesis belief 

state
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Markov Localization (5.6.2.2): 

Case Study 1 – Robot Design
 Traditional sonar were arranged radially around the 

robot in a ring

 Disadvantage is that it makes robot subject to 

tripping over short objects and being decapitated 

for tall objects

 One pair of sonar were diagonally upward to detect 

ledges

 One pair of sonar were mounted on the base to 

detect low obstacles

 Sonar were grouped to reduce crosstalk

 Dervish‟s perceptual system was used to detect 

matching perceptual events (the detection and 

passage of connections between hallways and 

offices)
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Markov Localization (5.6.2.2): 

Case Study 1 – Perceptual System
 The perceptual system was abstract and used the 

trajectory of sonar strikes to the left and right of the robot 

over time

 There was no use of encoder values to trigger 

perceptual events

 If the robot detected a 7 to 17 cm indentation in width 

for more than a second continuously then a closed 

door sensory event was triggered

 If the sonar strikes were beyond 17 cm for more than a 

second then an open door sensory event was 

triggered

 When the angle to the robot center line exceeded 9 

degrees, the sensory events were suppressed

 These false negatives suggested a probabilistic 

solution to the localization problem in order to compute 

a complete trajectory of perceptual inputs
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Markov Localization (5.6.2.2): 

Case Study 1 - Topological Map

 Dervish used a discrete topological 

map

 Identical in abstraction and 

information to the contest map

 Decision involves assignment of 

nodes and connectivity between 

nodes

 Node boundaries are marked by 

doorways, hallways, and foyers

 Note there is no geometric 

information on the nodes

Contest environment map

Topologic map
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Markov Localization (5.6.2.2): 

Case Study 1 – Belief State
 In order to represent a specific belief state, 

 For each topological node, n, there was a probability or likelihood that 

the robot is at a physical position within the boundaries of n.  p(ri = n)

 The probabilities were approximate thus they were likelihoods

 The perception update were generated asynchronously each time the 

feature extractor recognized a large scale feature (e.g., doorway, 

intersection)

 Each perceptual event consists of a percept-pair (a feature on one or 

both sides of the robot)

 From equation 5.21, p(n) represents the current belief state of Dervish. The 

challenge lies in computing p(i|n)
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Markov Localization (5.6.2.2): 

Case Study 1 – Certainty Matrix
 Because the feature extraction only extracts 4 total features (nothing, closed door, open 

door, open hallway)  and a node contains one of 5 total features (wall, closed door, open 

door, open hallway, foyer)

 These 4 x 5 possible combinations can be represented in a lookup table

 This lookup table is a certainty matrix

 The probability is a function of the feature extracted and the actual feature in the node

 The human generates a specific certainty matrix that represents the robot‟s perceptual 

confidence along with a global measure for the probability that any given door is closed 

versus open in the real world

 The probability that the robot is next to an open hallway and 

recognizes it as an open door is 0.10

n =open hallway

i = open door

p(i|n) = 0.10

Node feature or 

world feature

Extracted 

feature
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Markov Localization (5.6.2.2): 

Case Study 1 – Perception Update (1)

 Dervish has no encoders and perceptual events are 

triggered asynchronously by the feature extraction 

process (no action update)

 However, the robot is moving and therefore we can 

apply a combination of action and perception update 

 It may take several perceptual events to update the 

likelihood of every possible robot position given 

Dervish‟s former belief state

 The perception update formula is a combination of the 

general form of action update and perception update
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Markov Localization (5.6.2.2): 

Case Study 1 – Perception Update Formula

 The likelihood of position n given perceptual event i or the update of belief state for 

position n given the percept-pair i is calculated by the following 

 p(n t-i) is the likelihood of being at position n given the former belief state

 t-i is used instead of t-1 because the topological distance between n‟ and n can 

vary depending on the specific topological map

 p(nt|n t-1, it) is calculated by multiplying the probability of generating a perceptual 

event i at position n by the probability of having failed to generate events at all 

nodes between n and n
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Markov Localization (5.6.2.2): 

Case Study 1 – Example Calculation

 For the following topological map, make 2 assumptions:

 the robot is facing east

 the robot has two nonzero belief states, p(1-2) = 1.0 and p(2-3) = 0.2

 The probability that any given door is closed versus open is p(closed door) = 0.60

 Suppose that the robot detects an open hallway on the left and an open door on the right

simultaneously

 State 2-3 will progress potentially to 3, 3-4, or 4

 States 3 and 3-4 can be eliminated because the likelihood of detecting an open door when there is 

only a wall is zero p(door|wall) = 0.0.

