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Quote of the Week

“A common mistake people make when 

trying to design something completely 

foolproof is to underestimate the 

ingenuity of complete fools.”

D. Adams
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Mobile Robot Localization (5.1)

 Navigation is one of the most challenging 

mobile robot competencies

 Successful navigation requires

Perception

Localization

Cognition

Motion control

"Position" 
Global Map
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Cognition

Real World
Environment

Localization

PathEnvironment Model
Local Map



ECE 497: Introduction to Mobile Robotics -

Localization 4C.A. Berry

Mobile Robot Localization (5.1)

 Perception

 The robot must interprets its sensors to extract meaningful 

data

 Localization

 The robot must determine it‟s position in the environment

 Cognition

 The robot must decide how to act to achiever its goals

 Motion Control

 The robot must modulates its motor outputs to achieve the 

desired trajectory
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Localization, Where am I? (5.1)
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What‟s the problem?
 WHERE AM I? 

 But what does this mean, really?

 Frame of reference is important

Local/Relative: Where am I vs. where I was?

Global/Absolute: Where am I relative to the 

world frame?

 Location can be specified in two ways

Geometric: Distances and angles

Topological: Connections among landmarks
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Localization: Absolute
 Proximity-To-Reference

 Landmarks/Beacons 

 Angle-To-Reference

 Visual: manual triangulation from physical points

 Distance-From-Reference

 Time of Flight

 RF: GPS

 Acoustic:

 Signal Fading

 Electromagnetic

 Radio frequency

 Acoustic
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Localization: Relative

 If you know your speed and direction, you can 

calculate where you are relative to where you were 

(integrate).

 Speed and direction might, themselves, be absolute 

(compass, speedometer), or integrated (gyroscope, 

accelerometer)

 Relative measurements are usually more accurate in 

the short term -- but suffer from accumulated error in 

the long term

 Most robotics research seems to focus on this  
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Localization Methods

 Markov Localization:

 Represent the robot‟s belief by a probability 

distribution over possible positions and uses Bayes‟ 

rule and convolution to update the belief whenever the 

robot senses or moves

 Monte-Carlo methods

 Kalman Filtering

 SLAM (simultaneous localization and mapping)
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Localization and Map Building (5.1)

 Odometry, Dead Reckoning

 Localization based on external sensors, 

beacons or landmarks

 Probabilistic Map Based Localization
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Challenges of Localization (5.2)

 Knowing the absolute position (e.g. GPS) is not 

sufficient

 Localization may also be required on a relative 

scale with respect to humans

 Cognition may require more than position, it may 

need to build an environmental model, map, to 

plan a path to a goal
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Sensor Noise (5.2)

 Perception (sensors) and motion control (effectors) play 

an integral role in localization

 Sensor noise

 Sensor aliasing

 Effector noise

Odometric position estimation
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Sensor Noise (5.2.1)

 Sensor noise induces a limitation on the consistency of 

sensor readings

 Sensor noise is mainly influenced by 

 environment (e.g. surface, illumination)

 the measurement principle itself

(e.g. interference between ultrasonic sensors)

 Sensor noise drastically reduces the useful information 

of sensor readings. The solution is:

 to take multiple reading into account

 employ temporal and/or multi-sensor fusion 
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Sensor Aliasing (5.2.2)

 Sensor Aliasing describes the phenomena of the non-uniqueness  

of sensors readings.  This is the norm in mobile robot sensors. 

 Even with multiple sensors, there is a many-to-one mapping from 

environmental states to robot‟s perceptual inputs

 Therefore the amount of information perceived by the sensors is 

generally insufficient to identify the robot‟s position from a single 

reading

 The robot‟s localization is usually based on a series of readings

 This series may be sufficient information to recoever the robot‟s 

position over time
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Effector Noise (5.2.3)

 Robot effectors are also noisy

 Effectors produce uncertainty about future states

 Cognition may be used to minimize uncertainty in motion

 Sensory feedback can also be used to compensate for 

uncertainty

 Odometry and dead reckoning error

 Position update is based on proprioceptive sensors

 Robot is unable to estimate its own position over time using 

knowledge of its kinematics and dynamics

 True source of error ia an incomplete model of the environment

 Odometry uses wheel sensors only

 Dead reckoning also uses heading sensors
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Effector Noise (5.2.3)

 The movement of the robot, sensed with wheel encoders and/or 

heading sensors is integrated to get position.

 Pro

 straight forward and easy

 Con

 errors are integrated and grow unbounded

 To correct robot pose

 the position must be updated periodically by other localization 

mechanisms

 Using additional heading sensors (e.g. gyroscope) might help to 

reduce the accumulated errors, but the main problems remain 

the same
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Odometry Error sources (5.2.3)
 Major Error Sources:

 deterministic (systematic)

 can be eliminated by proper calibration of the system. 

 non-deterministic (random)

 errors have to be described by error models and will always 

lead to uncertain position estimation

 Major Error Sources:

 Misalignment of the wheels [deterministic]

 Unequal wheel diameter [deterministic]

 Limited resolution during integration (time increments, 

measurement resolution …) [random]

 Variation in the contact point of the wheel [random]

 Unequal floor contact (slipping, not planar …) [random]
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Odometry: 

Classification of Integration Errors (5.2.3)
 Range error

 integrated path length (distance) of the robots movement

 sum of the wheel movements

 Turn error

 similar to range error, but for turns

 difference of the wheel motions

 Drift error

 difference in the error of the wheels leads to an error in the robots 

angular orientation

Over long periods of time, turn and drift errors 

far outweigh range errors because they are nonlinear!

 Consider moving forward on a straight line along the x axis. The error in 

the y-position introduced by a move of d meters will have a component 

of dsinDq, which can be quite large as the angular error Dq grows.
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Error Model:

Odometric Position Estimation (5.2.4)

 The pose of a robot is given by [x y q]T

 The position can be estimated by 

starting from a known position and 

integrating the movement (sum the 

incremental travel distances)

 For a discrete system with a fixed 

sampling interval, Dt, the incremental 

travel distances are (Dx, Dy, Dq)

 Dsr , Dsl are the travelled distances for 

the right and left wheels

 b is the distance between the 2 wheels 

of the robot 
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Odometric position update (5.2.4)

Kinematics
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Error propagation (4.2.2)

 Error propagation is used when a series of 

measurements, all uncertain, can be fused to extract 

information about the environment 

 If Xi are n input signals 

with known probability 

distribution and Yi are m 

outputs

 What is the probability 

distribution of the output 

signals if the inputs are 

a function of fi?
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The Error Propagation Law (4.2.2)

Error propagation in a multiple-input multi-output 

system with n inputs and m outputs.

X1

Xi

Xn

System

…
…

Y1

Yi

Ym

…
…
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The Error Propagation Law (4.2.2)

 Imagine extracting a line based on 

point measurements with 

uncertainties.

 The model parameters  ri (length of the 

perpendicular) and qi (its angle to the 

abscissa) describe a line uniquely

 The question:

 What is the uncertainty of the 

extracted line knowing the 

uncertainties of the measurement 

points that contribute to it ?


r

xi = (ri, qi)
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The Error Propagation Law (4.2.2)

 It can be shown, that the output covariance matrix CY is given by 

the error propagation law, CY = FXCXFX
T, where

 CX: covariance matrix representing the input uncertainties

 CY: covariance matrix representing the propagated uncertainties 

for the outputs.

