COURSE WORKBOOK: Course leaming objectives, notes and examples

for

ME302
Heat Transfer

Leaming objectives

ME302 learning objectives

After studying the material and doing the associated activities and homework problems students of this course will be able to:
1.Find course information on webpages
2.Explain how Heat Transfer as a separate discipline is different than the study of Thermodynamics
3.Give the "baby" form of the working equation for each mode of heat transfer
4.Explain what each variable in the equations is
5.Distinguish between $T_{a m b}$ (or T_{∞}) for convection and $T_{\text {surr }}$ for radiation.
6.Perform an energy balance (conservation of energy) on a surface subjected to heat transfer
7.Use a thermal energy balance and distinguish it from the more general conservation of energy
8.Use a 1-D conduction equation and distinguish it from the more general conservation of energy
9. \square Explain the meaning of each term in the above equations
10.Explain when it is appropriate to use each of the above equations
11.Define the terms

o heat generation
 o thermal diffusivity

12. Identify the major use of the general, 3-D conduction equation
13.Use the conduction equation
o in different coordinate systems
o in multiple dimensions
o with various assumptions (steady-state, constant properties, etc.)
14.Find boundary conditions and initial conditions for use with the conduction equation
15.Find an expression for $Q_{\text {dot }}$ for 1-D, steady-state conduction in rectangular coordinates
16.Using the electrical/resistance analogy, state what is analogous to V, I, and R.
17.Express the generic convection relation using an electrical analogy
13. Draw thermal "circuits" for 1-D, steady-state conduction problems and use them to find unknown temperatures, heat transfer rates, etc.
19.Find an expression for $Q_{\text {dot }}$ for 1-D, steady-state conduction in cylindrical and spherical coordinates
14. \square Explain why rectangular coordinate expression for $R_{t h}$ does not work in cylindrical and spherical coordinates
15. \square Draw thermal "circuits" for 1-D, steady-state conduction problems and use them to find unknown temperatures, heat transfer rates, etc.
16. \square Explain why the rectangular coordinate expression for $R_{t h}$ does not work in cylindrical and spherical coordinates
17. \square Explain what a fin is, what it does and how
18. \square Explain why the conduction equation and the resistance analogy cannot be used to find the temperature distribution in, or heat transfer of, a fin
19. \square State how to use the insulated-tip BC for a fin to approximate a convective tip
20. \square Define fin efficiency mathematically and in words
21. \square Find the temperature distribution for extended surfaces (fins)
22. \square Find the rate of heat transfer from extended surfaces (fins)
23. \square Explain what a fin effectiveness is and how it is different from fin efficiency
24. \square Use the idea of fin effectiveness to determine when it is a good idea to use a fin or not
31.Use fin effectiveness in calculations to determine the rate of heat transfer from individual fins and also from fin arrays
25. \square State the fundamental assumptions of the lumped capacitance model for transient conduction
26. \square Calculate and explain the physical significance of the time constant for transient systems for which the lumped capacitance model is valid
27. \square Test for the validity of the lumped capacitance model
28. \square Calculate and explain the physical significance of the Biot number
29.

\square Recognize when a 1-D, transient conduction model is an appropriate model for a heat transfer system
o Use the first-term approximation of the infinite-sum solution for 1-D transient conduction to find $T=T([x$ or $r], t)$ and $Q([x$ or $r], t)$ Note: Q, not $\left.Q_{d o t}!\right)$
o Infinite plane wall (slab)
o Infinite cylinder
o Sphere
37. \square Determine when the first-term approximation of the infinite-sum solution for the above is valid
38. \square Explain the difference between how $B i$ for 1-D transient conduction models and $B i$ for the lumped capacitance model is calculated
39. \square State how these solutions can be used for specified T BCs instead of convective BC
40. \square Distinguish between a 1-D transient conduction model in a slab and a 1-D transient conduction model in a semi-infinite medium and recognize when each model is appropriate
41. \square Use the solution to 1-D transient conduction in a semi-infinite medium to find $T=$ $T([x$ or $r], t)$ and $Q([x$ or $r], t)$ (Note: Q, not $Q_{\text {doo! }}$)
42.Determine when a 2-D and 3-D transient conduction model is appropriate for a given heat transfer system
43. \square Use the solutions to the 1-D transient conduction of an infinite slab, an infinite cylinder, a sphere, and a semi-infinite medium to find the temperature distributions and heat transfers ${ }^{\text {i }}$ in various 2-D and 3-D transient heat transfer systems using \square superposition.
44.Describe mathematically and in words the following terms
o no-slip boundary condition
0 viscosity
o shear stress and skin friction coefficient
o Nusselt number
o velocity boundary layer
o thermal boundary layer
45.Explain why convection at a solid-fluid interface is really just conduction, and give a mathematical expression for it
46.Describe how Prandtl number affects the relative thicknesses of momentum (velocity) boundary layers to thermal boundary layers
47.Identify the appropriate Nusselt correlation to use based on
o whether a flow is laminar or turbulent,
o boundary condition,
o whether a local or average values of h is required
48.Discern between form drag and friction drag, and identify the major contributor to each
49.Give the local variation of h (or $N u$) with angle for flow around a cylinder or sphere.
50.Define external flow and contrast it with internal flow.
51. \square Explain the difference between developing flow and fully-developed flow.
52.Explain the difference between hydrodynamically developing vs. fully-developed flow and thermally developing flow vs. fully-developed flow
53.Identify whether an internal flow is developing or fully-developed
54.Sketch how both friction factor (f) and Nusselt number (Nu) vary in the flow direction for developing flow and fully developed flow.
55. \square Define, in words and mathematically, mean velocity and mean (mixing cup) temperature for internal flow.
56. \square Identify the appropriate temperature difference to use for internal flow based on boundary condition.
57. \square Define hydraulic diameter and explain when it is appropriate to use
58. \square Identify an appropriate Nusselt correlation to use for a given internal flow situation
59. \square Identify the trade-offs of increasing h by increasing flow rate
60. \square Calculate the friction factor, pressure drop, and pumping power for flow through a length of pipe
61. \square Explain the difference between forced convection and natural convection
62. \square Explain how and why a fluid subject to natural convection moves
63. \square Define volume expansion coefficient (β), mathematically and in words
64. \square Define Grashof number and give its physical interpretation
65. \square Sketch what velocity and thermal boundary layers look like for natural convection for $\operatorname{Pr}>1$ and $\operatorname{Pr}<1$.
66. \square Explain what type of forces balance each other in natural convection boundary layers for $\operatorname{Pr}>1$ and $\operatorname{Pr}<1$.
67. \square Find the appropriate Nusselt correlation for natural convection based on $R a$, boundary condition, geometry and orientation of surface, etc.
68. \square Sketch flow patterns for natural convection currents in enclosures
69. \square State the driving temperature difference to use in the convection relation for natural convection in enclosures
70. \square Find the effective thermal conductivity for natural convection in enclosures and use it to determine the rate of heat transfer assuming 1-D SS conduction
71. \square Non-dimensionalize an equation by substituting dimensionless forms of variables into it
72. \square Determine when a system subject to combined forced and natural convection has negligible natural convection or negligible force convection
73.Calculate the Nusselt number and heat transfer coefficient for combined natural and forced convection
74.Explain the ways in which radiation heat transfer is different than conduction and convection
75. \square Explain how thermal radiation differs from other forms of E-M radiation
76. \square Identify the wavelengths of the E-M spectrum for which thermal radiation is the dominant form of radiation
77.Define a blackbody
78. \square Define emissive power and give its dimensions along with a set of typical unitsDefine the term spectral and spectral emissive power
80.Sketch spectral blackbody emissive power as a function of wavelength with temperature shown as a parameter
81. \square Find the fraction of emissive power emitted by a blackbody over a specified wavelength range using the black body radiation function
82. \square Define the terms spectral emissivity, directional emissivity, hemispherical emissivity, total/total hemispherical emissivity, absorptivity, solar absorptivity, reflectivity, transmissivity, irradiation and opaque
83.Relate the above mentioned properties to each other
84.Use Kirchoff's law to relate absorptivity and emissivity to each other
85.Calculate the net radiation from a surface subject to solar radiation
86.Define (mathematically and in words) and the terms solid angle, radiation, and view factor
87.Find view factors for diffuse surfaces with common geometries and arrangements
88.Calculate view factors for infinitely long 2-D bodies using the crossed string method
89.Calculate the net rate of radiation heat transfer leaving a black surface as well as the net exchange of radiation heat transfer between black surfaces forming enclosures by making use of radiation space resistances
90.Calculate the net radiation heat transfer from each surface and the net radiation heat transfer between surfaces in an enclosure made up of diffuse, gray surfaces by making use of radiation space resistances and radiation surface resistances
91.Define, mathematically and in words, the terms radiosity and reradiating surface and give examples of surfaces that behave as reradiating surfaces
92.Calculate the net radiation heat transfer between two surfaces that have one or more radiation shields between them.
93.Show why the rate the rate of radiation heat transfer between surfaces is diminished by the presence of radiation shields.
94. \square Identify the radiation surface properties and their relative values necessary to make a radiation shield effective.
95.Describe the construction of a double pipe heat exchanger, what it does and how.
96.For a double pipe heat exchanger in both parallel flow and counter flow configurations
o Calculate the overall heat transfer coefficient for a double pipe heat exchanger
o Calculate the log mean temperature difference for a double pipe heat exchanger
o Calculate the rate of heat transfer
97. \square Use the LMTD-F method to perform heat exchanger design problems.
98.Use the $\varepsilon-N T U$ method to perform heat exchanger analysis problems.
99.Define heat exchanger effectiveness, ε
100.Define number of transfer units, $N T U$
101.Define boiling
102. \square Sketch the boiling curve and identify the various regions on it
103.Define critical heat flux and explain the concept of burnout
104. \square Identify appropriate boiling correlations to find heat flux for various regions on the boiling curve
105. \square Explain the difference between dropwise and film condensation, and identify which one is accompanied by larger heat fluxes
106. \square Calculate the Reynolds number for film condensation
107.Find appropriate Nusselt relations for film condensation

Note: Terms in bold are key concepts or vocabulary words that you should be able to define. This is true whether or not the learning objective is explicitly to define them.

Notes and examples

You and Me and Heat Transfer (Makes Three)

So what is heat transfer?

- Defined in Thermodynamics as

■ In Heat Transfer as a separate discipline:

- We are usually interested in the \qquad of heat transfer.
- We are interested in the \qquad of energy transfer.
- We deal with \qquad processes.

■ We will be interested in the \qquad of temperature.

Why should I care?

■ Heat transfer processes are encountered in large numbers of engineering systems and other aspects of life. For example:

■ \qquad
■ \qquad
\square \qquad
\qquad

What can I expect to get out of this course?

- A working knowledge of heat transfer such that:
- you can describe physical systems in terms of heat transfer models
- you can determine heat transfer rate(s) or temperature distributions for existing systems
■ you can determine the size of a system to achieve a specified heat transfer rate or temperature distribution

Details, I want details!