 The likelihood of reaching state 4 is the product of 

 the initial likelihood p(2-3)= 0.2

 the likelihood of not detecting anything at node 3 (a)

 the likelihood of detecting a hallway on the left and a door on the right at node 4 (b)

 (for simplicity we assume that the likelihood of detecting nothing at node 3-4 is 1.0)
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Markov Localization (5.6.2.2): 

Case Study 1 – Example Calculation (2)

 If Dervish detects nothing at node 3 then 

 he failed to detect the door (open or closed) on its left

 p(nothing|closed door)· p(closed door) = (0.40)(0.60)

 p(nothing|open door)·p(open door) = (0.05)(1 – 0.60)

 and correctly detects nothing on its right, p(nothing|wall) = 0.7

 If Dervish detects at node 4

 the hallway on the left p(hallway|hallway) = 0.90 and

 mistakenly identifies an open door on the right p(open door|hallway) = 0.10

 The final formula becomes

p(4) = p(2-3)·p(nothing|door) ·p(nothing|wall) ·p(hallway|hallway) ·p(open door|hallway)

p(4) = 0.2·[(0.6)(0.4) + 0.4)(0.05)] ·0.7 · [0.9 · 0.1] = .003276

which represents a partial belief state for node 4 given the prior belief state 2-3
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Markov Localization (5.6.2.2): 

Case Study 1 – Example Calculation (3)

 What if the robot‟s prior belief state is at node 1-2

 The robot will potentially progress to 2, 2-3, 3, and 3-4

 States 2-3, 3 and 3-4 can be eliminated because the likelihood of detecting an open door 

when a wall is present is zero p(door|wall) = 0.0.

 p(2) = p(1 – 2) · p(open door|right door) · p(hallway|left hallway) = 1.0 · [0·0.6 +0.90· 0.4] · 

0.90 = 0.324

 applying the progression to node 4 from 1-2 yields p(4) = p(2) · 4.3 · 10-6 =  1.3932· 10-6

which represents a the belief state for node 4 given the prior belief state 1-2

 the total belief state for node 4 = p(4:2-3) + p(4|1-2) = 0.003276 + 1.3932· 10-6 = 0.003277
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Markov Localization (5.6.2.2): 

Case Study 1 – Topological map

 Dervish was successfully able to navigate four different indoor office environments with no notion of the 

distance between adjacent nodes in its topological map

 This demonstrates the power of probabilistic localization in spite of a lack of action and encoder 

information

 Question:

 how does the robot decide how to move, given that it has multiple possible robot positions in its 

representation?

 plan the robot‟s actions by assuming that the robot‟s actual position is its most likely node in the 

belief state

 generally the most likely position is a good measure of the robot‟s actual world position

 One step to improve the planning system is to specify a goal belief state than a goal position

 the robot can reason and plan in order to achieve a goal confidence level

 the robot takes into account not only the position but the measured likelihood of each position
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Markov Localization (5.6.2.3): 

Case Study 2 – Grid Map

 The major weakness of a topological decomposition is the resolution limitation

 A more precise navigation uses a grid-based representation while still employing 

the Markov localization technique

 This case study used Rhino, a RWI B24 robot with 24 sonar and 2 Sick laser 

rangefinders

 Rhino uses a 2D geometric environmental representation of free and occupied 

space

 This map is tessellated regularly into a fixed decomposition grid

 Rhino uses a multiple-hypothesis belief state

 Rhino consists of a 15 x15 x 15 3D array representing 153 possible robot 

positions

 The resolution of the array is 15 cm x 15 cm x 1

 Unlike Dervish which assumes the orientation is approximate and known, 

Rhino explicitly represents alternative orientations

 Rhino‟s belief state has 3 degrees of freedom

 Rhino includes encoder inputs, metric distance and both and explicit action 

update phase and perception update phase
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Markov Localization (5.6.2.3): 