 FX: is the Jacobian matrix defined as:
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Error model for integrated position (p ) 

(5.2.4)

 The covariance matrix for 

the error is given by

 kr and kl are the error 

constants for the 

nondeterministic parameters 

of the motor drive and 

wheel-floor interaction
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Odometry: Growth of Pose uncertainty for Straight 

Line Movement

Note: Errors perpendicular to the direction of movement are 

growing much faster!
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Odometry: Growth of Pose uncertainty for 

Movement on a Circle

Note: The uncertainty perpendicular to the movement grows faster 

than in the direction of movement.  The main axis of the uncertainty 

ellipse does not remain perpendicular to the direction of movement!
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Odometry:  Calibration of Errors I
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Odometry: Calibration of Errors II
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Odometry: Calibration of Errors III
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To localize or not? (5.3)
 How to navigate between A and B,

 Use localization with respect to a map to navigate to the goal B

 Use behavior-based navigation without hitting obstacles

 Follow walls with obstacle avoidance

 Detect the goal location
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Behavior Based Navigation (5.3)

 Advantage:

 Implemented quickly for a single environment

 Disadvantages:

 Does not scale directly to different or larger environments

 Navigation code is location-specific

 Behaviors must be carefully designed

 May have several active behaviors at once
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Model Based Navigation (5.3)

 Disadvantages:

 Requires more up-front development 

effort to create a navigating mobile 

robot

 An internal representation rather than 

the real-world itself is being constructed 

and trusted by the robot

 If the model diverges from reality, the 

robot‟s behavior will be undesirable 

even if the sensor values are 

transiently incorrect

 The map-based approach includes both localization and cognition

 Advantages:

 Make‟s the robot‟s belief about position transparent to the human operator

 The existence of the map represents a medium of communication between the 

human and robot

 The map can be used by humans as well as the robots

 Can map and navigate a variety of environments
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Belief

Representation

(5.4)
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Representation

 The robot internal state that stores information about the 

world is called a representation

 Environment: maps

 Objects: people, doors, other robots

 Tasks: what needs to be done and in what order

 Self: goals, sensors, plans, proprioception

 Representations or internal models influence the 

complexity of a robot‟s “brain”
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Belief Representation (5.4)

 The fundamental issue that differentiates map-based 

localization systems is representation

 Map representation

 Robot‟s model of the environment, or a map

 At what level of fidelity does the map represent the 

environment?

 Belief representation

 Robot‟s belief of its position on the map

 Does the robot identify a single unique position?

 Does the robot describe its position in terms of a set of 

possible positions?

 How are multiple positions ranked
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Belief Representation (5.4)

Continuous 

Single hypothesis belief 

(Gaussian)

Continuous 

Multiple hypothesis belief 

(Gaussian)

Discretized grid map

with probability values

for all possible robot positions 

(Markov)

Discretized topological map

with probability values

for all possible robot nodes

(Markov)
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Belief Representation: 

Characteristics (5.4)

 Continuous

 Precision bound by sensor 

data

 Typically single hypothesis 

pose estimate

 Lost when diverging (for 

single hypothesis)

 Compact representation 

and typically reasonable in 

processing power.

 Discrete

 Precision bound by 

resolution of discretization

 Typically multiple 

hypothesis pose estimate

 Never lost (when diverges 

converges to another cell)

 Important memory and 

processing power needed. 

(not the case for 

topological maps)
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Single-hypothesis Belief (5.4.1)

Continuous 2D geometric

line-based map
Real-world map with walls, 

doors, and furniture
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Single-hypothesis Belief (5.4.1)

Discrete, tessellated map

Level of fidelity = cell size
The map is not geometric, but

abstract and topological

Identify a single node
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Single-hypothesis belief (5.4.1)

 Advantages:

 Given a unique belief, there is no position ambiguity

 Facilitates decision-making at robot‟s cognitive level 

(e.g. path planning)

 Disadvantages:

 Robot motion induces uncertainty due to effector and 

sensor noise

 Forcing the position update to always generate a 

single hypothesis of position is challenging
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Multiple-hypothesis belief (5.4.2)

 The robot tracks an infinite set of possible positions

 This set can be described geometrically as a convex 

polygon positioned on a 2D map (continuous or discrete)

 In this method, the possible robot positions are not ranked

 To rank the positions requires a model of the beliefs as a 

mathematical distribution (Gaussian probability density 

function)
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Multi Hypothesis Grid-based 

Representation (5.4.2)

 Discrete markers for each possible 

position

 Each position is noted along with a  

confidence or probability parameter

 Thousands of possible positions for a 

highly tessellated map
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Multi Hypothesis Grid-based 

Representation (5.4.2)
 Advantages:

 Robot maintains a sense of position 

while explicitly annotating its own 

uncertainty about the position

 Partial information from sensors and 

effectors can update the belief

 Robot is able to explicitly measure its 

own degree of uncertainty regarding 

position

 Disadvantages:

 In decision making, how does the robot 

decide what to do next?

 Each position must have an associated 

probability

 Computationally expensive
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Map

Representation

(5.5)
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Map Representation (5.5)

 The problem of representing the robot‟s environment is 

the dual of representing the possible robot position(s)

 Three fundamental relationships:

 Map precision vs. application precision for robot to achieve 

goals

 Feature type and map precision vs. sensor precision and data 

types

 Map or computational complexity vs. reasoning (i.e. mapping. 

localization, navigation)
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Environment Representation and Modeling:

Techniques
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Environment Representation: 

Map Categories
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Environment Models

 Continuous versus Discrete Data

 Position in x, y, q

 Metric or topological grid

 Raw Data versus Features

 Raw data represents information that is perceived by 

a sensor

 A feature (or natural landmark) is an environmental 

structure which is static, and always perceptible with 

the current sensory system
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Environment Representation

world 

map continuous 

metric

metric 

grid
topological 

metric
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Methods for Localization:

Quantitative Metric Approach
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Methods for Localization:

Grid-Based Metric Approach
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Grid-Based

Localization
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Grid tracking

 Another strategy for position estimation is to do 

grid tracking

 Place a grid on the floor with clearly identifiable 

cells

 The robot senses change from one cell to 

another
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Grid design

 A robot is equipped with a light sensor

 Grid must be designed to distinguish changes from one 

cell to another

 Must maximize the contrast between adjacent cells

 Grid cells must be larger when the robot moves faster
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Grid tracking

 Advantages

 Can re-confirm location after short distances, eliminate errors 

within 1 cell range

 Simple to implement

 Disadvantages

 Cell size limits accuracy

 Requires many sensor readings and large cells for truly reliable 

estimations

 Requires modification of the environment

 Result depends on print quality and sensor calibration
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Active Beacons
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Active Beacons

 An active beacon is a stationary device that 

transmits and/or receives signals

 Multiple beacons must be installed for proper 

position estimation

 The robot estimates position and orientation by 

determining distance and angle to each of these 

beacons
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Active Beacons
 Beacon systems are based on triangulation

 Two types of triangulation techniques

 Lateration

 Determine robot‟s position based on distance from 

beacons

 2D requires 3 non-collinear points

 Angulation

 Determine robot‟s position and angle based on 

angle to beacons

 2D requires 2 angles and 1 known distance



ECE 497: Introduction to Mobile Robotics -

Localization 60C.A. Berry

Triangulation - Lateration

 3 or more beacons emit a signal, robot obtains distance 

to each beacon

 Direct Measurement

 Robot physically moves or sends probe

 Simple, but difficult to implement

 Time of Flight

 Measure time it takes to travel to known point at specific velocity

 Usually measure the difference in transmission and arrival time of 

an emitted signal

 Attenuation

 Measure signal strength which decreases as distance from 

emission source increases
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Triangulation - Lateration