Who is the hottest person in the room?
■ There are three modes of heat transfer. Specifically,

Exercises

1. A $2-\mathrm{kg}$ copper bar (not to be confused with the downtown Terre Haute watering hole) is initially at a temperature of $T_{1}=25^{\circ} \mathrm{C}$. It is then heated at a constant rate for two minutes until the temperature is $T_{2}=80^{\circ} \mathrm{C}$. If the specific heat of copper is $c=385 \mathrm{~J} / \mathrm{kg}$ ${ }^{\circ} \mathrm{C}$, find the rate of heat transfer into the copper in W .
2. The same copper bar is sandwiched between two isothermal walls maintained at constant temperatures. The bar is 15 cm long with a cross sectional area of $2 \mathrm{~cm}^{2}$. If the hotter of the two walls is $40^{\circ} \mathrm{C}$ and the thermal conductivity of copper is $k=400 \mathrm{~W} / \mathrm{m}$ K, find the temperature of the colder wall for the same rate of heat transfer as in Problem 1.
3. A solid wall is maintained at $50^{\circ} \mathrm{C}$. Air at a temperature of $25^{\circ} \mathrm{C}$ with a convective heat transfer coefficient of $10 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$ blows past the wall at a velocity of $0.25 \mathrm{~m} / \mathrm{s}$. Find the rate of heat transfer from the wall to the air in $\mathrm{W} / \mathrm{m}^{2}$.
4. The speed of the air blowing past the wall in Problem 3 is increased to $5.0 \mathrm{~m} / \mathrm{s}$. Find the new value of the heat transfer coefficient and the new rate of heat transfer.

NOTES: The three modes of heat transfer

Conduction

$$
\dot{q}=
$$

Convection

$$
\dot{q}=
$$

Radiation

A perfect \qquad
$\dot{q}=$

Not so perfect \qquad
$\dot{q}=$

NOTES: The three modes of heat transfer

Small body enclosed in much larger enclosure
$\dot{q}_{n e t}=$

Examples

1. A surface area of $2 \mathrm{~m}^{2}$ has a steady, uniform temperature of $T_{\mathrm{S}, \text { out }}=13^{\circ} \mathrm{C}$ and an emissivity of $\varepsilon=0.93$. The temperature of the surroundings to which this surface radiates is 268 K . Find the net radiation heat transfer (in W) from the surface to the surroundings.
2. Concurrently, air at $10^{\circ} \mathrm{C}$ blows over the surface. The resulting convective heat transfer coefficient is $h=20 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}$. Find the convection heat transfer (in W) from the surface to the air.
3. The surface is actually a makeshift roof of a clubhouse. The roof material is 13 mm thick, and the inside temperature is $T_{S, i n}=25^{\circ} \mathrm{C}$. Assuming that heat transfer through the roof is one-dimensional and steady, find the thermal conductivity (in W/m•K) of the roof material. (Hint: You will have to make some assumptions about the heat transfer through the roof material to get an answer here. Can you defend your assumptions?)

NOTES: The thermal energy balance

Make it a closed system. Do not ignore forms of energy besides U and do not ignore electrical power. (You can ignore KE\&PE and other forms of power, though.)

NOTES: The thermal energy balance
Seeing as how this course is Heat Transfer, let's lump every thing that is not U together:

Put it all together...

Example

A long cylinder of cross section A is insulated along its outer diameter and is subject to a uniform internal heat generation per unit volume of $\dot{e}_{\text {gen }}$. Assuming constant conductivity k and specific heat c, find a differential equation describing the temperature distribution as a function of length and time.

Example

The temperature distribution in a wall 1 m thick at a certain instant of time is given as

$$
T(x)=a+b x+c x^{2}
$$

where T is in ${ }^{c} \mathrm{C}$ and x is in m . The constants are $a=900^{\circ} \mathrm{C}, b=-300^{\circ} \mathrm{C} / \mathrm{m}$ and $c=-50^{\circ} \mathrm{C} / \mathrm{m}^{2}$. A uniform heat generation $\dot{e}_{\text {gen }}=1000 \mathrm{~W} / \mathrm{m}^{3}$ exists in the wall. The wall area is $10 \mathrm{~m}^{2}$ and has the following properties: $\rho=1600 \mathrm{~kg} / \mathrm{m}^{3}, k=40 \mathrm{~W} / \mathrm{m}-\mathrm{K}$ and $c_{p}=4 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$. Determine:

1. the rate of heat transfer entering the wall and leaving the wall. ($x=0$ and 1 m , respectively),
2. the rate of change of energy storage in the wall, and
3. the time rate of temperature change at $x=0$ and 0.25 m .

Example

Electric current is passed through a long conducting rod of radius r_{i} and thermal conductivity k_{r}, resulting in a uniform volumetric heat generation of $\dot{e}_{\text {gen }}$. The rod is wrapped in an electrically non-conducting cladding with outer radius r_{o} and thermal conductivity k_{c}. The entire rod/cladding combination is immersed in a flowing
 fluid with known heat transfer coefficient h and temperature T.
(a) Reduce the conduction equation for steady-state conditions and state the appropriate boundary conditions for the conducting rod.
(b) Reduce the conduction equation for steady-state conditions and state the appropriate boundary conditions for the cladding.

Example

Jeff Spicoli is trying out a new surfboard designed for use on the northern California coast. Since the NoCal waters are noticeably colder than those at Sunset Cliffs, the new board makes use of electrical resistance heating. The surfboard has rectangular cross section and has a width W that is much greater than its thickness H. The bottom of the surfboard is initially in contact with the ocean at its lower surface, and the temperature throughout the board is approximately equal to that of the ocean T_{0}. Suddenly Spicoli turns on the heater and catches a tasty wave such that an electric current is passed through the entire board and an air-stream of temperature T_{∞} is passed over the top surface at a constant rate. The bottom surface continues to be maintained at T_{0}.

Assuming the board has a constant thermal conductivity k, obtain the differential equation and the boundary and initial conditions that could be used to determine the temperature as a function of time and position in the board.

ACTIVE LEARNI NG EXERCISE-Thermal resistance

Consider a chunk of material with thickness L and surface area A as shown in the figure. The left hand face is maintained at a constant temperature T_{1} while the right hand side is maintained at a constant temperature of T_{2}. Is the material has a constant thermal conductivity and is subject to 1-D steady-state conduction with no heat generation,
(a) find the temperature distribution $T=T(x)$.
(b) Use your answer to (a) to find an expression for the rate of heat transfer through the chunk, \dot{Q}.
(c) Rearrange your answer in (b) to look like

$$
\dot{Q}=\frac{T_{1}-T_{2}}{\text { something }}
$$

Example

Dr. Thom bakes lots of brownies. In the process, he drips large amounts of brownie goo in his oven. He therefore is looking for a self-cleaning oven. One such oven design involves the use of a composite window separating the oven cavity from the room. The composite consists of two high temperature plastics (A and B) with thermal conductivities $k_{A}=0.15$ $\mathrm{W} /\left(\mathrm{m} \cdot{ }^{\circ} \mathrm{C}\right)$ and $k_{B}=0.08 \mathrm{~W} /(\mathrm{m} \cdot \mathrm{K})$ and thicknesses $L_{A}=2 L_{B}$. During the self-cleaning process, the oven air temperature is $T_{a}=400^{\circ} \mathrm{C}$, while the room air temperature is $T_{\infty}=25^{\circ} \mathrm{C}$. Convective heat transfer coefficients in and out of the oven are approximately 25 $\mathrm{W} /\left(\mathrm{m}^{2}{ }^{\circ} \mathrm{C}\right)$.
(a) Find the minimum window thickness $L=L_{A}+L_{B}$ needed to ensure a temperature of $50^{\circ} \mathrm{C}$ on the outer window surface. (Hint: Use the resistance analogy and draw a thermal circuit. Assume that the cross sectional area of the window in $1 \mathrm{~m}^{2}$ to make life easier.)
(b) Repeat part (a) if there is also a radiation heat transfer coefficient inside the oven of $h_{r}=25$ $\mathrm{W} /\left(\mathrm{m}^{2 .}{ }^{\circ} \mathrm{C}\right)$.

NOTES: Contact resistance
Contact resistance

NOTES: Contact resistance
Pick the engineer:

Example

A 10-mm diameter pipe containing a condensing refrigerant is to be insulated with a material that has a conductivity of $k_{\text {insul }}=0.055 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$. For the air surrounding the pipe, $T_{\text {air }}=20^{\circ} \mathrm{C}$ and $h_{\text {air }}=5 \mathrm{~W} / \mathrm{m}^{2-}{ }^{\circ} \mathrm{C}$. The temperature of the refrigerant is $-10^{\circ} \mathrm{C}$. Assuming that the inside wall temperature is the same as the refrigerant temperature
(a) calculate the rate of heat transfer per unit pipe length for an insulation thickness of $t=$ 2 mm , and
(b) $t=5 \mathrm{~mm}$.

NOTES: Fins

$$
\begin{aligned}
& \text { WAYS TO INCREASE } \\
& Q_{\text {CONV }}^{0}=H A\left(T_{s}-T_{\infty}\right)
\end{aligned}
$$

1) increase \qquad
$+\quad-$
2) INCREASE \qquad

-

NOTES: Fins

FINS

MODEL A FIN TO GET
$\therefore T=T(x) \pm$

- $\dot{\varrho}_{\text {Find }}=$?

ASSUME: \quad ETD CONDUCTION

P: PERIMETER

Thermal Energy Balance:

* Why not use the conduction equation?

NOTES: Fins

$$
\begin{aligned}
& \frac{d \dot{Q}}{d x}+h \Theta\left(T_{x}-T_{\infty}\right)=0 \quad \text { WHATS } \dot{Q}=? \\
& =-h P\left(T_{x}-T_{\infty}\right)=0 \\
& \text { LET: } \theta \equiv T_{x}-T_{\infty}
\end{aligned}
$$

$$
\begin{gathered}
N \text { FIN ERS (COST +SEC } \\
\text { AREA) }
\end{gathered}
$$

solve it! chr. EQN is
so:

WHAT ARE THE BC s?

$$
\text { IN } \theta=\left(T-T_{00}\right)
$$

$$
x=0
$$

$B C \# 2 \quad X=L$
CHOICES
1)
2)
3)

NOTES: Fins

1) OOLY LONG FIN $\xrightarrow{ }$

$$
T(x=L)=
$$

$\theta(x=L)=$
$\underbrace{A S} L \rightarrow \infty$

$$
\begin{aligned}
& \text { so: }(B C \neq 2) \\
& \theta(x=L-\infty)= \\
& \therefore C_{1}=
\end{aligned}
$$

$$
B C \neq 1:
$$

$$
\theta(x=0)=
$$

$$
\theta=\theta^{C_{2}} e^{-a x}=\left(T_{b}-T_{\infty}\right) \exp \left[-\sqrt{\frac{h P}{R A_{c}} x}\right]
$$

$$
\frac{T_{(x)}-T_{\infty}}{T_{b}-T_{\infty}}=e^{-\sqrt{\frac{h p}{b A_{c}}} \times e^{- \text {COLY LONG FIN }}} \begin{aligned}
& \text {-CONT } A_{c}
\end{aligned}
$$

2) INSULATED TP

$$
B C \# 2
$$

$$
-\quad=
$$

$$
\frac{T_{x}-T_{\infty}}{T_{b}-T_{\infty}}=
$$

NOTES: Fins

$$
\dot{\mathscr{Q}}_{\operatorname{MAX}}=
$$

FIN EFFICIENCY

$$
\eta_{f} \equiv \quad \text { OOLY LONb: } \quad \eta_{f}=
$$

$$
\begin{aligned}
& \text { ¿WHAT'S THE BDIGQ ESED } \dot{Q}_{F W} \text { YON CAN MAGNE? } \\
& \equiv \text { CH }
\end{aligned}
$$

Example

A straight aluminum fin $(k=200 \mathrm{~W} / \mathrm{m}-\mathrm{K})$ is 3.00 mm thick and 7.5 cm long. It protrudes from a wall whose temperature is maintained at $300^{\circ} \mathrm{C}$. The ambient air temperature is $T_{\text {air }}$ $=50^{\circ} \mathrm{C}$ with $h_{\text {air }}=10 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}$. Calculate the heat loss from the fin per unit depth assuming
(a) an infinitely long fin, and
(b) an insulated tip with a corrected fin length.