Case Study 2 – Action and Perception Update

 Action update:

 Due to the tessellated representation of position, the discrete Markov chain of the 

action update was performed

 Given encoder measurements o at time t, each updated position probability in the 

belief state Is expressed as a sum over previous possible positions and motion 

model

 Perception update:

 Given a range perception i, the probability of the robot being at each location l is

 Unlike Dervish, the number of possible values for i and l cannot be recorded on a 

lookup table

 Rhino computes p(i|l) using a model of the robot‟s sensor behavior
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Markov Localization (5.6.2.3): 

Case Study 2 – Sensor Model
 The sensor model must calculate the probability of a specific perceptual 

measurement given that its likelihood is justified by known errors of the sonar or 

laser rangefinder

 Assumptions

 Measurement error can be described by a distribution with a mean at the 

correct reading

 Non-zero chance that a range sensor will read any measurement value

 there will be a local peak in the probability density distribution at the maximal 

reading of a range sensor due to absorption or reflection failure mode

ultrasound

laser
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Markov Localization (5.6.2.3): 

Case Study 2 – Grid Map (1D example)

1. Start

 No knowledge at start, thus there is  

a uniform probability distribution

2. Robot perceives first pillar

 Seeing only one pillar, the probability

being at pillar 1, 2 or 3 is equal.

3. Robot moves

 Action model enables the estimate of 

the new probability distribution based 

on the previous one and the motion.

4. Robot perceives second pillar

 Based on all prior knowledge the 

probability being at pillar 2 becomes

dominant
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Markov Localization (5.6.2.3): 

Case Study 2 – Grid Map (1D example)

 As the robot encounters one pillar 

and then a second pillar, the 

probability density function over 

possible positions becomes 

multimodal, unimodal and then 

sharply defined

 The ability of a Markov localization 

system to localize the robot from an 

initially lost belief state is its key 

distinguishing feature

 This is a challenging application 

because of the dynamic nature of 

the environment
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Markov Localization Example

The robot is placed

somewhere in the

environment but it is not told 

its location

The robot queries its

sensors and finds out it is 

next to a door

The robot moves one meter 

forward. To account for inherent 

noise in robot motion the new 

belief is smoother

The robot queries its

sensors and again it finds 

itself next to a door
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Markov Localization (5.6.2.3): 

Case Study 2 – Grid Map

 Fine fixed decomposition grids result in a huge state space

 Very important processing power needed

 Large memory requirement

 Reducing complexity

 Various approached have been proposed for reducing complexity

 The main goal is to reduce the number of states that are updated in each step

 Randomized Sampling / Particle Filter

 Approximated belief state by representing only a „representative‟ subset of all 

states (possible locations)

 E.g update only 10% of all possible locations

 The sampling process is typically weighted, e.g. put more samples around the 

local peaks in the probability density function

 However, you have to ensure some less likely locations are still tracked, otherwise 

the robot might get lost
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Kalman 

Filter

Localization

(5.6.3)
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Kalman Filter Localization (5.6.3)

 The Markov localization model can represent any probability density 

function over robot position

 One can argue that not the probability density curve but the sensor 

fusion problem is key to robust localization

 Optimal localization should take into account the information 

provided by all of the heterogeneous sensors

 The Kalman filter is used to achieve sensor fusion

 The Kalman filter is more efficient than Markov localization

 The benefit of the simplification of the probability density function is a 

resulting optimal recursive data-processing algorithm

 it incorporate all information, regardless of precision to estimate the 

current robot‟s position
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Kalman Filter Localization (5.6.3):