 Location is the intersection of 3 circles using distances 

as radii

 Accuracy depends on precision of distances
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Triangulation - Lateration

 The following 3 equations 

represent the 3-beacon 

scenario

 The intersection point is the 

intersection of the 3 circles

 (x – x1)
2 + (y-y1)

2 = r1
2

 (x – x2)
2 + (y-y2)

2 = r2
2

 (x – x3)
2 + (y-y3)

2 = r3
2

[x = 2y(y1 – y2) – x1
2 + x2

2 – y1
2 + y2

2 + r1
2 + r2

2]/(-2(x1 – x2))
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Triangulation - Lateration

 Must be careful not to have a divide by 

zero condition when placing beacons

 Some beacons are fixed and yield fixed 

pre-computed constants

(x, y) = Co + C1r1
2 + C2r2

2 + C3r3
2
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Triangulation – Lateration using 

ultrasonic pings
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Triangulation - Angulation

 Angulation makes use of 

angles to beacons as opposed 

to distances to them

 Angles to beacons measured 

via rotation of receiver or 

transmitter on robot

 Assumes all beacons are 

visible
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Triangulation - Angulation

 d1sin(q + q1) = y1 – y

 d1cos(q + q1) = x1 – x

 Repeat for all triangles and 

setting the pairs equal yields

 (y1-y)cos(q + q1) = (x1 – x) sin (q + q1)

 Yields 3 equations and 3 unknowns
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Triangulation - Angulation

 Just need to solve for q

 In many real situations, the value of q is 

known

From a digital compass

Estimated from odometry
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Triangulation - Angulation

 Geometric triangulation

applications assume that the 

robot will be within the area 

defined by 3 or more beacons

 Make use of the formula

 a2 = b2 + c2 – 2bc cos

 (sin )/a = (sin )/b = (sin )/c
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Beacons

 Beacons must be extremely powerful to ensure 

omni-directional transmission over large 

distances

 Compromise is to focus the beam and rotate it 

via some pattern
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Beacons

 Beacons may not be visible in some areas due 

to obstructions from obstacles

 The robot may need to rely on odometry until a 

reading is available again
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Issues
 Triangulation is sensitive to 

smaller angular errors

 When observed angles are 

small

 When measured angles are 

indistinguishable

When the robot is far from 

beacons, it can be difficult to 

determine position accurately
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Topological

Localization
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Methods for Localization:

Quantitative Topological Approach
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Map Building

Techniques:

 Manual

 Drawn by hand

 Static/predictable 

environment

 Costly

 Automatically

 Robot learns environment

 Dynamically/unpredictable 

changing

 Different look due to 

different perception

Requirements:

 Incorporates newly sensed 

information into the existing 

world model

 Contains information to 

estimate the robot‟s position

 Provides Information to do 

path planning and navigation 

tasks
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Map Building: Measure of Quality

 Topological correctness

 Metrical correctness

Most environments are a mixture of predictable

and unpredictable features (hybrid approach)

../Sample Curricula/Videos/Thrun_Mapping.AVI
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Representation of the Environment (5.5)

 Environment Representation

 Continuous Metric  x,y,q

 Discrete Metric metric grid

 Discrete Topological topological grid

 Environment Modeling

 Raw sensor data, e.g. laser range data, grayscale images

 large volume of data, low distinctiveness on the level of individual values

 makes use of all acquired information

 Low level features, e.g. line other geometric features

 medium volume of data, average distinctiveness

 filters out the useful information, still ambiguities

 High level features, e.g. doors, a car, the Eiffel tower

 low volume of data, high distinctiveness

 filters out the useful information, few/no ambiguities, not enough information
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Continuous representation (5.5.1)

 A continuous-valued map is one method for exact 

decomposition of the environment

 Continuous maps are only in 2D representations as 

further dimensionality can result in computational 

explosion

 Combine the exactness of continuous representation 

with the compactness of closed-world assumption

 The representation will specify all environmental objects 

in the map
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Continuous representation (5.5.1)

 a low-memory map is a 2D representation in which polygons 

represent all obstacles

 many simulations run exclusively in the computer memory and 

polygons are not used to describe a real-world environment

 When real environments must be captured, there are trends 

for selectivity and abstraction

 The human captures only objects 

that can be detected by the 

robot’s sensors

 This represents a subset of the 

features of the real world objects
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Continuous representation (5.5.1)

 Geometric maps represent the physical locations of objects 

without referring to their texture, color, elasticity, or any other 

secondary features that does not relate to position and space

 Memory usage can be reduce by capturing object geometry 

relevant to localization (i.e. continuous-valued line 

representation)

Architecture 

map

Infinite line 

representation
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Decomposition strategies (5.5.2)

 One method of simplification is to approximate the real world 

environment lines as a set of infinite lines

 A more dramatic form of simplification is abstraction

 A general decomposition and selection of environmental 

features

 The immediate disadvantage is the loss of fidelity between the 

map and the real world

 It may be useful if planned carefully to capture relevant, useful 

features of the world while discarding all other features
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Decomposition strategies (5.5.2)

 Advantage:

 the map representation is 

minimized

 With hierarchical decomposition, 

reasoning and planning may be 

computationally superior to a fully 

detailed world model

 A standard, lossless form of 

opportunistic decomposition is 

termed exact cell decomposition

selects boundaries between 

discrete cells based on geometric 

criticality

Obstacles are 

polygons

Tessellated into 

areas of free space

Robot‟s position 

in free space 

does not matter
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Fixed Cell Decomposition (5.5.2)

 In fixed cell decomposition, 

the world is tessellated into a 

discrete approximation of the 

continuous map

 The key disadvantage is the 

inexact nature

 Narrow passages are lost in 

this transformation
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Adaptive Cell Decomposition (5.5.2)

 Adaptive cell decomposition is 

extremely popular and the 

most common map 

representation in mobile 

robotics

 One version is called 

occupancy grid representation

 Every cell is either filled (part 

of an obstacle) or empty (part 

of free space)

White cells are outside the obstacles

Black cells are inside the obstacles

Gray cells are part of both regions
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Occupancy Grid Map representation (5.5.2)

 A counter is used to determine how many times a cell is 

hit by a ranging sensor

 As the counter is incremented, the cell is deemed an 

obstacle

 The darkness of the cell is proportional to the value of 

the counter
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Occupancy Grid Map representation (5.5.2)

 Disadvantages:

 The size of the map in robot memory 

grows with the environment size

 Small cell sizes make the size of the 

memory untenable

 Not compatible with the closed-world 

assumption which enables large, 

sparse environments to have small 

memory requirements

 Imposes a geometric grid on the world 

a priori, regardless of environment 

details
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Occupancy Grid

 Created with sonar data

 Each cell is either 

occupied or unoccupied
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Topological Decomposition (5.5.2)

 Avoid direct measurement of geometric environmental 

qualities

 Concentrates on characteristics of the environment that 

are most relevant to the robot for localization
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Topological Decomposition (5.5.2)

 Topological representations is a graph that 

specifies

 Nodes

 Areas in the world

 Connectivity arcs 

 Denotes adjacent pairs of nodes

 Adjacency is at the heart of the topological 

approach

 Nodes are not of a fixed size or 

specifications of free space

 Nodes document an area based on ay 

sensor discriminant

node

connectivity

arcs
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Topological Decomposition (5.5.2)