Example

(c) Repeat part b) using the fin efficiency concept.

NOTES: Fin effectiveness
Recall fin efficiency

$$
\eta=\frac{\dot{Q}_{F W}}{\dot{Q}_{M A K}}
$$

When is it a good idea

Fin Effectiveness

Limits on ε ?
What should ε be?

NOTES: Fin effectiveness
Let's relate ε to η

$$
\begin{aligned}
& \varepsilon=\frac{\dot{Q}_{f i n}}{Q_{n a}}= \\
& \varepsilon=
\end{aligned}
$$

For an infinitely long straight fin

$$
\begin{array}{ll}
\varepsilon=(\quad) \frac{A_{\text {fin }}}{A_{\text {no fin }}} & A_{\text {fin }}= \\
\varepsilon= & A_{\text {no fin }}=
\end{array}
$$

So, you should use a fin when

$$
\begin{array}{ll}
K \text { is } & \text { HUGH } 1 \text { LOW } \longrightarrow \\
P / A_{c} \text { is } & \begin{array}{l}
\text { HIGH } 1 \\
\\
h
\end{array} \text { LOW } \longrightarrow
\end{array}
$$

All of this is for a single fin...

NOTES: Fin effectiveness
Fin arrays

$$
\varepsilon_{\text {overRan }}=
$$

$$
\dot{Q}_{\text {Tor }}=\dot{Q}+\dot{Q}
$$

$$
=
$$

$\dot{Q}_{\text {No FN }}=$

$$
\varepsilon_{\text {overuse }}=
$$

Example

A motorcycle cylinder is constructed from 2024-T6 aluminum alloy ($k=186 \mathrm{~W} / \mathrm{m}-{ }^{\circ} \mathrm{C}$) and has a height of $H=0.15 \mathrm{~m}$ and an outer diameter of $D=50 \mathrm{~mm}$. The temperature of the outer diameter of the cylinder is 500 K under typical conditions. The surrounding air has a temperature is $T_{\text {air }}=300 \mathrm{~K}$ with $h_{\text {air }}=50 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}$. It is suggested that the heat transfer from the motorcycle can be enhanced by adding annular fins of length $L=20 \mathrm{~mm}$ and thickness $t=6 \mathrm{~mm}$. Calculate the increase of heat transfer due to adding five such fins, all equally spaced.

ACTIVE LEARNING EXERCISE: The lumped capacitance method

Consider a frozen olive initially at a temperature of T_{i} that is dropped into a martini at a temperature T_{∞}. We then stir the martini with a flamingo swizzle stick. We are interested in how the olive temperature changes with time, most notably how long it takes to warm up to T_{∞}.

Write thermal energy balance for the frozen olive for the time after is dropped into the martini. Assume that the entire olive is at only one temperature at any point in time. This is the lumped capacitance assumption.

What is the mode of heat transfer to the olive? \qquad .

Rewrite the thermal energy balance.

This is a linear, non-homogeneous first order differential equation. We can make is homogeneous by letting

$$
\theta=T-T_{\infty}
$$

Do it!

Solve by direct integration:

Apply the initial condition:

The solution to this equation is given by

Rearrange a bit

$$
\frac{T-T_{\infty}}{T_{i}-T_{\infty}}=
$$

where

Now this model says that the olive never reaches T_{∞}, but it is generally accepted that 4τ is close enough. (At $4 \cdot$ TC you're 98% of the way there).

If the convective heat transfer coefficient between an olive and the martini is $h=100$ $\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)$ and the properties of a typical 2-cm diameter spherical olive are given by $\rho=850$ $\mathrm{kg} / \mathrm{m}^{3}$ and $c_{p}=1780 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{K})$, we can calculate $T C$ to be

$$
T C=
$$

which means that in about \qquad (or $4 \cdot T C$) the olive has reached T_{∞}.

In this, we assumed that the entire olive was at one temperature. In other words, we ignored any temperature gradients within the olive and therefore any \qquad heat transfer within it. ${ }^{1}$ Was this a good assumption? Let's find out.

The \qquad \qquad is a measure of the internal resistance to conduction of an object to the external convection to which it is subject. It is defined as
$B i \equiv$ \qquad
\qquad

[^0]If the Biot number is small $(\mathrm{Bi} \ll 1)$ then this assumption isn't too bad. With $k_{\text {olive }}=0.350$ $\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{C}^{\circ}\right)$ and $L_{c h a r}=V_{o} / A=r / 3$, for the macro-olive we get

$$
B i=\frac{100 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{C}^{\mathrm{o}}} \cdot(0.01 / 3) \mathrm{m}}{0.350 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{C}^{\mathrm{o}}}}=
$$

$$
\begin{array}{l|l|l}
B i \ll 1 & B i=1 & B i \gg 1
\end{array}
$$

Example

Let's take one last look at the frozen olive problem. We drop a frozen olive initially at a temperature of $T_{\mathrm{i}}=0^{\circ} \mathrm{C}$ into a martini at a temperature $T_{\infty}=5^{\circ} \mathrm{C}$. We then stir the martini with a flamingo swizzle stick resulting in a convection coefficient of $h=10 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{C}^{0}\right)$. The olive is modeled as a sphere with 1-cm diameter with $\rho=850 \mathrm{~kg} / \mathrm{m}^{3}, k=0.350 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{C}^{0}\right)$ and $c_{p}=1780 \mathrm{~J} /\left(\mathrm{kg} \cdot \mathrm{C}^{0}\right)$
(a) Find the Biot number for the olive in the martini. Is the lumped capacitance model OK?
(b) Find the time constant for the olive in the martini.
(c) How long does it take the olive to warm up to $4^{\circ} \mathrm{C}$?
(d) What it the rate of heat transfer into the olive when $T=4^{\circ} \mathrm{C}$? What is the total amount of heat transferred (Q with no dot!) to the olive during this time?

TRANSIENT 1-D CONDUCTION

- take a slab \qquad

- put it $\mathbb{N} a$ \qquad
\qquad

Conduction ERN

$$
\begin{aligned}
\rho C \frac{\partial T}{\partial t} & =\frac{\partial}{\partial x}\left(R \frac{\partial T}{\partial x}\right)+\frac{\partial}{\partial y}\left(k \frac{\partial T}{\partial y}\right) \\
& +\frac{\partial}{\partial z}\left(k \frac{\partial T}{\partial z}\right)+\dot{e}_{\text {gen }}
\end{aligned}
$$

$B C \neq 1:$ ex $=L$
$B C \# 2: @ x=-L$

$$
\text { IC. } \quad T(x, t=0)=
$$

solve by separation \& variables. use FOR CONSTANTS (FROM BESS)

RESULT IN \qquad
\qquad

$$
\theta=
$$

LET TEEM approx 4 ∞ series

$$
\theta(x, t) \equiv
$$

NOTES: Transient conduction

NOTES: Transient conduction

SINCE THIS IS \qquad * WE ARE LOOKING at
\qquad
\qquad LETS FINO Q

INSTEAD.

WHERE
$\theta_{0}=\theta$ AT CENTER POINT $=$
AND

$$
Q_{\text {max }}=
$$

CONCEPT QUESTI ONS - Transient conduction

1. For the following questions, assume that the conductive body in question is initially all at one temperature, T_{i} and is put into a convective environment at time $t=0$. The convective environment has a heat transfer coefficient of h and is at temperature T_{∞}.
a. Find an expression for the dimensions temperature (θ) at the center of an infinite slab of half thickness L as a function of time.
b. Find an expression for the dimensions temperature (θ) at the center of an infinitely long cylinder as a function of time.
c. Find an expression for the dimensions temperature (θ) at the center of a solid sphere as a function of time.
d. Comment on your answers to a-c.
2. Find an expression for the maximum heat that can be transferred (Q with no dot) to a slab, infinitely long cylinder or sphere as described in problem 1. (Hints: At what time does $Q_{\max }$ occur? What is the temperature of the entire body at this time?)

Example

A one meter long aluminum cylinder 15.0 cm in diameter and initially at $200^{\circ} \mathrm{C}$ is suddenly exposed to a convection environment at $70^{\circ} \mathrm{C}$ and $h=573 \mathrm{~W} /\left(\mathrm{m}^{2}-\mathrm{K}\right)$.
(a) Calculate the temperature at a radius of 1.73 cm 1 min after the cylinder is exposed to the environment.
(b) Calculate the heat lost 1 min after the cylinder is exposed to the environment. Express your answer in J.

NOTES: Conduction in a semi- ∞ medium

CONDUCTION IN A SEMI-C MEDIUM
(TRANSIENT, THAT is.)

A SEMI- 0 M MEDIUM, INTIALLY AT T THROUGHOUT IS SUDDENLY EXPOSED TO A CONVECTIVE MEDIUM wITH $h * T_{\infty}$.

FIND: $\quad T=T(x, t)$
T_{∞}, h_{∞}

WRITE THE Conduction Equation FOR ANY point in here:

REDUCE IT (PER ASSUMPTIONS)
[IEQN1]

INTIAL $=$ BOUMPARY COMDITNNS
I.G.

BC. \# 1
B.C. \#2

NOTES: Conduction in a semi- ∞ medium

Define:

$$
\eta \equiv \frac{x}{(4 \alpha t)^{1 / 2}} \sqrt[n]{\operatorname{siml}^{2} \operatorname{ARITY} \text { VARiABLE }}
$$

transform derivatives:

$$
\frac{\partial T}{\partial t}=\frac{d T}{d \eta} \times \frac{\partial \eta}{\partial t}=[
$$

$$
\frac{\partial^{2} T}{\partial x^{2}}=
$$

SUBSTITUTE INTO [II]

TRANSFORM IC. \& B.C.S

- ICc. \#B.C. \# 1 COLLAPSE INTO L B.C. I If you cant make this happen, you cant use a similarity technique...)

$$
\left.\begin{array}{l}
T(x, t=0)=\pi \\
T(x \rightarrow \infty, t)=T:
\end{array}\right\} \quad T(\quad)=
$$

NOTES: Conduction in a semi- ∞ medium

$$
\begin{aligned}
& B . C \cdot \# 2 \\
& \left.+\left.k \frac{\partial T}{\partial x}\right|_{x=0}=h\left(T_{x=0}-T_{\infty}\right)\right\}
\end{aligned}
$$

Now LET'S INTEGRATE [』]

$$
\frac{1}{d T / d \eta} d\left(\frac{d T}{d \eta}\right)=-2 \eta
$$

$$
\begin{aligned}
& d T= \\
& T= \\
& T=
\end{aligned}
$$

C. C_{2} COME FROM

BLAH, BLAH, BLAH...
RESULTS:

$$
\begin{aligned}
& \frac{T(x, t)-T_{i}}{T_{\infty}-T_{i}}=\operatorname{erfc}\left(\frac{x}{2 \sqrt{\alpha t}}\right)-\exp \left(\frac{h x}{k}+\frac{h^{2} \alpha t}{k^{2}}\right) \\
& * \operatorname{erfc}\left(\frac{x}{2 \sqrt{\alpha t}}+\frac{h \sqrt{\alpha t}}{k}\right)
\end{aligned}
$$

NOTES: Conduction in a semi- ∞ medium
where

$$
\operatorname{erfc}(u) \equiv 1-\frac{2}{\sqrt{\pi}} \int_{0}^{u} \exp \left(-u^{2}\right) d u
$$

$$
\text { NOTE } \frac{T(x, t)=T_{i}}{T_{\infty}-T_{i}}=1-\theta
$$

PER DUR PREVIOUS Notation.