General Scheme

 Inputs to the system are a 

control signal and system 

error sources

 The Kalman filter produces 

an optimal estimate of the 

system state based on the 

knowledge of the system

and the measuring device

 The Kalman filter fuses 

sensor signals and system 

knowledge in an optimal 

way
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Kalman Filter Localization (5.6.3):

Kalman Filter Theory

 Multiple measurements are incorporated into a single estimate of 

state

 Assume that the state does not change between the measurements

 This is referred to as static estimation

 Suppose the robot has ultrasonic and laser sensors

 the laser provides richer and more accurate data but suffers from 

failure such as detecting glass while the sonar will provide an 

accurate reading

 the sensor fusion is extremely efficient as long as the error 

characteristics  are approximated as unimodal, zero-mean, 

Gaussian noise
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Kalman Filter Localization (5.6.3):

Kalman Filter Theory

 Assume that 2 measurements were 

taken:

 sonar at time k

 laser at time k+1

 An estimate of robot position derived from

 the sonar is q1 with variance s1
2

 the laser is q2 with variance s2
2

 The 2 robot position estimates are: 
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Kalman Filter Localization (5.6.3):

Kalman Filter Theory

 How do we fuse (combine) these data to get the best 

estimate,  

 Apply the weighted least-squares technique 

 To find the minimum error set the derivative of S equal to 

zero

q̂
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Kalman Filter Localization (5.6.3):

Kalman Filter Theory

 Rearranging the equation, the estimate of the 
position in terms of the 2 measurements can be 
defined as

 In Kalman Filter notation, 

where
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Kalman Filter Localization (5.6.3):

Dynamic estimation

 What if the robot moves between successive sensor 

measurements?

 the robot motion between k and k + 1 is described by the velocity, u, 

and the noise, w

 If we know the robot‟s variance at k is sk
2 and the variance of the 

motion is sw
2 then from k , the time when the measurement is taken 

yields
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Kalman Filter Localization (5.6.3):

Dynamic estimation

 xk is the optimal prediction of the robot‟s position just as the 

measurement is taken at time k + 1

 It describes the growth of position error until a new measurement is 

taken

 The optimal estimate at time k+1 is given by the last estimate at k 

and the estimate of the robot motion including the estimated 

movement errors
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Kalman Filter Localization (5.6.3):

Application to mobile robots

 The application of Kalman filters to localization requires posing the robot localization 

problem as a sensor fusion problem

 Recall that the basic probabilistic update of the robot belief statement can be 

segmented into 2 phases

 perception update

 action update

 The key difference between Markov and Kalman lies in the perception update process

 the entire perception, the robot‟s set of instantaneous sensor measurements, is 

used to update each possible robot position in the belief state individually

 for Dervish, the perception was abstract being produced from a feature extraction 

mechanism

 for Rhino,  the perception consists of raw sensor readings

 For the Kalman filter, perception update is a multistep process
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Kalman Filter Localization (5.6.3):

Application to mobile robots

 In Kalman perception update, the robot‟s total sensory 

input is treated as a set of extracted features that each 

relate to objects in the environment

 The Kalman filter treats the whole belief state at once
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Kalman Filter Localization (5.6.3):

Steps for Kalman filter localization

 action update or position prediction 

 Gaussian error model to the robot‟s measured encoder travel

 observation step

 robot collects actual senor data and extracts appropriate features

 measurement prediction

 at the same time, based upon the robot‟s predicted position in the map, the robot 

identifies the features that the robot expects to find and the positions of those 

features

 matching

 the robot identifies the best pairings between the features actually extracted during 

observation and the expected features due to measurement prediction

 estimation

 Kalman filter fuses the information provided by all of the matches to update the robot 

belief state
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Kalman Filter Localization (5.6.3.2):

Robot position prediction (Step 1)

 The robot‟s position at time step k+1 is predicted based 

on its old location (time step k) and its movement due to 

the control input u(k):