 To navigate a topological map robustly, a 

robot must satisfy 2 constraints

 It must have means for detecting its 

current position in terms of the nodes 

of the topological graph

 It must be able to travel between 

nodes using robot motion

 Node sizes and dimensions must be 

optimized to match the sensory 

discrimination of the mobile robot 

hardware

~ 400 m

~ 1 km

~ 200 m

~ 50 m

~ 10 m
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Topological Map

 Store what the robot needs to do at each landmark

 Landmark-based map

 The map can be stored (represented) in different forms

 Store all possible paths and use the shortest one

 Topological map

 describes the connections among the landmarks

 Metric map

 global map of the maze with exact lengths of corridors and 

distances between walls, free and blocked paths

 The robot can use this map to find new paths through the maze

 Such a map is a world model, a representation of the 

environment
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World Models
 Numerous aspects of the world can be represented

 self/ego

 stored proprioception, self-limits, goals, intentions, plans

 space

 metric or topological (maps, navigable spaces, structures)

 objects, people, other robots

 detectable things in the world

 actions

 outcomes of specific actions in the environment

 tasks

 what needs to be done, in what order, by when

 Ways of representation

 Abstractions of a robot‟s state & other information
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Model Complexity
 Some models are very elaborate

 They take a long time to construct

 These are kept around for a long time throughout the 

lifetime of the robot

 E.g.: a detailed metric map

 Other models are simple

 Can be quickly constructed

 In general they are transient and can be discarded 

after use

 E.g.: information related to the immediate goals of the 

robot (avoiding an obstacle, opening of a door, etc.)
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Models and Computation

 Using models require significant amount of computation

 Construction

 the more complex the model, the more computation is needed to 

construct the model

 Maintenance

 models need to be updated and kept up-to-date, or they become 

useless 

 Use of representations

 complexity directly affects the type and amount of computation 

required for using the model

 Different architectures have different ways of handling representations
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Metric Maps

 Construction

 Requires exploring and measuring the environment 

and intense computation 

 Maintenance

 Continuously update the map if doors are open or 

closed

 Utilization

 Finding a path to a goal involves planning: find 

free/navigational spaces, search through those to find 

the shortest, or easiest path
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State-of-the-Art: Current Challenges in Map 

Representation (5.5.3)

 The real world is dynamic

 Cannot distinguish between permanent and transient 

obstacles

 Perception is still a major challenge

 Error prone 

 Extraction of useful information difficult

 Traversal of open space

 How to build up topology (boundaries of nodes)

 Sensor fusion
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Probabilistic 

Map-Based

Localization

(5.6)
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The Five Steps for Map-Based Localization

Observation

On-board sensors

Map

Database

Prediction of 

Measurement of 

Position (odometry)

P
er

c
ep

ti
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n

Matching

Estimation

(fusion)

raw sensor data or 
extracted features

p
re

d
ic

te
d

fe
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b
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e

r v
a

ti
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n

s

position
estimate

matched predictions
and observations

YES

Encoder

1. Prediction based on previous estimate and odometry

2. Observation with on-board sensors

3. Measurement prediction based on prediction and map

4. Matching of observation and map

5. Estimation -> position update (posteriori position)
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Probabilistic Map-Based Localization 

(5.6.1)

 One geometric approach to multi-hypothesis 

representation identifies the possible positions of 

a robot

 Probabilistic techniques identifies probabilities 

with the possible robot positions

 Two classes of probabilistic localization are:

Markov localization

Kalman filter localization
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Probabilistic Localization Classes 

(5.6.1)

 Markov localization

 Uses an explicitly defined probability distribution across all robot 

positions

 Kalman filter localization

 Uses a Gaussian probability density representation of robot 

position and scan matching for localization

 Unlike Markov, it does not independently consider each possible 

robot pose

 Kalman results from the Markov axioms if the robot‟s position 

uncertainty is assumed to be Gaussian
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Probabilistic Map-Based Localization (5.6)

1. Consider a mobile robot moving in a known environment.

2. As it starts to move from a precisely known location, it might keep 

track of its location using odometry. 

3. Due to odometry uncertainty, after some time the robot will get very 

uncertain about its position. 

4. To keep this uncertainty from growing unbounded, the robot must 

localize itself in relation to its environment map

5. The robot uses onboard sensors to make observations about its 

environment

6. Information from odometry and the exteroceptive observations can be 

combined for the robot to localize itself
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Probabilistic Map-based Localization 

(5.6.1)

 The process of updating robot position based upon 

proprioceptive and exteroceptive sensor values are separated 

logically into a general two-step process

 Action Update

 Proprioceptive

 Represents the application of some action model

 Perception Update

 Exteroceptive

 Represents the application of some perception model



ECE 497: Introduction to Mobile Robotics -

Localization 102C.A. Berry

Action Update (5.6.1)

 Application of some action model, Act to the 

mobile robot‟s proprioceptive encoder 

measurements ot and prior belief state st-1 to 

yield a new belief state, st , representing the 

robot‟s belief about it‟s current position

st = Act (ot, st-1)
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Perception Update (5.6.1)

 Application of some perception, See to the 

mobile robot‟s exteroceptive sensor inputs it and 

updated belief state st to yield a refined belief 

state, st, representing the robot‟s belief about 

it‟s current position

st = See (it, st )
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Action versus Perception Update 

(5.6.1)

 The perception model See and sometimes the action 

model Act are abstract functions of both map and the 

robot‟s physical configuration

 The action update contributes uncertainty to the robot‟s 

beliefs about position because encoders have errors

 The perception update generally refines the belief state 

because sensors provide clues about the robot‟s 

possible position
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Markov Localization (5.6.1)

 Markov localization is the robot‟s belief state usually 

represented as separate probability assignment for every 

possible pose on the map

 Special case of probabilistic state estimation applied to 

mobile robot localization

 Kalman filter localization represents the robot‟s belief state 

using a single, well-defined Gaussian probability density 

function

 It retains a  and s parameterization of the robot‟s belief 

about position with respect to the map 
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Markov vs. Kalman (5.6.1)

 Markov

 Allows localization starting from 

any unknown position

 Recovers from ambiguous 

situations because the robot 

can track multiple, complete 

disparate possible positions

 Requires discrete 

representation of the space 

(geometric grid or topological 

graph)

 Required memory and 

computational power can limit 

precision and map size

 Kalman

 Tracks the robot from a known 

position

 Is both precise and efficient

 Can be used in continuous world 

representations

 If robot uncertainty becomes too 

large and not unimodal, it can fail 

to capture the multitude of 

possible robot positions and can 

become irrevocably lost
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Markov

Localization

(5.6.2)
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Markov Localization (5.6.2)

 Implements the generic belief representation by 

tessellating the robot configuration space into a finite, 

discrete number of robot poses in the map

 During each update, the belief state is computed that 

results when new information (encoder and sensor 

values) are incorporated into a prior belief state with an 

arbitrary probability density

 the probability theory of the solution is based upon 

Bayes formula
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Probability theory to robot localization 

(5.6.2.1)

 Given  a discrete representation of robot positions, assign a 

probability that the robot is indeed at that position, p(A)

 p(A) – prior probability of A

 Measures the probability that A is true independent of any 

additional knowledge we may have

 p(rt = l) – prior probability that robot r is at position l at time t

 To compute the probability given the encoder and sensor evidence

 p(A|B) – conditional probability of A given that we know B 

 p(rt = l|it) – prior probability that robot r is at position l at time t 

given hat the robot‟s sensor inputs i
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Markov Localization (5.6.2):

Bayes Rule

 Bayes rule is used to determine the robot‟s 

new belief state as a function of its sensory 

inputs and its former belief state

 The product rules states that the probability 

that A and B are both true is given by :

 From these expressions, Bayes rule is:
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Markov Localization (5.6.2):

Bayes Rule
 The See function expresses a mapping from a belief state and sensor 

input to a  refined belief state.  Update the probability associated with 

each position l in L.  p(l) = p(r = l)

 p(i|l) is the probability of a sensor input at each robot position and it 

must be computed from some model

 p(l) is the probability that the robot‟s belief state is at l before the 

perceptual update process 

 p(i) does not depend on l and is a constant and is usually dropped and 

at the end of the perception update, all probabilities in the belief state 

are re-normalized to sum to 1.0
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Markov Localization (5.6.2):

Bayes Rule
 The Act function maps a former belief state and encoder measurement 

(i.e. robot action) to a new belief state.