IF B.C. \#2 is $T(x=0, t)=T_{S}$ INSTEAD:

WHAT DO YOU THINK $T(x, t)$ LOOKS LIKE?

Example

In laying water mains, utilities are concerned about the possibility of freezing during cold periods. What minimum burial depth would you recommend for a water main under the following conditions: Soil, initially at a uniform temperature of $20^{\circ} \mathrm{C}$, is subjected to a constant surface temperature of $-15^{\circ} \mathrm{C}$ for 60 days. Assume the properties of soil to be $\rho=2050$ $\mathrm{kg} / \mathrm{m}^{3}, k=0.52 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}, c=1840 \mathrm{~J} / \mathrm{kg}-{ }^{\circ} \mathrm{C}$ and $\alpha=(k / \rho c)=0.138 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$.

Example

A semi-infinite aluminum cylinder $\left(k=237 \mathrm{~W} / \mathrm{m}^{-}{ }^{\circ} \mathrm{C}, \alpha=9.71 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}\right)$ of diameter $D=$ 15 cm is initially at a uniform temperature of $T_{i}=150^{\circ} \mathrm{C}$. The cylinder is now placed in water at $10^{\circ} \mathrm{C}$, where the convection heat transfer coefficient is $h=140 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$. Determine the temperature at the center of the cylinder 10 cm from the end surface 8 min after the start of the cooling.

NOTES: Intro to convection

CONVECTON INVOLES d BETWEEN A SOLD SURFACE AND
A
IT \therefore behooves us to review fluids (A little.)

FlUid VElocity MERE
is

TWO KINDS \& STRESS \& IN A FUD

INA Newtonian Fluid.

ANYWAY, THE FLOWING FLUX EXERTS A DRAG EURE ON THE SURFACE, WEND LIKE TO KNOW WHAT THAT IS

NOTES: I intro to convection

IN TERMS of τ

$$
F_{D}=
$$

IN. DIMENSIONLESS FORM

JUST LIKE
in heat transfer

NOW LETS FOCUS ON THE HEAT TRANSFER FIRST, LOOK AT A \qquad FLUE BETWEEN TWO PLATES

- what is the mode of heat transfer?
$\therefore \quad \dot{q}=\quad=$

NOTES: Intro to convection
NOW LET'S MOVE THE FLUID

- what is the mode now? \qquad

$$
\therefore \dot{q}=
$$

gives us a way to find h analytically:

$$
h=
$$

MAKE IT DIMENSIONLESS:

WHAT IS THC PHYSICAL INTERPRETATION of N / u ?

NOTES: Intro to convection
BOUNDARY LAYERS

VELOCITY (MOMENTUM) BL. \rightarrow

- INSIDE THE BoL. \qquad
- OUTSIDE THE BL. \qquad

WHERE DOES TRANSITION TAKE RACE?

THERMAL BOUNDARY \qquad layer

\qquad

NOTES: Intro to convection

BOUNDARY LAYER ANALYSIS LETS ME DETERMINE COR ESTIMATE $\left.\frac{d V}{d y}\right)_{y=0}$

Example

Air at a pressure of 6 kPa and a temperature of $300^{\circ} \mathrm{C}$ flows with a velocity of $10 \mathrm{~m} / \mathrm{s}$ over a plate of length 0.5 m . Estimate the cooling rate per unit width of the plate needed to maintain it at a surface temperature of $20^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \text { BEFORE WE HAD } \\
& \longrightarrow U_{\infty}, T_{\infty}
\end{aligned}
$$

NOW WE HAVE

LETS CONSIDER THE FLUID MECHANK/ FIRST
¿What does the flow look like?

今
$\operatorname{Re} \tilde{>}$
! caution

$$
\mathbb{R}_{e}=\frac{\rho U_{\infty} \square}{\mu}=\frac{U_{\infty} \square}{2}
$$

flat plate:

$$
F_{D}=C A \frac{1}{2} \rho U_{\infty}^{2}
$$

WHICH AREA?
HERE

WHICH AREA?

FIG GIVE C_{D} FOR CYLINDER $\$$ SPHERE (ρ MOUTH)

NOTES: External convection

$\mathbb{N u}$

Nu

Like Π ?

$$
\mathbb{N u}_{\text {cYL }}=
$$

Like I

Example

Assume that a person can be approximated as a cylinder of $0.3-\mathrm{m}$ diameter and 1.8 m height with a surface temperature of $25^{\circ} \mathrm{C}$. Calculate the body heat loss while this person is subjected to a $15 \mathrm{~m} / \mathrm{s}$ wind whose temperature is $-5^{\circ} \mathrm{C}$.

Example

To enhance heat transfer form a silicon chip, a copper pin fin is brazed to the surface of the chip. The pin length and diameter are $L=12 \mathrm{~mm}$ and $D=2 \mathrm{~mm}$, respectively. The surface of the chip, and hence the base of the pin are maintained at a temperature of $T_{b}=350 \mathrm{~K}$. The pin is subject to atmospheric air in cross flow with $V=10 \mathrm{~m} / \mathrm{s}$ and $T_{\infty}=$ 300 K
(a) What is the average convection coefficient for the surface of the pin?
(b) Assuming h at the tip of the fin to be the same as that calculated
 in a), calculate the heat transfer rate from the pin. (I.e., assume an insulated tip with a corrected fin length.)

EXERCISE: Find the correlation

1. A fluid flows past a flat plate of length $L=1.0 \mathrm{~m}$ maintained at a constant temperature. The Reynolds number based on plate length is found to be $R e=2.0 \times 10^{6}$ and the Prandtl number of the fluid is $P r=0.9$. You wish to know the rate of heat transfer from the plate. What correlation for $N u$ do you use?
2. A fluid flows past a flat plate of length $L=1.0 \mathrm{~m}$ maintained at a constant temperature. The Reynolds number based on plate length is found to be $R e=2.0 \times 10^{4}$ and the Prandtl number of the fluid is $P r=0.9$. You wish to know the rate of heat transfer from the plate. What correlation for Nu do you use?
3. A fluid flows past a flat plate of length $L=1.0 \mathrm{~m}$ maintained at a constant temperature. The Reynolds number based on plate length is found to be $R e=2.0 \times 10^{6}$ and the Prandtl number of the fluid is $P r=0.9$. You wish to know the heat flux at the trailing edge of the plate, i.e., at $x=L$. What correlation for $N u$ do you use?
4. A fluid flows past a flat plate of length $L=1.0 \mathrm{~m}$ maintained at a constant temperature. The Reynolds number based on plate length is found to be $R e=2.0 \times 10^{5}$ and the Prandtl number of the fluid is $P r=0.9$. You wish to know the rate of heat transfer from the plate. What correlation for $N u$ do you use?
5. A fluid flows past a flat plate of length $L=1.0 \mathrm{~m}$ subject to a constant surface heat flux. The Reynolds number based on plate length is found to be $R e=8.0 \times 10^{5}$ and the Prandtl number of the fluid is $P r=0.9$. You wish to know the heat flux at the trailing edge of the plate, i.e., at $x=L$. What correlation for $N u$ do you use?
6. A fluid flows past a flat plate of length $L=1.0 \mathrm{~m}$ maintained at a constant temperature. The Reynolds number based on plate length is found to be $R e=8.0 \times 10^{5}$ and the Prandtl number of the fluid is $P r=0.9$. You wish to know the heat flux at a location $x=0.25 \mathrm{~m}$ from the leading edge of the plate. What correlation for $N u$ do you use?
7. A fluid flows past a flat plate of length $L=1.0 \mathrm{~m}$ maintained at a constant temperature. The Reynolds number based on plate length is found to be $R e=8.0 \times 10^{5}$ and the Prandtl number of the fluid is $P r=0.9$. You wish to know total rate of heat transfer from the plate. What correlation for Nu do you use?
8. A fluid at temperature T_{∞} flows past a flat plate of length $L=1.0 \mathrm{~m}$ subject to a known constant surface heat flux \dot{q}. The Reynolds number based on plate length is found to be $R e=2.0 \times 10^{5}$ and the Prandtl number of the fluid is $P r=0.9$ You wish to know the surface temperature at the trailing edge of the plate, i.e., at $x=L$. What correlation for $N u$ do you use and how do you calculate the temperature?

The Magic $\operatorname{PPR} A I N I D T$ Th Number

Fluids (momentum transfer-)
$\left.\tau_{w}=\mu \frac{d u}{d y}\right)_{y=0}$

$\frac{\delta}{L} \sim$

$$
\mathbb{P}_{r} \equiv==
$$

\qquad

NOTES: The Prandtl number

$$
h \sim \frac{k}{\delta_{r}} \sim
$$

$$
\mathbb{N}_{u} \sim
$$

(At least for Laminar flow on plates. Other flows [turbulent, internal, etc.] are more complicated.)

NOTES: I internal convection

TWO TYPES OF

- External

CP OR:

- internal

¿ How does internal flow differ from external flow in terms of boundary layers?

VELOCITY (MOMENTUM) BOUND LAYER

THERMAL BOUNDARY LAYER

Do you expect
$C_{f}($ or $f) \notin A_{u}$
to be higher in
the developing region or the fully div eloped region? Why?

NOTES: Internal convection

YOU CAN SEE THAT $V=V(r) \& T=T(r)$ IN THE INTERNAL FLOW case. let us define, then

OUR GOAD is To FIND $\dot{Q}=h A\left(T_{s}-T_{m}\right)$

$$
\text { © WHAT } T_{s}-T_{m} \text { DO I USE } ?_{c}^{?}
$$

$\xrightarrow{\text { TAKE A SMALL SLICE of PIPE }}$

$$
\begin{aligned}
& \text { Cons of Energy } \longrightarrow \\
& \begin{aligned}
\frac{d E}{d t}= & \dot{Q}_{i n}+\ddot{W}_{i n}+\sum_{i n} \dot{m}(h+\ldots \\
& -\sum_{\text {or }} \dot{m}(h+\ldots)
\end{aligned}
\end{aligned}
$$

NOTES: I nternal convection

$$
\begin{aligned}
& \dot{q} \text { ALSO } \Rightarrow \quad \dot{q}= \\
& \text { COMBIMING }[\mathbb{A}] \pm[2] \\
& \text { [IERNZ] } \\
& \text { [IERIN } 3] \\
& \text { CASE }] \quad \dot{q}=\text { CONST } \\
& {[1] \text { SAYS }} \\
& {[2] \text { SAYS }} \\
& \text { (IF } n=\text { CONST) }
\end{aligned}
$$

\square

$$
\begin{aligned}
& \dot{q}=\text { CONST } \\
& \text { BOUNDARY CONDITINN }
\end{aligned}
$$

NOTES: I internal convection

CASE 2

$$
T_{S}=\text { COAST }
$$

[3] SAYS

$$
d T_{m}=-d\left(T_{s}-T_{m}\right)
$$

50.

$$
\stackrel{T_{m}(x)=}{5}
$$

lIVE SEE THAT $\dot{Q}=h A\left(T_{s}-T_{m}\right)$ is A PROBLEM.
LETS USE

$$
\dot{Q}=h A \Delta T_{A V_{C}}
$$

Cons. of Energy an whole tube -

$$
\dot{Q}=
$$

[E QN 6]

NOTES: Internal convection
[马] FOR THE TUBE EXT ($X=L$) GIVES

$$
[\mathbb{E} Q \mathbb{N} \mathbb{Z}]
$$

COMBINE [G] [G] TO ELIMINATE MI p

$$
\begin{aligned}
& \dot{Q}=h A\left[\frac{\left[\left(T_{s}-T_{m, e}\right)-\left(T_{s}-T_{m, i}\right)\right]}{\ln \frac{T_{s}-T_{m, e}}{T_{s}-T_{m, i}, \ldots}}+1\right. \\
& \vdots \dot{Q}=h A, \ldots
\end{aligned}
$$

Example

The average convection coefficient for water flowing through a circular tube is to be determined experimentally. In the experiment, steam condenses on the outer surface of a thinwalled circular tube with $50-\mathrm{mm}$ diameter and $6-\mathrm{m}$ length. This maintains the tube at a uniform surface temperature of $100^{\circ} \mathrm{C}$. Water flows through inside the tube at a rate of $\dot{m}=$ $0.25 \mathrm{~kg} / \mathrm{s}$, and its inlet and outlet temperatures are $T_{m, i}=15^{\circ} \mathrm{C}$ and $T_{m, e}=57^{\circ} \mathrm{C}$, respectively. What is the experimentally determined average convection coefficient associated with the water flow?