))(,)(ˆ()1(ˆ kukkpfkkp 

T
uuu

T
pppp f)k(ff)kk(f)kk(  1

 Knowing the plant and error model, the variance 

associated with the prediction is

 This allows the prediction of the robot‟s position and its 

uncertainty after a movement specified by the control 

input
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Kalman Filter Localization (5.6.3.2):

Observation (Step 2)

 To obtain the sensor measurements Z(k+1) from the robot‟s sensors at the 

new location at time k+1

 assume that the observation is the result of a feature extraction process 

executed on raw sensor data

 The observation usually consists of a set no of single observations zj(k+1)

extracted from the different sensors signals (e.g. raw data scans, or features 

such as lines, doors, landmarks) 

 The parameters of the targets are usually observed in the sensor frame {S}. 

 Therefore the observations have to be transformed to the world frame 

{W} or 

 the measurement prediction have to be transformed to the sensor frame 

{S}

 This transformation is specified in the function hi (seen later).
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Kalman Filter Localization (5.6.3.2):

Measurement Prediction (Step 3)

 Use the predicted robot position                   and the map M(k) to 

generate multiple predicted feature observations zt.

 Each predicted feature has to be transformed into the sensor 

frame

 kkp̂ 1

    kkp̂,zhkẑ tii 11 

     ii nikẑkẐ  111

 Define the measurement prediction as the set containing all ni

predicted feature observations

 The function hi is mainly the coordinate transformation between the 

world frame and the sensor frame
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Kalman Filter Localization (5.6.3.2):

Matching (Step 4)

 identifies all of the single observations that match specific predicted 

features well enough to be used during the estimation process

 produce an assignment from observations zj(k+1) (gained by the 

sensors) to the targets zt (stored in the map) 

 For each measurement prediction for which an corresponding 

observation is found we calculate the innovation

 Innovation is the measure of the difference between the predicted and 

observed measurements



ECE 497: Introduction to Mobile Robotics -

Localization 149C.A. Berry

Kalman Filter Localization (5.6.3.2):

Matching (Step 4)

 The Innovation covariance can be found by applying the error 

propagation law

 To determine the validity of the correspondence between 

measurement prediction and observation, a validation gate has to 

be specified.  One definition is the Mahalanobis distance
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Kalman Filter Localization (5.6.3.2):

Applying the Kalman Filter (Step 5)

 Compute the best estimate of the robot‟s position based on the 

position prediction and all the observations at time k+1

 The Kalman filter gain is used to update the robot‟s position 

estimate
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Kalman Filter Localization (5.6.3.3):

Case Study (Line Feature Extraction)

 Pygmalion is a differential drive robot that uses a laser rangefinder as 

its primary sensor

 The environment representation is continuous and abstract

 the map consists of a set of infinite lines describing the environment

 the belief state is a Gaussian distribution and uses the Kalman filter 

localization algorithm

 Assume that the sensor frame {S} is equal to the robot frame {R}

 Assume that if not specified all the vectors are represented in the 

coordinate system {W}
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Kalman Filter Localization (5.6.3.3):

Case Study (Robot position prediction)

 At the time increment k the robot is at position p(k) = [x(k) y(k) q(k)]

 The control input u(k) drives the robot to the position p(k+1)

 The best position estimate is 
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Kalman Filter Localization (5.6.3.3):

Case Study (Observation)
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 for line-based localization, each single observation (i.e., a 

line feature) is extracted from the raw laser rangefinder 

data and consists of 0,j, 1,,j or j, rj

 zj(k + 1) = R[j rj]
T

 lines and uncertainties are extracted and n0 observations 

leads to 2no line parameters
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Kalman Filter Localization (5.6.3.3):

Case Study (Observation)

j

r j

line j

raw data from the laser 

scanner at time k+1, 

extracted lines

lines extracted 

from the raw data

the extracted lines 

uncertainties 

represented in the model 

space
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Kalman Filter Localization (5.6.3.3):

Case Study (Measurement prediction)

 Based on the stored map and the 

predicted robot position, the 

measurement predictions of expected 

features are generated

 To reduce required calculations, only the 

walls that are in 

the field of view of the robot are selected.