 To compute the probability of position l in the new belief state, integrate 

or sum all possible ways in which the robot may have reached l.

 The same location can be reached from multiple source locations with 

the same encoder measurement, o.  
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Markov Localization (5.6.2):

Markov assumption

 The Act and See equations from the basis of Markov 

localization and incorporate the Markov assumption

 The outputs are a function only of the robot‟s previous 

state and its most recent actions (odometry) and 

perception

 The assumption may not always be valid but it greatly 

simplifies tracking, reasoning and planning and it is 

an approximation
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Markov Localization (5.6.2.2): 

Case Study 1 - Topological Map

 Markov localization is possible when the 

environment provides an appropriate 

decomposition (i.e. topological) 

 Each robot receives a topological description of 

the environment (i.e. connectivity of hallway 

and rooms, no geometric information) [AAAI 

1994]

 Map contains several false arcs

 Robot was to move the map to navigate from a 

starting position to a target room

 The Dervish Robot used probabilistic Markov 

localization and a multiple-hypothesis belief 

state
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Markov Localization (5.6.2.2): 

Case Study 1 – Robot Design
 Traditional sonar were arranged radially around the 

robot in a ring

 Disadvantage is that it makes robot subject to 

tripping over short objects and being decapitated 

for tall objects

 One pair of sonar were diagonally upward to detect 

ledges

 One pair of sonar were mounted on the base to 

detect low obstacles

 Sonar were grouped to reduce crosstalk

 Dervish‟s perceptual system was used to detect 

matching perceptual events (the detection and 

passage of connections between hallways and 

offices)
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Markov Localization (5.6.2.2): 

Case Study 1 – Perceptual System
 The perceptual system was abstract and used the 

trajectory of sonar strikes to the left and right of the robot 

over time

 There was no use of encoder values to trigger 

perceptual events

 If the robot detected a 7 to 17 cm indentation in width 

for more than a second continuously then a closed 

door sensory event was triggered

 If the sonar strikes were beyond 17 cm for more than a 

second then an open door sensory event was 

triggered

 When the angle to the robot center line exceeded 9 

degrees, the sensory events were suppressed

 These false negatives suggested a probabilistic 

solution to the localization problem in order to compute 

a complete trajectory of perceptual inputs
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Markov Localization (5.6.2.2): 

Case Study 1 - Topological Map

 Dervish used a discrete topological 

map

 Identical in abstraction and 

information to the contest map

 Decision involves assignment of 

nodes and connectivity between 

nodes

 Node boundaries are marked by 

doorways, hallways, and foyers

 Note there is no geometric 

information on the nodes

Contest environment map

Topologic map
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Markov Localization (5.6.2.2): 

Case Study 1 – Belief State
 In order to represent a specific belief state, 

 For each topological node, n, there was a probability or likelihood that 

the robot is at a physical position within the boundaries of n.  p(ri = n)

 The probabilities were approximate thus they were likelihoods

 The perception update were generated asynchronously each time the 

feature extractor recognized a large scale feature (e.g., doorway, 

intersection)

 Each perceptual event consists of a percept-pair (a feature on one or 

both sides of the robot)

 From equation 5.21, p(n) represents the current belief state of Dervish. The 

challenge lies in computing p(i|n)
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Markov Localization (5.6.2.2): 

Case Study 1 – Certainty Matrix
 Because the feature extraction only extracts 4 total features (nothing, closed door, open 

door, open hallway)  and a node contains one of 5 total features (wall, closed door, open 

door, open hallway, foyer)

 These 4 x 5 possible combinations can be represented in a lookup table

 This lookup table is a certainty matrix

 The probability is a function of the feature extracted and the actual feature in the node

 The human generates a specific certainty matrix that represents the robot‟s perceptual 

confidence along with a global measure for the probability that any given door is closed 

versus open in the real world

 The probability that the robot is next to an open hallway and 

recognizes it as an open door is 0.10

n =open hallway

i = open door

p(i|n) = 0.10

Node feature or 

world feature

Extracted 

feature
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Markov Localization (5.6.2.2): 

Case Study 1 – Perception Update (1)

 Dervish has no encoders and perceptual events are 

triggered asynchronously by the feature extraction 

process (no action update)

 However, the robot is moving and therefore we can 

apply a combination of action and perception update 

 It may take several perceptual events to update the 

likelihood of every possible robot position given 

Dervish‟s former belief state

 The perception update formula is a combination of the 

general form of action update and perception update
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Markov Localization (5.6.2.2): 

Case Study 1 – Perception Update Formula

 The likelihood of position n given perceptual event i or the update of belief state for 

position n given the percept-pair i is calculated by the following 

 p(n t-i) is the likelihood of being at position n given the former belief state

 t-i is used instead of t-1 because the topological distance between n‟ and n can 

vary depending on the specific topological map

 p(nt|n t-1, it) is calculated by multiplying the probability of generating a perceptual 

event i at position n by the probability of having failed to generate events at all 

nodes between n and n
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Markov Localization (5.6.2.2): 

Case Study 1 – Example Calculation

 For the following topological map, make 2 assumptions:

 the robot is facing east

 the robot has two nonzero belief states, p(1-2) = 1.0 and p(2-3) = 0.2

 The probability that any given door is closed versus open is p(closed door) = 0.60

 Suppose that the robot detects an open hallway on the left and an open door on the right

simultaneously

 State 2-3 will progress potentially to 3, 3-4, or 4

 States 3 and 3-4 can be eliminated because the likelihood of detecting an open door when there is 

only a wall is zero p(door|wall) = 0.0.

