Solution

Grade: \qquad /20

Name

Problem 1 [10 pts]
Air is contained in an enclosure with the dimension shown in the figure. The enclosure width (into the page) is $w=0.5 \mathrm{~m}$. Some properties of air are also given.
(a) [2 pts] Which of the following give a correct expression for the rate of heat transfer in the enclosure? Check all that apply.

- A. $\dot{Q}=\frac{T_{1}-T_{2}}{\frac{L}{k w H}}$
- C. $\dot{Q}=h\left(T_{1}-T_{2}\right)$
$\downarrow / \mathrm{B} . \dot{Q}=\frac{T_{1}-T_{2}}{\frac{L}{k_{\text {eff }} w H}}$
- D. $\dot{Q}=k_{\text {eff }} w H\left(T_{1}-T_{2}\right)$
(b) $[8 \mathrm{pts}]$ Find the effective thermal conductivity (in $\mathrm{W} / \mathrm{m}-\mathrm{K}$) of the air in the enclosure.

$$
K_{\text {EFF }}=(2.18)\left(0.02551 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{cc}}\right)
$$

$$
=0.0556
$$

$$
\begin{aligned}
& K_{E F F}=K W_{u} \\
& \mathbb{R}_{a}=\frac{g \beta\left(T_{1}-T_{2}\right) L^{3}}{2^{2}} \operatorname{Pr} \quad \beta=\frac{1}{T_{A N}}=\frac{1}{\left(T_{1}+T_{2}\right) / 2}=\frac{1}{(25+273) \mathrm{K}} \\
& =0.00336 \mathrm{k}^{-1} \\
& =9.81 \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \cdot 0.00336 \frac{1}{K}(40-10)^{\circ} \mathrm{t} \cdot 0.02^{3} \mathrm{~m}^{3} \cdot 0.7281 \\
& \left(1.561 \times 10^{-5}\right)^{2} \frac{\mathrm{pr}^{4}}{5^{2}} \\
& =23,607 \\
& \frac{H}{L}=\frac{16 \mathrm{~cm}}{2 \mathrm{~cm}}=8 \\
& \longrightarrow \mathbb{N}_{u}=0.22\left(\frac{\operatorname{Pr}}{0.2+\mathbb{P r}} \mathbb{R a}\right)^{0.28}\left(\frac{H}{L}\right)^{-11.4} \\
& =2.18
\end{aligned}
$$

Problem 2 [6 pts]

The velocity and thermal boundary layers for and unknown gas next to a vertical plate are shown in the figure.
(a) [2pts] How does the temperature of the surface compare to the ambient gas temperature?
(1) A. $T_{s}<T_{\infty}$

- B. $T_{s}=T_{\infty}$
\square C. $T_{s}>T_{\infty}$
- D. Cannot be determined
(b) [2pts] What is the Prandtl number for the gas?
(c) [2pts] How does the heat flux at the middle of the plate compare to that at the top of the plate?
a) A. $q_{\text {middle }}<q_{\text {top }}$
- B. $q_{\text {midate }}=q_{\text {top }}$
- C. $q_{\text {middle }}>q_{\text {top }}$
- D. Cannot be determined

- A. $\operatorname{Pr}<1$
- B. $\operatorname{Pr} \approx 1$
D/C. $\operatorname{Pr}>1$
- D. Cannot be determined

Problem 3 [4 pts]
(a) [1 pt] Gravity on the moon is approximately one sixth of the gravity on earth. We would therefore expect that natural convection within a lunar lander to beA. less than that on earth

- B. the same as that on earth
- C. greater than that on earth
(a) [1 pt] Air blows over an inclined plate with a velocity of $U=2 \mathrm{~m} / \mathrm{s}$. You calculate the $G r / R e^{2}$ be 0.2 . How do you treat the resulting convection?
- A. Forced convection only
- B. Natural convection only
© C. Combined forced/natural convection
(b) [2 pt] The velocity in part (b) is doubled to $U=4 \mathrm{~m} / \mathrm{s}$. All other conditions are the same. How do you treat the resulting convection?
(0)
A. Forced convection only
- B. Natural convection only

$$
\begin{aligned}
\frac{G r}{R_{e}^{2}} & =\frac{G_{r}}{\operatorname{Re}_{1}^{2}} \cdot\left(\frac{U_{1}^{2}}{U_{2}^{2}}\right)=0.2\left[\frac{2^{2} \mathrm{~m}^{2} / \mathrm{s}^{2}}{4^{2} \mathrm{~m}^{2} / \mathrm{s}^{2}}\right] \\
& =0.05<0.1
\end{aligned}
$$