 This is done by linking the individual lines 

to the nodes of the path
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Kalman Filter Localization (5.6.3.3):

Case Study (Matching)

 find a correspondence 

between predicted and 

observed features
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Kalman Filter Localization (5.6.3.3):

Case Study (Estimation)

 Kalman filter estimation of the new robot 

position

 By fusing the prediction of robot position 

(magenta) with the innovation gained by 

the measurements (green)

 we get the updated estimate of the robot 

position (red)

 this final pose estimate corresponds to the 

weighted sum of the

 pose estimates of each matching pairing 

of observed and predicted features

 robot position estimation based on 

odometry and observation positions



ECE 497: Introduction to Mobile Robotics -

Localization 160C.A. Berry

Other examples of Localization Systems: 

Landmark-based navigation (5.7)

 Other methods use techniques that may modify the robot‟s 

environment

 landmarks are passive objects in the environment that provide a high 

degree of localization accuracy when they are within the robot‟s field 

of view

 the control system consists of 2 discrete phases

 when the landmark is in view, the robot localizes frequently and 

accurately using action update and perception update to track its 

position without cumulative error

 when the landmark is not in view, only the action update occurs 

and the robot accumulates position uncertainty until the next 

landmark enters the robot‟s field of view
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Other examples of Localization Systems (5.7):

Landmark-based navigation

 the robot is dead reckoning from landmark zone to landmark zone

 the robot must consult its map carefully

 the shape of the landmarks may enable reliable and accurate pose 

estimation by the robot
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Other examples of Localization Systems (5.7):

Landmark-based navigation

 One key advantage of landmark-based navigation is that a strong 

formal theory has been developed for this general system architecture

 the robot is dead reckoning from landmark zone to landmark zone

 the robot must consult its map carefully

 the shape of the landmarks may enable reliable and accurate pose 

estimation by the robot

 the disadvantage is that the environment must be modified and the 

landmarks are local, therefore a large number are required to cover a 

given area
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Other examples of Localization Systems (5.7.2):

Globally unique localization

 The general assumption is that when the landmark is within the 

robot‟s field of view, localization is essentially perfect

 To greatly improve robot localization, this assumption would be true 

no matter where the robot is located

 a look at the robot‟s sensors would immediately identify its particular 

location, uniquely and repeatedly

 One type of globally unique localization is mosaic-based localization

which takes advantage of the fine-grained floor texture using a CCD 

camera pointed at the floor

 Humans often have excellent local positioning systems in 

environments that are nonrepeating and well-known
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Other examples of Localization Systems: 

Positioning Beacon Systems (5.7.3)

 one solution is to design and deploy an active beacon system specifically for 

the target environment

 Similar GPS, this method is preferred by industry and military applications to 

insure high reliability of localization

 The robots localize passively while the beacons are active

 any number of robots can simultaneously take advantage of a single beacon 

system

 the robots must know the positions of the 2 active ultrasonic beacons in the 

global coordinate frame in order to localize themselves

 one system with retroreflective markers can be easily detected by the robot 

based on their reflection of energy back to the robot when it has 3 beacons 

in sight simultaneously

 a robot with encoders can localize over time and does not need to measure 

all three beacons at the same instant
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Other examples of Localization Systems: 

Positioning Beacon Systems: Triangulation (5.7.3)
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Other examples of Localization Systems: 

Positioning Beacon Systems: Bar-Code
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Other examples of Localization Systems (5.7.4): 

Route-based localization

 More reliable than beacon-based systems are route-based 

localization

 the route of the robot is explicitly marked and it can determine its 

position relative to the specific path it is allowed to travel

 this effectively creates a railway system, but more flexible (i.e. 

ultraviolet-reflective, optically transparent paint, guidewire)