 The likelihood of reaching state 4 is the product of 

 the initial likelihood p(2-3)= 0.2

 the likelihood of not detecting anything at node 3 (a)

 the likelihood of detecting a hallway on the left and a door on the right at node 4 (b)

 (for simplicity we assume that the likelihood of detecting nothing at node 3-4 is 1.0)



ECE 497: Introduction to Mobile Robotics -

Localization 123C.A. Berry

Markov Localization (5.6.2.2): 

Case Study 1 – Example Calculation (2)

 If Dervish detects nothing at node 3 then 

 he failed to detect the door (open or closed) on its left

 p(nothing|closed door)· p(closed door) = (0.40)(0.60)

 p(nothing|open door)·p(open door) = (0.05)(1 – 0.60)

 and correctly detects nothing on its right, p(nothing|wall) = 0.7

 If Dervish detects at node 4

 the hallway on the left p(hallway|hallway) = 0.90 and

 mistakenly identifies an open door on the right p(open door|hallway) = 0.10

 The final formula becomes

p(4) = p(2-3)·p(nothing|door) ·p(nothing|wall) ·p(hallway|hallway) ·p(open door|hallway)

p(4) = 0.2·[(0.6)(0.4) + 0.4)(0.05)] ·0.7 · [0.9 · 0.1] = .003276

which represents a partial belief state for node 4 given the prior belief state 2-3
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Markov Localization (5.6.2.2): 

Case Study 1 – Example Calculation (3)

 What if the robot‟s prior belief state is at node 1-2

 The robot will potentially progress to 2, 2-3, 3, and 3-4

 States 2-3, 3 and 3-4 can be eliminated because the likelihood of detecting an open door 

when a wall is present is zero p(door|wall) = 0.0.

 p(2) = p(1 – 2) · p(open door|right door) · p(hallway|left hallway) = 1.0 · [0·0.6 +0.90· 0.4] · 

0.90 = 0.324

 applying the progression to node 4 from 1-2 yields p(4) = p(2) · 4.3 · 10-6 =  1.3932· 10-6

which represents a the belief state for node 4 given the prior belief state 1-2

 the total belief state for node 4 = p(4:2-3) + p(4|1-2) = 0.003276 + 1.3932· 10-6 = 0.003277
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Markov Localization (5.6.2.2): 

Case Study 1 – Topological map

 Dervish was successfully able to navigate four different indoor office environments with no notion of the 

distance between adjacent nodes in its topological map

 This demonstrates the power of probabilistic localization in spite of a lack of action and encoder 

information

 Question:

 how does the robot decide how to move, given that it has multiple possible robot positions in its 

representation?

 plan the robot‟s actions by assuming that the robot‟s actual position is its most likely node in the 

belief state

 generally the most likely position is a good measure of the robot‟s actual world position

 One step to improve the planning system is to specify a goal belief state than a goal position

 the robot can reason and plan in order to achieve a goal confidence level

 the robot takes into account not only the position but the measured likelihood of each position
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Markov Localization (5.6.2.3): 

Case Study 2 – Grid Map

 The major weakness of a topological decomposition is the resolution limitation

 A more precise navigation uses a grid-based representation while still employing 

the Markov localization technique

 This case study used Rhino, a RWI B24 robot with 24 sonar and 2 Sick laser 

rangefinders

 Rhino uses a 2D geometric environmental representation of free and occupied 

space

 This map is tessellated regularly into a fixed decomposition grid

 Rhino uses a multiple-hypothesis belief state

 Rhino consists of a 15 x15 x 15 3D array representing 153 possible robot 

positions

 The resolution of the array is 15 cm x 15 cm x 1

 Unlike Dervish which assumes the orientation is approximate and known, 

Rhino explicitly represents alternative orientations

 Rhino‟s belief state has 3 degrees of freedom

 Rhino includes encoder inputs, metric distance and both and explicit action 

update phase and perception update phase
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Markov Localization (5.6.2.3): 

Case Study 2 – Action and Perception Update

 Action update:

 Due to the tessellated representation of position, the discrete Markov chain of the 

action update was performed

 Given encoder measurements o at time t, each updated position probability in the 

belief state Is expressed as a sum over previous possible positions and motion 

model

 Perception update:

 Given a range perception i, the probability of the robot being at each location l is

 Unlike Dervish, the number of possible values for i and l cannot be recorded on a 

lookup table

 Rhino computes p(i|l) using a model of the robot‟s sensor behavior
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Markov Localization (5.6.2.3): 

Case Study 2 – Sensor Model
 The sensor model must calculate the probability of a specific perceptual 

measurement given that its likelihood is justified by known errors of the sonar or 

laser rangefinder

 Assumptions

 Measurement error can be described by a distribution with a mean at the 

correct reading

 Non-zero chance that a range sensor will read any measurement value

 there will be a local peak in the probability density distribution at the maximal 

reading of a range sensor due to absorption or reflection failure mode

ultrasound

laser



ECE 497: Introduction to Mobile Robotics -

Localization 129C.A. Berry

Markov Localization (5.6.2.3): 

Case Study 2 – Grid Map (1D example)

1. Start

 No knowledge at start, thus there is  

a uniform probability distribution

2. Robot perceives first pillar

 Seeing only one pillar, the probability

being at pillar 1, 2 or 3 is equal.

3. Robot moves

 Action model enables the estimate of 

the new probability distribution based 

on the previous one and the motion.

4. Robot perceives second pillar

 Based on all prior knowledge the 

probability being at pillar 2 becomes

dominant
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Markov Localization (5.6.2.3): 

Case Study 2 – Grid Map (1D example)

 As the robot encounters one pillar 

and then a second pillar, the 

probability density function over 

possible positions becomes 

multimodal, unimodal and then 

sharply defined

 The ability of a Markov localization 

system to localize the robot from an 

initially lost belief state is its key 

distinguishing feature

 This is a challenging application 

because of the dynamic nature of 

the environment
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Markov Localization Example

The robot is placed

somewhere in the

environment but it is not told 

its location

The robot queries its

sensors and finds out it is 

next to a door

The robot moves one meter 

forward. To account for inherent 

noise in robot motion the new 

belief is smoother

The robot queries its

sensors and again it finds 

itself next to a door



ECE 497: Introduction to Mobile Robotics -

Localization 132C.A. Berry

Markov Localization (5.6.2.3): 

Case Study 2 – Grid Map

 Fine fixed decomposition grids result in a huge state space

 Very important processing power needed

 Large memory requirement

 Reducing complexity

 Various approached have been proposed for reducing complexity

 The main goal is to reduce the number of states that are updated in each step

 Randomized Sampling / Particle Filter

 Approximated belief state by representing only a „representative‟ subset of all 

states (possible locations)

 E.g update only 10% of all possible locations

 The sampling process is typically weighted, e.g. put more samples around the 

local peaks in the probability density function

 However, you have to ensure some less likely locations are still tracked, otherwise 

the robot might get lost
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Kalman 

Filter

Localization

(5.6.3)



ECE 497: Introduction to Mobile Robotics -

Localization 134C.A. Berry

Kalman Filter Localization (5.6.3)

 The Markov localization model can represent any probability density 

function over robot position

 One can argue that not the probability density curve but the sensor 

fusion problem is key to robust localization

 Optimal localization should take into account the information 

provided by all of the heterogeneous sensors

 The Kalman filter is used to achieve sensor fusion

 The Kalman filter is more efficient than Markov localization

 The benefit of the simplification of the probability density function is a 

resulting optimal recursive data-processing algorithm

 it incorporate all information, regardless of precision to estimate the 

current robot‟s position
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Kalman Filter Localization (5.6.3):

General Scheme

 Inputs to the system are a 

control signal and system 

error sources

 The Kalman filter produces 

an optimal estimate of the 

system state based on the 

knowledge of the system

and the measuring device

 The Kalman filter fuses 

sensor signals and system 

knowledge in an optimal 

way
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Kalman Filter Localization (5.6.3):

Kalman Filter Theory

 Multiple measurements are incorporated into a single estimate of 

state

 Assume that the state does not change between the measurements

 This is referred to as static estimation

 Suppose the robot has ultrasonic and laser sensors

 the laser provides richer and more accurate data but suffers from 

failure such as detecting glass while the sonar will provide an 

accurate reading

 the sensor fusion is extremely efficient as long as the error 

characteristics  are approximated as unimodal, zero-mean, 

Gaussian noise
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Kalman Filter Localization (5.6.3):

