Problem 1 [20 pts]
A circular hole of diameter $D=3.0 \mathrm{~cm}$ and depth $H=8.0$ cm has been cut into a highly reflective material $(\varepsilon=0.01)$. The material is maintained at a constant temperature of $T_{1}=1000 \mathrm{~K}$, while the surroundings are modeled as black at $T_{2}=300 \mathrm{~K}$.

$$
\begin{aligned}
& \text { (a) [5 pts] Without using any figures or tables (i.e., using } \\
& \text { only inspection and the rules of view factor alga- } \\
& \text { bra) find the view factor from surface (1) to sur- } \\
& \text { face (2), } F_{1 \rightarrow 2} \text {. } \\
& F_{2 \rightarrow 1}=1 \\
& F_{1 \rightarrow 2}=\frac{A_{1 \rightarrow 2}}{A_{1}} F_{2 \rightarrow 1}=\frac{\frac{\pi}{4} D^{2}}{\left(\frac{\pi 1)^{2}}{4}+\pi D H\right)} \\
& =\frac{0.03}{D}=0.08 \mathrm{~m} \\
& (0.03+4.0 .08)
\end{aligned}
$$

Grade: \qquad /20

Name

(2) black surroundings $T_{2}=300 \mathrm{~K}$

(b) [10 pts] Assume the answer to part (a) is $F_{1 \rightarrow 2}=0.07$. (It isn't.) Find the net rate of radiation heat transfer to or from surface (1) and indicate its direction.

$E_{b 1}$
$\dot{Q}=\frac{E_{b_{1}} E_{b_{2}}}{R_{1}+R_{12}} R_{1}=\frac{1-\varepsilon_{1}}{A_{1} \varepsilon_{1}}$

$$
=\frac{1-0.01}{\left(\frac{\pi 0.03^{2}}{4}+\pi \cdot 0.03 \cdot 0.08\right) \mathrm{m}^{2}}
$$

$$
=12005 \mathrm{~m}^{-2}
$$

$R_{12}=\frac{1}{A_{1} F_{12}}$
$=\frac{1}{\left(\frac{\pi \cdot 0.0^{32}}{4}+\pi \cdot 0.03 \cdot 0.48\right) m^{2} 0.07}$
$=1732 \mathrm{~m}^{-2}$

$$
=\frac{5.67 \times 10^{-8} \frac{\mathrm{~W}}{\mathrm{w}^{2} \mathrm{~V}^{4}}\left(1000^{4}-300^{4}\right) \mathrm{K4}}{(12005+1732) \frac{1}{\mathrm{~m}^{2}}}
$$

$$
=4.09 \mathrm{~W} \quad \text { ANS }
$$

(c) [5 pts] Rather than treating the sides and bottom of the hole as a single surface, the sides of the hole are modeled as a separate, reradiating surface.

In the space below, draw a new resistor network that could be used to solve for unknown temperatures, rates of heat transfer, etc. Label all node "voltages," resistors, and "currents" in the figure.
Assume all surface areas and view factors are known.

Bonus [+1 pt, no penalty for failure to answer]
(2) black sumoundings
$T_{2}=300 \mathrm{~K}$

NOTE THAT $\dot{Q}_{3}=0$ SINCE IT IS RERADIATING. SURFACE RESISTANCE R_{3} THEREFORE NOT NEEDED.

$$
\begin{aligned}
& R_{1}=\left(1-\varepsilon_{1}\right) /\left(\varepsilon, A_{1}\right) \\
& R_{12}=1 / A_{1} F_{12} \\
& R_{13}=1 / A_{1} F_{13} \\
& R_{32}=1 / A_{3} F_{32}
\end{aligned}
$$

If you were to solve the equations resulting from part (c), could you do it without having been given the value of ε_{3} ? Explain your answer.