 Unmanned guide vehicles use this technique but may deviate from 

their route to avoid obstacles

 this robot is much more inflexible and changes to robot behavior and 

the environment require significant engineering and time
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Autonomous Map Building (5.8)
 A robot that localizes successfully has the right sensors for detecting the environment 

and the robot ought to build its own map

 starting from an arbitrary initial point, 

 a mobile robot should be able to autonomously explore the environment with its 

sensors, 

 gain knowledge about it, 

 interpret the scene, 

 build an appropriate map 

 and localize itself relative to this map

 Simultaneous Localization and Mapping (SLAM) is one of the most difficult problems 

specific to mobile robot systems

 SLAM involves the autonomous creation and modification of an environment map

 the robot must explore its environment and build the map

 the robot must also move and localize to explore the environment

 the difficulty is based upon the interaction between the position updates and it 

localizes and the mapping actions
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Autonomous Map Building (5.8):

SLAM

 SLAM is difficult based upon the interaction between the robot‟s position 

updates as it localizes and the mapping actions

 if the robot updates its position based on an observation of an imprecisely 

known feature, the results position estimate becomes correlated with the 

feature location estimate

 the map becomes correlated with the position estimate if an observation taken 

from the imprecisely known position is used to update or add a feature to the 

map

 for localization, the robot needs to know where the features are but for map 

building, the robot needs to know where it is on the map

 the complete and optimal solution is to consider correlations between position 

and feature location estimation

 Cross-correlated maps are called stochastic maps

../Sample%20Curricula/Videos/EPFL_SLAM_Corner%20Structures.avi
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Autonomous Map Building (5.8.1):

The stochastic map technique
 this general schematic 

incorporates map building 

and maintenance into the 

standard localization loop

 the added arcs represent the 

additional flow of information 

when there is an imperfect 

mach between observations 

and measurement predictions

 unexpected observations will 

effect the creation of new 

features in the map

 unobserved measurement 

predictions will effect the 

removal of features from the 

map
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Autonomous Map Building (5.8.1):

The stochastic map technique

 each prediction or observation has an unknown exact value and is 

represented by a distribution

 the uncertainties of all of these quantities must be considered throughout the 

process

 each feature has varying degrees of probability

 the new map M with a set n of probabilistic feature locations zt each with the 

covariance matrix and an associated credibility factor ct between 0 and 1 

quantifying the belief in the existence of the feature in the environment
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Autonomous Map Building (5.8):

Stochastic Map Technique

 in contrast to the map used for Kalman filter localization, the map M is not assumed 

to be precisely known because it will be created by an uncertain robot over time

 the matching step has 3 outcomes in regard to measurement predictions and 

observations

 matched prediction and observation

 unexpected observations

 unobserved predictions

 localization or position update proceeds as before but the map is also updated now

 the credibility factor, ct governs the likelihood that the mapped feature is indeed in the 

environment

 in map-building the feature positions and the robot‟s position are strongly correlated 

and this forces the use of a stochastic map, in which all cross-correlations are 

updated in each cycle

 this approach requires every value in the map to depend on every other value
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Other mapping techniques (5.8.2.1) :

Cyclic Environments

 in automatic mapping how do you correctly map an 

environment with one or more loops or cycles?

 Small local error accumulate to arbitrary large 

global errors!

 This is usually irrelevant for navigation

 However, when closing loops, global error does 

matter

 2 features that solve the cyclic detection problem

 submaps treated as a single sensor during the 

robot‟s position update

 topological representation associated with the 

set of metric submaps

../Sample Curricula/Videos/Thrun_Mapping.AVI
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Other mapping techniques (5.8.2.2) :

Dynamic Environments

 in dynamic environments, automatic mapping should 

capture the salient objects detected by its sensors

 the robot should have the flexibility to modify its maps as 

the positions of the salient objects change

 Dynamical changes require continuous mapping

 continuous mapping is a direct outgrowth of successful 

strategies for automatic mapping of unfamiliar environments

 If extraction of high-level features would be possible, the 

mapping in dynamic environments would become 

significantly more straightforward.

 e.g. difference between human and wall

 Environment modeling is a key factor 

for robustness

?