Kalman Filter Theory

 Assume that 2 measurements were 

taken:

 sonar at time k

 laser at time k+1

 An estimate of robot position derived from

 the sonar is q1 with variance s1
2

 the laser is q2 with variance s2
2

 The 2 robot position estimates are: 
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Kalman Filter Localization (5.6.3):

Kalman Filter Theory

 How do we fuse (combine) these data to get the best 

estimate,  

 Apply the weighted least-squares technique 

 To find the minimum error set the derivative of S equal to 

zero

q̂
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Kalman Filter Localization (5.6.3):

Kalman Filter Theory

 Rearranging the equation, the estimate of the 
position in terms of the 2 measurements can be 
defined as

 In Kalman Filter notation, 

where
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Kalman Filter Localization (5.6.3):

Dynamic estimation

 What if the robot moves between successive sensor 

measurements?

 the robot motion between k and k + 1 is described by the velocity, u, 

and the noise, w

 If we know the robot‟s variance at k is sk
2 and the variance of the 

motion is sw
2 then from k , the time when the measurement is taken 

yields
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Kalman Filter Localization (5.6.3):

Dynamic estimation

 xk is the optimal prediction of the robot‟s position just as the 

measurement is taken at time k + 1

 It describes the growth of position error until a new measurement is 

taken

 The optimal estimate at time k+1 is given by the last estimate at k 

and the estimate of the robot motion including the estimated 

movement errors
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Kalman Filter Localization (5.6.3):

Application to mobile robots

 The application of Kalman filters to localization requires posing the robot localization 

problem as a sensor fusion problem

 Recall that the basic probabilistic update of the robot belief statement can be 

segmented into 2 phases

 perception update

 action update

 The key difference between Markov and Kalman lies in the perception update process

 the entire perception, the robot‟s set of instantaneous sensor measurements, is 

used to update each possible robot position in the belief state individually

 for Dervish, the perception was abstract being produced from a feature extraction 

mechanism

 for Rhino,  the perception consists of raw sensor readings

 For the Kalman filter, perception update is a multistep process



ECE 497: Introduction to Mobile Robotics -

Localization 143C.A. Berry

Kalman Filter Localization (5.6.3):

Application to mobile robots

 In Kalman perception update, the robot‟s total sensory 

input is treated as a set of extracted features that each 

relate to objects in the environment

 The Kalman filter treats the whole belief state at once
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Kalman Filter Localization (5.6.3):

Steps for Kalman filter localization

 action update or position prediction 

 Gaussian error model to the robot‟s measured encoder travel

 observation step

 robot collects actual senor data and extracts appropriate features

 measurement prediction

 at the same time, based upon the robot‟s predicted position in the map, the robot 

identifies the features that the robot expects to find and the positions of those 

features

 matching

 the robot identifies the best pairings between the features actually extracted during 

observation and the expected features due to measurement prediction

 estimation

 Kalman filter fuses the information provided by all of the matches to update the robot 

belief state
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Kalman Filter Localization (5.6.3.2):

Robot position prediction (Step 1)

 The robot‟s position at time step k+1 is predicted based 

on its old location (time step k) and its movement due to 

the control input u(k):

))(,)(ˆ()1(ˆ kukkpfkkp 

T
uuu

T
pppp f)k(ff)kk(f)kk(  1

 Knowing the plant and error model, the variance 

associated with the prediction is

 This allows the prediction of the robot‟s position and its 

uncertainty after a movement specified by the control 

input
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Kalman Filter Localization (5.6.3.2):

Observation (Step 2)

 To obtain the sensor measurements Z(k+1) from the robot‟s sensors at the 

new location at time k+1

 assume that the observation is the result of a feature extraction process 

executed on raw sensor data

 The observation usually consists of a set no of single observations zj(k+1)

extracted from the different sensors signals (e.g. raw data scans, or features 

such as lines, doors, landmarks) 

 The parameters of the targets are usually observed in the sensor frame {S}. 

 Therefore the observations have to be transformed to the world frame 

{W} or 

 the measurement prediction have to be transformed to the sensor frame 

{S}

 This transformation is specified in the function hi (seen later).
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Kalman Filter Localization (5.6.3.2):

Measurement Prediction (Step 3)

 Use the predicted robot position                   and the map M(k) to 

generate multiple predicted feature observations zt.

 Each predicted feature has to be transformed into the sensor 

frame

 kkp̂ 1

    kkp̂,zhkẑ tii 11 

     ii nikẑkẐ  111

 Define the measurement prediction as the set containing all ni

predicted feature observations

 The function hi is mainly the coordinate transformation between the 

world frame and the sensor frame
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Kalman Filter Localization (5.6.3.2):

Matching (Step 4)

 identifies all of the single observations that match specific predicted 

features well enough to be used during the estimation process

 produce an assignment from observations zj(k+1) (gained by the 

sensors) to the targets zt (stored in the map) 

 For each measurement prediction for which an corresponding 

observation is found we calculate the innovation

 Innovation is the measure of the difference between the predicted and 

observed measurements
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Kalman Filter Localization (5.6.3.2):

Matching (Step 4)

 The Innovation covariance can be found by applying the error 

propagation law

 To determine the validity of the correspondence between 

measurement prediction and observation, a validation gate has to 

be specified.  One definition is the Mahalanobis distance
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Kalman Filter Localization (5.6.3.2):

Applying the Kalman Filter (Step 5)

 Compute the best estimate of the robot‟s position based on the 

position prediction and all the observations at time k+1

 The Kalman filter gain is used to update the robot‟s position 

estimate
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Kalman Filter Localization (5.6.3.3):

Case Study (Line Feature Extraction)

 Pygmalion is a differential drive robot that uses a laser rangefinder as 

its primary sensor

 The environment representation is continuous and abstract

 the map consists of a set of infinite lines describing the environment

 the belief state is a Gaussian distribution and uses the Kalman filter 

localization algorithm

 Assume that the sensor frame {S} is equal to the robot frame {R}

 Assume that if not specified all the vectors are represented in the 

coordinate system {W}
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Kalman Filter Localization (5.6.3.3):

Case Study (Robot position prediction)

 At the time increment k the robot is at position p(k) = [x(k) y(k) q(k)]

 The control input u(k) drives the robot to the position p(k+1)

 The best position estimate is 
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Kalman Filter Localization (5.6.3.3):

Case Study (Observation)
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 for line-based localization, each single observation (i.e., a 

line feature) is extracted from the raw laser rangefinder 

data and consists of 0,j, 1,,j or j, rj

 zj(k + 1) = R[j rj]
T

 lines and uncertainties are extracted and n0 observations 

leads to 2no line parameters
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Kalman Filter Localization (5.6.3.3):

Case Study (Observation)

j

r j

line j

raw data from the laser 

scanner at time k+1, 

extracted lines

lines extracted 

from the raw data

the extracted lines 

uncertainties 

represented in the model 

space
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Kalman Filter Localization (5.6.3.3):

Case Study (Measurement prediction)

 Based on the stored map and the 

predicted robot position, the 

measurement predictions of expected 

features are generated

 To reduce required calculations, only the 

walls that are in 

the field of view of the robot are selected.