Example

Water flows through a section of $2.54-\mathrm{cm}$ diameter tube 3.0 m long. The water enters the section at $60^{\circ} \mathrm{C}$ with a velocity of $2 \mathrm{~cm} / \mathrm{s}$. Assuming that the flow is fully developed (buzza buzza buzz) by the time it enters the region of interest and that the wall is subject to constant wall heat flux,
(a) calculate the wall heat flux (in $\mathrm{W} / \mathrm{m}^{2}$) needed to heat the water to $80^{\circ} \mathrm{C}$.
(b) Calculate the wall temperatures at the inlet and the exit.
(c) Repeat part a) and b) if the velocity of the water is increased to $2 \mathrm{~m} / \mathrm{s}$.

Example

Water flows through a section of $2.54-\mathrm{cm}$ diameter tube 3.0 m long. The water enters the section at $60^{\circ} \mathrm{C}$ with a velocity of $2 \mathrm{~cm} / \mathrm{s}$. Assuming that the flow is fully developed (buzza buzza buzz) by the time it enters the region of interest and that the wall is subject to constant wall heat flux,
(a) calculate the wall heat flux (in $\mathrm{W} / \mathrm{m}^{2}$) needed to heat the water to $80^{\circ} \mathrm{C}$. DONE!
(b) Calculate the wall temperatures at the inlet and the exit. DONE!
(c) Repeat part (a) and (b) if the velocity of the water is increased to $2 \mathrm{~m} / \mathrm{s}$. DONE!
(d) Find the pressure drops and the pumping powers required for the two velocities above.

NOTES: Natural convection
 NATURAL CONVECTION

- IN FORCED CONVEGTON FLUID MOTION IS CAUSED BY APPLIED PRESSURE GRADIENTS. THE IS ACCOMPLISHED BY PUMPS, FANS, BLOWERS, ETC.
- IN OR FREE CCNVETTIN, FLUiD MOTION IS CAUSED BY
- consider a rubber duckie floating beneath the surface OF A BATHTUB:

TWO FORCES ACT ON THE DUCKIE:

THE NET UPWARD FORCE IS, THEN

$$
F_{\text {NET }}=
$$

$$
=
$$

\square

NOTES: Natural convection

```
NOW RATHER THAN A RUBBER DUCKIE, LET'S SAY YOUVE GOT
```

a FLUID PARTICLE THAT'S IT A MEDIUM THAT'S

we see, then that
\qquad cAUSE
\qquad CAUSE
\qquad

AND WHERE THERE'S \qquad THERE'S CONVETTVN.

THAT'S NATURAL CONVECTION!

$\beta \approx$
$\therefore \Delta \rho \approx$

NOTES: Natural convection

$F_{\text {NET,UP }} \approx$

- IF $T>T_{\infty}$
- IF $T<T_{\infty}$

CONSIDER TWO PLATES SEPARATED BY AN INITIALLY STILL FLUID.

FLUID

(a)

FLUID

(b)

SUdDENLY WE heat one of the plates, in (a) we heat THE TOP PLATE SUCH THAT $T_{1}>T_{2}$. IN (b), $T_{2}>T_{1}$.

What huppens?

NOTES: Natural convection

IF BUOYANICY MOVES FLUID, WHAT OPPOSES THE MOTION?
\qquad

LET'S DEFINE A DIMENSIONLESS NUMBER THAT MEASURES THE RELATIVE IMPORTANCE of THESE FORCES:

Gr $=$

ACTI VE LEARNI NG EXERCI SE-Natural convection boundary layers

Remember that one interpretation of Prandtl number is a measure of the relative thickness of a momentum (velocity) boundary layer to a thermal boundary layer. With this thought in mind,

1. sketch the momentum and thermal boundary layers for natural convection on a vertical wall with $T_{s}>T_{\infty}$ if $\operatorname{Pr}>1$. Include the variation of velocity and temperature across the layers.
2. Sketch the momentum and thermal boundary layers for natural convection on a vertical wall with $T_{s}>T_{\infty}$ if $\operatorname{Pr}<1$. Include the variation of velocity and temperature across the layers.

Example

A large vertical plate 4.0 m high is maintained at $60^{\circ} \mathrm{C}$ and exposed to atmospheric air at $10^{\circ} \mathrm{C}$. Calculate the heat transfer rate from the plate if it is 10 m wide.

Example

The surface of a horizontal pipe $1 \mathrm{ft}(0.3048 \mathrm{~m})$ in diameter is maintained at a temperature of $250^{\circ} \mathrm{C}$ in a room where the ambient air is at $15^{\circ} \mathrm{C}$. Calculate the free-convection heat loss per meter of length.

ACTI VE LEARNI NG EXERCISE—Natural convection in enclosures

1. Imagine a vertical plate at a temperature $T_{s, 1}$ in a quiescent fluid at T_{∞}. Assuming that $T_{s, 1}>T_{\infty}$, sketch the velocity boundary layer that forms as a result of the temperatureinduced density gradients next to the wall.

T_{∞}

2. Now imagine a vertical plate at a temperature $T_{s, 1}$ in a quiescent fluid at T_{∞}, but this time assume that $T_{s, 1}<T_{\infty}$, sketch the velocity boundary layer that forms as a result of the temperature-induced density gradients next to the wall.

$$
T_{\infty}
$$

3. Let us bring the two vertical plates close to each other, and then cap the top and bottom to form an \qquad . Sketch what you think the flow pattern of fluid would look like in the enclosure.

4. We know the fluid is not stationary, but if it were, what would be the mode of heat transfer between the walls?
5. For steady state, write an expression for the rate of heat transfer between the two walls assuming no fluid motion.

6. Since there really is fluid motion, we know the mode of heat transfer is \qquad _.

Does it make since to use $\left(T_{s, 1}-T_{\infty}\right)$ as the temperature difference for the total heat transfer rate across the entire enclosure? What about $\left(T_{s, 2}-T_{\infty}\right)$? What temperature difference does make sense to use? What would your expression for the rate of heat transfer look like, then?
7. We can still calculate the rate of heat transfer assuming we have steady-state, 1-D conduction as in part 5., if we use a pretend, effective conductivity of the fluid.

This pretend conductivity is larger/smaller than the actual conductivity due to the fluid motion. (circle one)

And so finally, equate your expressions for heat transfer rate in parts 5. and 6., but write the equation and solve it for the effective thermal conductivity of the fluid. (Hint, remember that $N u=h L_{c h r} / k$ where k is the real thermal conductivity of the fluid.

Example

A double pane window is 40 cm high and 1 m wide. The air gap between the two pieces of glass is 1 cm . The inside and outside temperatures of the window are $22^{\circ} \mathrm{C}$ and $-15^{\circ} \mathrm{C}$, respectively. Neglecting the thermal resistance of the glass,
(a) calculate the rate of heat transfer through the glass ignoring the effects of natural convection; i.e., if heat transfer is by conduction only.
(b) Calculate the rate of heat transfer through the window considering natural convection.
(c) Repeat part b) if the gap thickness is increased to 2 cm . Discuss the results.

[^1]
Example

In a fit of temporary insanity, a frustrated Rose student painted a piece of ply wood to resemble a giant novelty-sized heat transfer book, took it to the front lawn, and set it on fire. Luckily, the fire was put out quickly and no one was hurt. Sometime after the fire was put out, it was observed that the "book" temperature was $85^{\circ} \mathrm{C}$ and the surrounding air temperature was $29^{\circ} \mathrm{C}$. A small fan was placed beneath the "book" to aid in its cooling.
(a) Determine the minimum air velocity for which natural convection is negligible.
(b) Find the rate of heat transfer from the "book" if the air velocity is $5 \mathrm{~m} / \mathrm{s}$.

ACTI VE LEARNI NG EXERCI SE - Non-dimensionalization

Remember the velocity (momentum) boundary layer equation (conservation of
\qquad applied at \qquad within the boundary layer)?

$$
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=v \frac{\partial^{2} u}{\partial y^{2}}
$$

Now if we have buoyancy as well, we have to add a buoyancy term:

Non-dimensionalization gives us a way to weigh the relative importance of different physical phenomena. One way to arrive at these dimensionless groups is to use the Buckingham Pi Theorem to derive the dimensionless groups, or pi terms, directly. Another way is to define dimensionless versions of the variables which show up in the working equations, and then to substitute those variables into the equations. For example, a dimensionless version of the x-direction velocity, u is given by:

$$
u^{*}=u / U_{\infty}
$$

Wherever the variable u shows up in the boundary layer equation, then, we would substitute $u^{*} U_{\infty}$ instead.

Let us continue with this idea by defining dimensionless versions of the rest of the variables and substituting...

Radiation terms

Radiation heat transfer lingo is bountiful. To make matters worse, many of these terms seem like they should mean the same thing, but actually refer to different concepts. Below is a list of some of these terms. You are encouraged to write the definitions of these terms as you come across them in the readings. A clear understanding of what these terms mean will make your study of radiation go more smoothly.

ABSORPTIVITY

BLACK BODY

DIFFUSE

DIRECTIONAL

EMISSIVE POWER

EMMISIVITY

GRAY

IRRADIATION

OPAQUE

RADIATION

RADITIATION INTENSITY

RADIOSITY

REFLECTIVITY

RERADIATING SURFACE

SHAPE (VIEW) FACTOR

SPECTRAL

TOTAL, TOTAL HEMISPHERICAL

NOTES: I ntro to radiation

NOTES: I ntro to radiation

Radiation does \longrightarrow it can go through one, even if , but

Radiation is a \qquad phenomenon.

I.e., radiation heat transfer occurs as an exchange \qquad .

Types of radiation as a function of wavelength

A blackbody is an idealized \qquad

- No surface \qquad more. ${ }^{*}$
- No surface \qquad more.
- Emits same amount of radiation in
\qquad
\qquad \Rightarrow It is \qquad

EMISSIVE POWER
Heat transfer \qquad by a surface
\qquad
\qquad
\qquad of that surface.

$$
\begin{array}{ll}
E_{b}= & (\text { Blackbody }) \\
E= & \text { (Red surface })
\end{array}
$$

Blackbody Emissive Power

Example

Consider a large, isothermal enclosure that is maintained at a uniform temperature of 2000 K.
(a) Calculate the emissive power of the radiation that emerges from a small aperture on the surface.
(b) What is the wavelength below which 10% of the emission is concentrated?
(c) What is the wavelength above which 10% of the radiation is concentrated?
(d) Determine the maximum spectral emissive power and the wavelength at which it occurs.

$$
T=2000 \mathrm{~K}
$$

NOTES: Radiation properties

RADIATION PROPERTIES

FOR BLACKBODIES

A REAL BODY EMITS LESS

$$
E(T)=\epsilon E_{b}=\epsilon \sigma T^{4}
$$

$$
-O R-\quad \epsilon \equiv \frac{E(T)}{E_{b}(T)}
$$

e A PARTICULAR WAVELENGTH PER UNIT WAVELENGTH

IF A SURFACE is
\qquad ITS PROPERTIES ARE INDEPENDENT of
\qquad , ITS PROPERTIES ARE INDEPENDENT d

CAN ALSO DEFINE
$\epsilon_{\theta}:$
$\epsilon_{\lambda, \theta}$:

NOTES: Radiation properties
FOR A NON-GRAY SURFACE

$$
E=E_{b, \lambda}=\sigma T^{4}
$$

so

$$
\epsilon(T)=\frac{\int_{0}^{\infty} \epsilon_{\lambda} E_{b, \lambda} d \lambda}{\sigma T^{4}}
$$

For ϵ_{λ} that varies in a step-like fashion; ie.

$$
\begin{array}{r}
\epsilon=\frac{\int_{0}^{\lambda_{1}} \epsilon_{\lambda_{1}} E_{b_{\lambda}} d \lambda}{\sigma T^{4}}+\epsilon_{\lambda_{2}} \frac{\int_{\lambda_{1}}^{\lambda_{2}} E_{b_{\lambda}} d \lambda}{\sigma T^{4}}+\cdots \\
\end{array}
$$

THUS

$$
\epsilon=\epsilon_{\lambda, 1}+\epsilon_{\lambda, 2} \quad+\ldots
$$

LIST THE ASSUMPTIONS!

NOTES: Radiation properties
OTHER PROPERTIES
incIDEnt radIation $($
)

CONS. If ENERGY ON THIS SURFAE RERUIRES

$$
G+G+G=G
$$

C

IF a surface is

$$
\tau=0 \quad \Rightarrow
$$

NOTE THAT THESE PROPS. NOT ONLY DEPEND ON THE SURFACE, DOT ALSO THE H SOURCE \& THE IRRADIATIINIII

NOTES: Radiation properties
TIF SOURCE of G IS A BLACKBODY \& α VARIES STEPWISE

$$
\frac{d E_{s y s}}{d t}=
$$

\square
Wain none!
IF $T_{\text {FARCE }} \gg T$
$T_{\text {source }} \ll T$

$$
\neq \quad!!
$$

Example

The reflectivity of aluminum coated with lead sulfate is 0.35 for radiation at wavelengths less than $3 \mu \mathrm{~m}$ and 0.95 for radiation greater than $3 \mu \mathrm{~m}$. (This is the spectral reflectivity.)
(a) Determine the average absorptivity of this surface for solar radiation. ($T=5800 \mathrm{~K}$). Assume that the incident radiation is well approximated by black body radiation. (Hint: Can you relate reflectivity to the absorptivity?)
(b) Determine the absorptivity of the surface for radiation coming from sources at room temperature ($T=300 \mathrm{~K}$). Ditto on the B-B stuff, and the hint too.
(c) Determine the emissivity of the surface at 300 K . Based on your results, would this be good stuff to use for solar collectors? Why or why not?

NOTES: Solar radiation

Solar radiation

Example

The wall of a $6-\mathrm{m}$ tall building is made of red brick, for which the emissivity, ε, is 0.93 and the solar absorptivity, α_{s}, is 0.63 . On a sunny day, it is observed that the direct and diffuse components of solar radiation are $G_{D}=900 \mathrm{~W} / \mathrm{m}^{2}$ and $G_{d}=500 \mathrm{~W} / \mathrm{m}^{2}$, respectively, and that the sun makes a 48.2° angle with a normal to the surface of the wall. The outside temperature of the brick is $54^{\circ} \mathrm{C}$, and the ambient air temperature is $20^{\circ} \mathrm{C}$.
(a) Calculate the heat flux, in $\mathrm{W} / \mathrm{m}^{2}$, from the wall due to convection.
(b) If the heat flux through the brick due to conduction is $154 \mathrm{~W} / \mathrm{m}^{2}$ (into the building), what is the effective sky temperature?

NOTES: View factors

A slice of pizza of plain angle α

$$
\xrightarrow{\text { SOLID ANGLE }}
$$

$$
d \omega=
$$

A slice of watermelon of solid angle ω
$\xrightarrow{\text { RADIATION INTENSITY }}$

$$
I_{c}(\theta, \varphi)=
$$

$$
d E=
$$

NOTES: View factors

$\begin{aligned} & F_{1 \rightarrow 2}=\text { FRACTION af RAD. LEAVING (1) } \\ & \text { INCIDENT ON (2) }\end{aligned}$

$$
d \dot{Q}_{1 \rightarrow 2}=
$$

$$
F_{1 \rightarrow 2}=\frac{1}{A} \iint
$$

Example

Two concentric cylinders are nested together coaxially as shown in the figure. Assuming the surfaces are diffuse,
(a) calculate the fraction of radiation leaving the outer surface of the inner cylinder that goes through the top and bottom openings.
(b) Calculate the fraction of radiation leaving the outer surface of the inner cylinder that goes through just the top opening.
(c) Calculate the fraction of radiation leaving the inner surface of the outer cylinder that goes through the top and bottom openings.

$$
D_{\text {outer }}=10 \mathrm{~cm}
$$

NOTES: Crossed string method

The crossed string method

Assumptions:
1.
2.
3.

NOTES: Radiation between black surfaces

RADIATION EXCHANGE BETWEEN BLACK SURFACES
WRITE AN EXPRESSION FOR THE NET RATE O RADIATION HEAT TRANSFER FROM (1) TO (2). ASSUME BOTH SURFACES ARE BLACK.
(2)

(1)

REARRANGE $\dot{Q}_{\text {NET, } 102}$ in THIS FORM:

if surfaces for an enclosure

NOTES: Radiation between black surfaces

PUT in TERMS of $\epsilon, E_{b} \neq G$

$$
J=
$$

$$
*
$$

WRITE AN EXPRESSION FOR TLIE NET RATE O RADIATION HEAT transfer leaving a gray surface.

ELIMINATE G

$$
\dot{Q}_{i, N E T}=
$$

REARRANGE IN THIS FORM:

* what is 5 for a blackbody?

NOTES: Radiation between black surfaces

Example

Two blackbody rectangles, 0.6 m by 1.2 m , are parallel and directly opposed. The bottom rectangle is at $T_{1}=500 \mathrm{~K}$ and the top rectangle is at $T_{2}=900 \mathrm{~K}$. The two rectangles are 1.2 m apart.
(a) Find the view factors $F_{1->2}$ and $F_{2->1}$.
(b) Find the radiant exchange between the two surfaces.
(c) Find the rate at which the bottom rectangle is losing energy if the surroundings (other than the top rectangle) are considered to be a blackbody at 300 K .

For the heat transfer calculations, you are strongly encouraged to draw all relevant resistors and currents (heat transfer rates).

Example

Reconsider the last example, but this time assume the surfaces are both diffuse and gray with $\varepsilon_{1}=\varepsilon_{2}=0.7$. Otherwise, the conditions are the same. (The bottom rectangle is at $T_{1}=$ 500 K and the top rectangle is at $T_{2}=900 \mathrm{~K}$. The two rectangles are 1.2 m apart. The surroundings can be considered a blackbody at 300 K.)
(a) Draw a resistance network showing all the relevant heat transfer rates and resistances.
(b) Find the net radiant exchange between the two surfaces.
(c) Find the rate at which the bottom rectangle is losing energy.
(d) Repeat (b) and (c) if the surroundings are treated as a reradiating surface instead.

Example

A cryogenic fluid flows through a long tube of 20 mm diameter, the outer surface of which is diffuse and gray with $\varepsilon_{1}=0.02$ and $T_{1}=77 \mathrm{~K}$. (Ooh, that's cold!) The tube is concentric with a larger tube of 50 mm diameter, the inner surface of which is diffuse and gray with ε_{2} $=0.05$ and $T_{2}=300 \mathrm{~K}$. The space between the surfaces is evacuated. If the tube is 1 m long (into the paper)
(a) calculate the heat gain by the cryogenic fluid.
(b) If a thin radiation shield of 35 mm diameter and $\varepsilon_{3}=0.02$ on both sides is inserted midway between the inner and outer surfaces, calculate the heat gain by the cryogenic fluid. What is the percentage change in heat gain?

with shield

NOTES: Heat exchangers

AffUMPTION FOR ANALYSIS:
1)
2)
3)
4)

NOTES: Heat exchangers

WE WOULD LIKE A HEAT TRANSFER COEFFICIENT THAT ,GIVES Q BETWEEN THE TWO FLUIDS FOR THE WHOLE HXR*.

HOW DO WE FIND U?
FOR A SMALL JECTION of HXR:

SIDE VIEWDF INNER TUBE
WHERE
T_{n}

* "HXR" is A COMMON ABBREVIATION FOR HEAT EXCHANGER.

NOTES: Heat exchangers
MUST CHOOSE AN AREA ON WHICH TO BASE U :

$$
\Gamma J=
$$

ArEA

ANYWAY...
STIL NEED

$$
\dot{Q}=U A \Delta T_{A V B}=\quad U A\left(T_{n}-T_{c}\right)_{A V G}
$$

Problem:

SOLUTION:
ASSUMPTION \# 5 :

CONSERVATON of ENERGY + ASSUMPTION \& 5 YIELDS

Example

A counter-flow double-pipe heat exchanger is to heat water from $20^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ at a flow rate of $1.2 \mathrm{~kg} / \mathrm{s}$. The warmer fluid is geothermal water available at $160^{\circ} \mathrm{C}$ and a flow rate of 2 kg / s. The inner tube is thin-walled with a diameter of 1.5 cm . If the overall heat transfer coefficient is $640 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{C}^{0}$, find the required heat exchanger length.

Example

Reconsider the last example, but this time make the heat exchanger a parallel flow design. As before, the heat exchanger is a double-pipe design, and is used to heat water from $20^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ at a flow rate of $1.2 \mathrm{~kg} / \mathrm{s}$. The warmer fluid is geothermal water available at $160^{\circ} \mathrm{C}$ and a flow rate of $2 \mathrm{~kg} / \mathrm{s}$. The inner tube is thin-walled with a diameter of 1.5 cm . If the overall heat transfer coefficient is $640 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{C}^{\circ}$, find the required heat exchanger length.

ACTI VE LEARNI NG EXERCI SE—HXR flow directions

Why is this the case?

Let's explore this a bit more. Consider a parallel flow heat exchanger with a warm fluid inlet temperature $T_{h, i n}$ and a cold fluid inlet temperature $T_{c, i n}$. Sketch the variation of fluid temperatures with heat exchanger axial location, x (or area, A).