 This is done by linking the individual lines 

to the nodes of the path
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Kalman Filter Localization (5.6.3.3):

Case Study (Matching)

 find a correspondence 

between predicted and 

observed features
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Kalman Filter Localization (5.6.3.3):

Case Study (Estimation)

 Kalman filter estimation of the new robot 

position

 By fusing the prediction of robot position 

(magenta) with the innovation gained by 

the measurements (green)

 we get the updated estimate of the robot 

position (red)

 this final pose estimate corresponds to the 

weighted sum of the

 pose estimates of each matching pairing 

of observed and predicted features

 robot position estimation based on 

odometry and observation positions
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Other examples of Localization Systems: 

Landmark-based navigation (5.7)

 Other methods use techniques that may modify the robot‟s 

environment

 landmarks are passive objects in the environment that provide a high 

degree of localization accuracy when they are within the robot‟s field 

of view

 the control system consists of 2 discrete phases

 when the landmark is in view, the robot localizes frequently and 

accurately using action update and perception update to track its 

position without cumulative error

 when the landmark is not in view, only the action update occurs 

and the robot accumulates position uncertainty until the next 

landmark enters the robot‟s field of view
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Other examples of Localization Systems (5.7):

Landmark-based navigation

 the robot is dead reckoning from landmark zone to landmark zone

 the robot must consult its map carefully

 the shape of the landmarks may enable reliable and accurate pose 

estimation by the robot
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Other examples of Localization Systems (5.7):

Landmark-based navigation

 One key advantage of landmark-based navigation is that a strong 

formal theory has been developed for this general system architecture

 the robot is dead reckoning from landmark zone to landmark zone

 the robot must consult its map carefully

 the shape of the landmarks may enable reliable and accurate pose 

estimation by the robot

 the disadvantage is that the environment must be modified and the 

landmarks are local, therefore a large number are required to cover a 

given area
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Other examples of Localization Systems (5.7.2):

Globally unique localization

 The general assumption is that when the landmark is within the 

robot‟s field of view, localization is essentially perfect

 To greatly improve robot localization, this assumption would be true 

no matter where the robot is located

 a look at the robot‟s sensors would immediately identify its particular 

location, uniquely and repeatedly

 One type of globally unique localization is mosaic-based localization

which takes advantage of the fine-grained floor texture using a CCD 

camera pointed at the floor

 Humans often have excellent local positioning systems in 

environments that are nonrepeating and well-known
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Other examples of Localization Systems: 

Positioning Beacon Systems (5.7.3)

 one solution is to design and deploy an active beacon system specifically for 

the target environment

 Similar GPS, this method is preferred by industry and military applications to 

insure high reliability of localization

 The robots localize passively while the beacons are active

 any number of robots can simultaneously take advantage of a single beacon 

system

 the robots must know the positions of the 2 active ultrasonic beacons in the 

global coordinate frame in order to localize themselves

 one system with retroreflective markers can be easily detected by the robot 

based on their reflection of energy back to the robot when it has 3 beacons 

in sight simultaneously

 a robot with encoders can localize over time and does not need to measure 

all three beacons at the same instant
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Other examples of Localization Systems: 

Positioning Beacon Systems: Triangulation (5.7.3)
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Other examples of Localization Systems: 

Positioning Beacon Systems: Bar-Code
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Other examples of Localization Systems (5.7.4): 

Route-based localization

 More reliable than beacon-based systems are route-based 

localization

 the route of the robot is explicitly marked and it can determine its 

position relative to the specific path it is allowed to travel

 this effectively creates a railway system, but more flexible (i.e. 

ultraviolet-reflective, optically transparent paint, guidewire)

 Unmanned guide vehicles use this technique but may deviate from 

their route to avoid obstacles

 this robot is much more inflexible and changes to robot behavior and 

the environment require significant engineering and time
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Autonomous Map Building (5.8)
 A robot that localizes successfully has the right sensors for detecting the environment 

and the robot ought to build its own map

 starting from an arbitrary initial point, 

 a mobile robot should be able to autonomously explore the environment with its 

sensors, 

 gain knowledge about it, 

 interpret the scene, 

 build an appropriate map 

 and localize itself relative to this map

 Simultaneous Localization and Mapping (SLAM) is one of the most difficult problems 

specific to mobile robot systems

 SLAM involves the autonomous creation and modification of an environment map

 the robot must explore its environment and build the map

 the robot must also move and localize to explore the environment

 the difficulty is based upon the interaction between the position updates and it 

localizes and the mapping actions
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Autonomous Map Building (5.8):

SLAM

 SLAM is difficult based upon the interaction between the robot‟s position 

updates as it localizes and the mapping actions

 if the robot updates its position based on an observation of an imprecisely 

known feature, the results position estimate becomes correlated with the 

feature location estimate

 the map becomes correlated with the position estimate if an observation taken 

from the imprecisely known position is used to update or add a feature to the 

map

 for localization, the robot needs to know where the features are but for map 

building, the robot needs to know where it is on the map

 the complete and optimal solution is to consider correlations between position 

and feature location estimation

 Cross-correlated maps are called stochastic maps

../Sample%20Curricula/Videos/EPFL_SLAM_Corner%20Structures.avi


ECE 497: Introduction to Mobile Robotics -

Localization 170C.A. Berry

Autonomous Map Building (5.8.1):

The stochastic map technique
 this general schematic 

incorporates map building 

and maintenance into the 

standard localization loop

 the added arcs represent the 

additional flow of information 

when there is an imperfect 

mach between observations 

and measurement predictions

 unexpected observations will 

effect the creation of new 

features in the map

 unobserved measurement 

predictions will effect the 

removal of features from the 

map
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Autonomous Map Building (5.8.1):

The stochastic map technique

 each prediction or observation has an unknown exact value and is 

represented by a distribution

 the uncertainties of all of these quantities must be considered throughout the 

process

 each feature has varying degrees of probability

 the new map M with a set n of probabilistic feature locations zt each with the 

covariance matrix and an associated credibility factor ct between 0 and 1 

quantifying the belief in the existence of the feature in the environment
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Autonomous Map Building (5.8):

Stochastic Map Technique

 in contrast to the map used for Kalman filter localization, the map M is not assumed 

to be precisely known because it will be created by an uncertain robot over time

 the matching step has 3 outcomes in regard to measurement predictions and 

observations

 matched prediction and observation

 unexpected observations

 unobserved predictions

 localization or position update proceeds as before but the map is also updated now

 the credibility factor, ct governs the likelihood that the mapped feature is indeed in the 

environment

 in map-building the feature positions and the robot‟s position are strongly correlated 

and this forces the use of a stochastic map, in which all cross-correlations are 

updated in each cycle

 this approach requires every value in the map to depend on every other value
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Other mapping techniques (5.8.2.1) :

Cyclic Environments

 in automatic mapping how do you correctly map an 

environment with one or more loops or cycles?

 Small local error accumulate to arbitrary large 

global errors!

 This is usually irrelevant for navigation

 However, when closing loops, global error does 

matter

 2 features that solve the cyclic detection problem

 submaps treated as a single sensor during the 

robot‟s position update

 topological representation associated with the 

set of metric submaps

../Sample Curricula/Videos/Thrun_Mapping.AVI
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Other mapping techniques (5.8.2.2) :

Dynamic Environments

 in dynamic environments, automatic mapping should 

capture the salient objects detected by its sensors

 the robot should have the flexibility to modify its maps as 

the positions of the salient objects change

 Dynamical changes require continuous mapping

 continuous mapping is a direct outgrowth of successful 

strategies for automatic mapping of unfamiliar environments

 If extraction of high-level features would be possible, the 

mapping in dynamic environments would become 

significantly more straightforward.

 e.g. difference between human and wall

 Environment modeling is a key factor 

for robustness

?