Now consider a counter-flow arrangement of the same heat exchanger. The warm fluid inlet temperature is still $T_{h, i n}$ and the cold fluid inlet temperature is still $T_{c, \text { in }}$. Sketch the variation of fluid temperatures with heat exchanger axial location, x (or area, A).

NOTES: Heat exchangers

T.

\Rightarrow :

NOTES: Heat exchangers

NOTES: Heat exchangers

D $\dot{Q}=$ UAM $A T$ WAS DERIVED FOR A DOUBLE-PIPE HOR. Answer: YES, IF.......

WHERE

$$
F=f(
$$

$$
R=-
$$

$$
P=\underbrace{*}
$$

\therefore LOT V COED FLUID DOESNT MANED WA

NOTES: Effectiveness-NTU method

TWO THINGS CAN HAPPEN.

EITHER
The warmer fluid cools all the way down to the cooler fluid inlet temper store.

$O R$
The coder fluid warms all the way up to the warmer fluid inlet temperature

CHANT: WRITE ENERGY BALANCES FOR BOTH FLUDS in terms of temperature rise/grop.)

ETHER WAY $\triangle T_{\text {TEMP }}^{\text {max }}=$

NOTES: Effectiveness-NTU method
THIS LEADS TO A Maximum heat transfer rate (WHEN L $\rightarrow \infty$)

$$
\dot{Q}_{\text {MAX }}=
$$

AND AN EFFECTIVENESS

* Which do you USE?

IT CAN BE SHOWN

3.)
4.)

Example

$0.2 \mathrm{~kg} / \mathrm{s}$ of hot oil $\left(c_{p}=2200 \mathrm{~J} / \mathrm{kg}-{ }^{\circ} \mathrm{C}\right)$ is to be cooled by water $\left(c_{p}=4180 \mathrm{~J} / \mathrm{kg}-{ }^{\circ} \mathrm{C}\right)$ in a $2-12$ shell and tube HXR. The water flows through thin-walled tubes with a diameter of 1.8 cm at a rate of $0.1 \mathrm{~kg} / \mathrm{s}$. The length of each tube pass is 3 m and the overall heat transfer coefficient is $340 \mathrm{~W} / \mathrm{m}^{2-}{ }^{\circ} \mathrm{C}$. (Tube side or shell side? Does it matter?) The inlet temperatures of the oil and water are $160^{\circ} \mathrm{C}$ and $18^{\circ} \mathrm{C}$, respectively.
(a) Find the rate of heat transfer in the exchanger and
(b) the exit temperatures of both fluids.

ACTIVE LEARNING EXERCISE: ε-NTU Disc overy Session

The effectiveness-NTU (ε-NTU) method not only gives us an easy way to perform heat exchanger analysis problems, it gives us physical insight into the performance of HXRs. The basis of this insight is that the effectiveness, ε, tells us how well our HXR performs compared to the theoretically best heat exchanger. Using the ε-NTU relationships (equations and charts), answer the following questions.
(1) What is the possible range for effectiveness? (Holy cow, that's easy!)
(2) For a given NTU and C, which heat exchanger construction/flow direction combination has the highest effectiveness?
(3) How does effectiveness vary with C ?
(4) For what value of C is effectiveness at its maximum?
a. How does this value of C for $\varepsilon_{\max }$ vary with HXR type? flow direction?
b. For this value of C, what does this mean for one of the fluid's $m_{\text {dot }} \epsilon_{p}$ value? What does it mean about this fluid physically?
(5) If NTU <0.3, which equation would you use for ε ? Why?
(6) Let's say you are thinking about increasing the effectiveness of your HXR by increasing its $U A$ value. You can do this in two ways:
a. You can increase flowrate(s) which increases $h(s)$ and thereby U. But that means increasing your operational cost. (Bigger Δp means bigger pumping power required.)
b. You can increase A, but that increases the capital cost of the HXR. (Bigger A means more material to build the HXR.)

By consulting the $\varepsilon-N T U$ charts, come up with a criterion by which you can determine whether it is worth the increase in either operational or capital cost to increase your UA. (Hint: Think about where UA shows up in the ε-NTU method.)

NOTES: Boiling heat transfer

BOILING HEAT TRANSFER

- boiling occurs at a solio-levio interface when THE TEMPERTURE of THE SOLD, T_{3}, is sufficently above the saturation temperture of the livid, That.
- the difference between the surface \& saturation temperatures is known as the \qquad

BOILING is CONSIDERED A FORM of CONVERTKN, \& BOILING HEAT PIX IS EXPRESSED AS

single-phase convection depends on many properties SUCH AS ρ, μ, k, c_{p}, etc. BOILING ALSO DEPEND ON THESE, FOR BOTH PHASES, AS WELL L AS
$h_{F_{5}}:$
$\sigma:$ \qquad

- depending on the state al bulk motion al the FUD, BOILING CAN BE CLASSIFIED AS

$$
O R
$$

BOILING.
(1)
(2)

NOTES: Boiling heat transfer

- BOILING can also be classified based on the bulk lirvio temperature. in the case where the BULK LIQUID TEMPERATURE IS

1) LESS THAN $T_{\text {sat, }}$, WE have \qquad
2) If $T_{\text {BuT, Liquid }}=T_{\text {SAT }}$, we hale

- in addition to the inherent complexity of convection (NATRURAL $\ddagger / O R$ FORCED) \& PHASE CHANGE, BOILING IS FURTHER COMPLICATED BY

THERMODYNAMIC NON-ERUILIBRIUM.
in particular,

GENERALLY
NOT IN THERMODYNAMIC EQUILIBRIUM WITH THE \qquad

CONSIDER A VAPOR BUBBLE: (COT INHALF)

Solin:
FORCE BALANCE ON
THE BUBBLE:

NOTES: Boiling heat transfer

BOILING REGIMES \& THE BOILING CURVE:
A FINETICNAL DEPENDANCE EXSTS BETWEEN BOILING HEAT
flux \& excess temperature. this dependence is ILLUSTRATED ON THE \qquad
\qquad

THE BOILING CURVE IS DIVIDED INTO A NUMBER OF REGIMES.

1) NATURAL CONVECTION BOILING (WHERE IS TT ON THE CUNE?)
(what are sume chrenciteastics a) ThS REGIME?)
2) NUCLEATE BOILING (WHEDE IS IT OM THE CURVE?)

NOTES: Boiling heat transfer
3) TRANSITION BOILING
4) FILM BOILING

NOTES: Boiling heat transfer

CRTTKAL HEAT FLUX

- in heat input controlled situations (most real situations) THE BOILING CURVE BETWEEN - \qquad ALMOST instantaneously, resulting in surface TEMPERATURES ON THE ORDER of $1000^{\circ} \mathrm{C}$. FOR THIS REASON, CRITICAL HEAT TUX (CF) IS ALSO KNOWN AS

THE \qquad
\qquad OR SIMPLY

Example

A starving Rose-Hulman student is preparing Ramen Noodles in a copper-bottomed pan bought from Goodwill. The diameter of the bottom of the pan is $0.3-\mathrm{m}$, and is maintained at $118^{\circ} \mathrm{C}$ by an electric heating element.
(a) Estimate the power required to boil the water in the pan.
(b) What is the evaporation rate?
(c) Estimate the critical heat flux.
(d) Estimate the number of shrimp used to create one flavor packet for shrimp-flavored Ramen Noodles.

Extra materials

Cartoon summaries, charts, tables, and other miscellaneous resources

Forms of the conduction equation

Conduction equation	1-D or 3-D?	Coordinate system?	Constant properties?
$\rho c \frac{\partial T}{\partial t}=\frac{\partial}{\partial x}\left(k \frac{\partial T}{\partial x}\right)+\dot{e}_{g e n}$			
$\frac{1}{\alpha} \frac{\partial T}{\partial t}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial T}{\partial r}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} T}{\partial \phi^{2}}+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(r \sin \theta \frac{\partial T}{\partial \theta}\right)+\frac{\dot{e}_{g e n}}{k}$			
$\rho c \frac{\partial T}{\partial t}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(k r^{2} \frac{\partial T}{\partial r}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial}{\partial \phi}\left(k \frac{\partial T}{\partial \phi}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(k r \sin \theta \frac{\partial T}{\partial \theta}\right)+\dot{e}_{g e n}$			
$\frac{1}{\alpha} \frac{\partial T}{\partial t}=\frac{\partial^{2} T}{\partial x^{2}}+\frac{\dot{e}_{g e n}}{k}$			
$\frac{1}{2} \frac{\partial T}{\partial t}=\frac{1}{r} \frac{\partial}{\partial r}\left(k r \frac{\partial T}{\partial r}\right)+\dot{e}_{g e n}$			

Forms of the conduction equation

Conduction equation	1-D or 3-D?	Coordinate system?	Constant properties?
$\frac{1}{\alpha} \frac{\partial T}{\partial t}=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right)+\frac{\dot{e}_{g e n}}{k}$			
$\rho c \frac{\partial T}{\partial t}=\frac{1}{r} \frac{\partial}{\partial r}\left(k r \frac{\partial T}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial}{\partial \phi}\left(k \frac{\partial T}{\partial \phi}\right)+\frac{\partial}{\partial z}\left(k \frac{\partial T}{\partial z}\right)+\dot{e}_{g e n}$			
$\rho c \frac{\partial T}{\partial t}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(k r^{2} \frac{\partial T}{\partial r}\right)+\dot{e}_{g e n}$			
$\frac{\partial T}{\partial t}=\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}+\frac{\partial^{2} T}{\partial z^{2}}+\frac{\dot{e}_{g e n}}{k}$			
$\frac{\partial T}{\partial t}=\frac{\partial}{\partial x}\left(k \frac{\partial T}{\partial x}\right)+\frac{\partial}{\partial y}\left(k \frac{\partial T}{\partial y}\right)+\frac{\partial}{\partial z}\left(k \frac{\partial T}{\partial z}\right)+\dot{e}_{g e n}$			
$\frac{1}{\alpha} \frac{\partial T}{\partial t}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial T}{\partial r}\right)+\frac{\dot{e}_{g e n}}{k}$			

PLANE WALL

$$
R_{\text {Them }}=\frac{L}{k A}
$$

CYINDER

$$
R_{\text {THERM }}=\frac{\ln \left(r_{2} / r_{1}\right)}{2 \pi L_{7} R}
$$

SPHERE

$$
R_{S P M}=\frac{r_{2}-r_{1}}{4 \pi r_{1} r_{2} k}
$$

CONVECTION (ANY GEOMETRY)

$$
T \prod_{A}^{\rightarrow} \underset{Q}{T_{\infty}, h_{\infty 0}} \quad R_{\text {THaN }}=\frac{1}{h A}
$$

TO INCREASE $\dot{Q}_{\text {can }}$

- increase h -or-
- increase a (I.E. USE A EM)

$P=$ PERIMETER
$A_{c}=$ CROSS SECTIONAL AREA
$k=$ conovetivity al Fin material

FOR COLY LONG FINS

$$
\dot{Q}=\sqrt{h P k A_{c}}\left(T_{0}-T_{\infty}\right)
$$

FOR INSULATED TIP:

$$
\dot{Q}=\sqrt{h P k A_{e}} \tanh \left[\left(\frac{h P}{k A_{c}}\right)^{1 / 2} L\right]\left(T_{b}-T_{\infty}\right)
$$

FOR COAST. CROSS SECTIONAL AREA

IN GENERAL

$$
\dot{Q}_{F N}=\eta_{F M} \dot{Q}_{M A X}
$$

FIN EFFICiEncy (FROM CHARTS.

FIN:EFFECTNENESS

$$
\epsilon=\frac{\dot{Q}_{\text {W/FIN }}}{\dot{Q}_{\text {WIND FIN }}}=\frac{\dot{Q}_{\text {FIN }}+\dot{Q}_{\text {UMFIMMED }}}{\dot{Q}_{\text {W/NOFIN }}}
$$

$1^{\text {st }}$ term solutions for 1-D transient conduction in an infinite plane

(a) Midplane temperature

(b) Temperature

(c) Total heat transfer
$1^{\text {st }}$ term solutions for 1-D transient conduction in an infinite cylinder

(a) Midplane temperature

(b) Temperature

(c) Total heat transfer
$1^{\text {st }}$ term solutions for 1-D transient conduction in a sphere

(a) Midplane temperature
(b) Temperature
(c) Total heat transfer

THE LUMPED CAPACITANCE METHOD

VALID WHEN

$$
\begin{aligned}
\mathbb{B}_{i} & \equiv \frac{h L_{c}}{k}<0.1 \\
& =B I O T \text { NUMBER } \\
L_{c} & \equiv \frac{\forall}{A} \\
& =C H R . \text { LENGTH }
\end{aligned}
$$

WHAT HAPPENS IF $\mathrm{Bi}>0.1$? READ ON.........

THING IS INITIALLY © Tinitill
n, T_{∞} MN h, T_{∞}
EVERYWHERE, (UNIFORM T)
now, FOR ID transient conduchun...

WHERE: $A_{1} * \lambda_{1}$ ARE $f\left(B_{i}=\frac{h\left(L a r r_{0}\right)}{k}\right)$ CAREFUL!!

$$
\begin{aligned}
& \mathbb{F}_{0}=\text { FOURIER NUMBER } \equiv \frac{\alpha t}{\left(\text { Lorn } r_{0}\right)^{2}} \\
& \theta_{0}=\theta e(x \text { or } r=0) \\
& J_{0}=\text { BESSEL FUNCTION (ZEROTH ORDER) } \\
& J_{1}=" \text { " (dST ORdER) } \\
& Q_{\text {MAX }}=\operatorname{mc}\left(T_{i}-T_{\infty}\right)
\end{aligned}
$$

HOW TO PERFORM A

i. BECOME AWARE of THE GEOMETRY. Is IT A FAT Plate? A cylinder?

To SPECIFY THE APPROPRIATE REFERENCE TEMPERATURE

* FIND THE FLUID PROPEETES.

USUALLY (NOT ALWAYS) YOU WANT THE
FILM TEMPER ATURE:

$$
T_{f} \equiv \frac{T_{s}+T_{\infty}}{2}
$$

3. CALCULATE THE REYNOLD'S NUMBER

$$
\mathbb{R e}^{\equiv \frac{\rho V(\text { Lord Der })}{\mu}=\frac{V(\text { L, Detc) }}{2 \sigma}}
$$

4?. Decide if you want the local or average heat transer coefficient.
S. SELECT THE APPROPRIATE NUSSELT CORRELATION. (REMEMBER $\left.\quad \mathbb{N u}=\frac{h(\text { (L, Detr.) }}{k_{\text {fwiw }}}.\right)$

Correlations for $T_{S}=$ const. Boundary Condition

Correlation	Geometry	Conditions
$C_{f_{x}}=0.664 R e_{x}^{-1 / 2}$	Flat plate	Laminar, Local, Use T_{t}
$N u_{x}=0.332 R e_{x}^{1 / 2} \mathrm{Pr}^{1 / 3}$	Flat plate	$\begin{aligned} & \text { Laminar, Local, Use } T_{f}, P r \\ & >0.6 \end{aligned}$
$C_{f}=1.328 R e_{L}^{-1 / 2}$	Flat plate	Laminar, Average, Use T_{f}
$N u=0.664 R e_{L}{ }^{1 / 2} P r^{1 / 3}$	Flat plate	Laminar, Average, Use T_{f}, $0.6<\operatorname{Pr}<50$
$C_{f, x}=0.0592 R e_{x}^{-1 / 5}$	Flat plate	Turbulent, Local, Use T_{f}, $5 \times 10^{5}<R e_{x}<10^{7}$
$N u_{x}=0.0296 R e_{x}^{4 / 5} \mathrm{Pr}^{1 / 3}$	Flat plate	$\begin{aligned} & \text { Turbulent, Local, Use } T_{f} \text {, } \\ & 5 \times 10^{5}<\operatorname{Re} e_{x}<10^{7}, \operatorname{Pr}> \\ & 0.6 \end{aligned}$
$C_{f}=0.074 \mathrm{Re}_{L}{ }^{-1 / 5}$	Flat plate	Turbulent, Average, Use $T_{t}, 5 \times 10^{5}<R e_{x}<10^{7}$
$N u=0.037 \operatorname{Re}_{L}^{4 / 5} \mathrm{Pr}^{1 / 3}$	Flat plate	$\begin{aligned} & \text { Turbulent, Average, Use } \\ & \mathrm{T}_{\mathrm{f}}, 5 \times 10^{5}<R e_{x}<10^{7}, \mathrm{Pr} \\ & >0.6 \end{aligned}$
$C_{f}=0.074 \mathrm{Re}_{L}{ }^{-1 / 5}-1742 R e_{L}^{-1}$	Flat plate	Mixed laminar and turbulent flow, Average, Use $T_{f}, 5 \times 10^{5}<R e_{x}<$ 10^{7}
$N u=\left(0.037 R e_{L}^{4 / 5}-871\right) P r^{1 / 3}$	Flat plate	Mixed laminar and turbulent flow, Average, Use $T_{f}, 5 \times 10^{5}<R e_{x}<$ 10^{7}. $0.6<\operatorname{Pr}<60$
$N u_{D}=0.3+\frac{0.62 R e_{D}^{1 / 2} P r^{1 / 3}}{\left[1+(0.4 / P r)^{2 / 3}\right]^{1 / 4}}\left[1+\left(\frac{R e}{D} 282,000\right)^{5 / 8}\right]^{4 / 5}$	Circular cylinder	Average, Use $T_{f}, R e_{D} P r>$ 0.2
$N u_{D}=2+\left[0.4 R e_{D}^{1 / 2}+0.06 \operatorname{Re}_{D}^{2 / 3}\right] \operatorname{Pr}^{0.4}\left(\frac{\mu_{\infty}}{\mu_{S}}\right)^{1 / 4}$	Sphere	Average, Use T_{∞} for all properties except μ_{S}, for which you use $T_{S}, 3.5<$ $R e<80,000,0.7<\operatorname{Pr}<$ 380
$\mathrm{Nu} u=\mathrm{CRe}{ }^{m} \mathrm{Pr}^{n}$	Circular and noncircular cylinders	Average, Use T_{t}, Use Tables in text to find C, m and n and $R e$ ranges.

Correlations for $\dot{q}=$ const. Boundary Condition

Correlation	Geometry	Conditions
$N u_{x}=0.453 \operatorname{Re}_{x}^{1 / 2} \operatorname{Pr}^{1 / 3}$	Flat plate	Laminar, Local, Use $T_{f}, \operatorname{Pr}>0.6$
$N u=0.906 R e_{L}^{1 / 2} \operatorname{Pr}^{1 / 3}$	Flat plate	Laminar, Average, Use $T_{f}, 0.6<\operatorname{Pr}<$ 50
$N u_{x}=0.0308 \operatorname{Re}_{x}^{4 / 5} \operatorname{Pr}^{1 / 3}$	Flat plate	Turbulent, Local, Use $T_{f}, 5 \times 10^{5}<$ $R e_{x}<10^{7} \operatorname{Pr}>0.6$
$N u_{x}=0.0385 R e_{x}^{4 / 5} \mathrm{Pr}^{1 / 3}$	Flat plate	Turbulent, Average, Use $T_{f}, 5 \times 10^{5}<$ $R e_{x}<10^{7}, \operatorname{Pr}>0.6$

1]. BECOME AWARE of THE GEOMETRY.
if its a non-circular duct. FIND

$$
D_{h} \equiv \frac{4 A_{c}}{P} \quad \begin{aligned}
& \text { THE } \\
& \text { HYDRAULIC } \\
& \text { DIAMETER }
\end{aligned}
$$

2. SPECIFY THE APPROPRIATE REFERENCE TEMPERATURE
FIND THE FLUID PROPERTIES. USUALLY (NOT ALWAYS) YOU Want the

BULK MEAN FLUID TEMPERATURE

$$
T_{b} \equiv \frac{T_{m, i n}+T_{m, 0 u t}}{2}
$$

3. CALCULATE THE REYNOLD'S NUMBER

$$
\mathbb{R e}_{\mathrm{e}} \equiv \frac{\rho V\left(D_{o r} D_{h}\right)}{\mu}=\frac{V\left(D_{o r} D_{h}\right)}{2}
$$

Careful!
\& DETERMINE IF THE FLOW IS
FULLY-DEVELOPED -or- DEVELOPINC

HOW TO PERFORM A
IIT- Natural Convection

1. BECOME AWARE of THE GEOMETRY.
2. SPECIFY THE APPROPRIATE REFERENCE TEMPERATURE

* FIND THE PROPERTIES USUAUY THE ELM TEMPERATURE

3. CALCULATE THE GRASHOF $\ddagger / O R$ RAYLEIGH NUMBER (S)

$$
G r \equiv \frac{S B\left(T_{s}-T_{\infty}\right) \delta^{3}}{2^{2}} \quad \mathbb{R a} \equiv G r * \operatorname{Pr}
$$

A\% SELECT THE APPROPRIATE NUSSELT CORRELATION.
ASSUMED BC. ON MOST CORRELATIONS IS $T_{s}=$ COST. \& What to do if $\dot{q}=$ constant?

卧ODSURES
DO ABOVE 4 STEPS W/ THESE CHANGES \rightarrow

2永。USE $T_{A V}=\frac{T_{s, 1}+T_{s, 2}}{2}$
3占。USE $\left(T_{S, 1}-T_{s, 2}\right)$ TO FIND Gr 末／or \mathbb{R}_{2} ．
．．．THEN．．．
5局。FIND $k_{\text {EFF }}=k_{\text {FUN O }} \mathbb{N}_{4}$ \＆THEN TREAT THE ENCLOSED SPACE AS A SOLID SUBJECT TO SSS ，1－D CONDUCTION $\left(m / k_{\text {sum }}=k_{\text {max }}\right)$
 CONVECTION
\mathbb{T} 迅芭
ONLY FORCED CONVECTION Is important
only natural convection IS IMPORTANT

BOTH ARE IMPORTANT
AND YOU NEED \boldsymbol{I}_{2}

4. DETERMINE THE BOUNDARY CONDITION. IF ITS

 T_{s}. CONSTANT (E YOU WANT THE aVERAGE H) YOU NEED THE

Correlations for $T_{S}=$ constr. Boundary Condition

Correlations for $\dot{q}=$ constr. Boundary Condition

Correlation	Geometry	Conditions
$N u_{D}=4.36$	Circular duct	Laminar, Fully developed, Use T_{b}
$N u_{D h}=$ constant	Non-circular duct	Laminar, Fully developed, Use T_{b}, Use Tables constant

[^0]: ${ }^{1}$ Actually, we're not ignoring it as much as we are assuming that it is infinitely efficient!

[^1]: air gap, 1 cm

