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ME302 learning objectives 
 
After studying the material and doing the associated activities and homework problems 
students of this course will be able to: 
 

1. □ Find course information on webpages  

2. □ Explain how Heat Transfer as a separate discipline is different than the study of 
Thermodynamics 

3. □ Give the “baby” form of the working equation for each mode of heat transfer 

4. □ Explain what each variable in the equations is 

5. □ Distinguish between Tamb (or T∞) for convection and Tsurr for radiation. 

6. □ Perform an energy balance (conservation of energy) on a surface subjected to heat 
transfer 

7. □ Use a thermal energy balance and distinguish it from the more general 
conservation of energy 

8. □ Use a 1-D conduction equation and distinguish it from the more general 
conservation of energy 

9. □ Explain the meaning of each term in the above equations 

10. □ Explain when it is appropriate to use each of the above equations 

11. □ Define the terms 
o heat generation  
o thermal diffusivity 

12. □ Identify the major use of the general,  3-D conduction equation 

13. □ Use the conduction equation  
o  in different coordinate systems 
o  in multiple dimensions 
o  with various assumptions (steady-state, constant properties, etc.) 

14. □ Find boundary conditions and initial conditions for use with the conduction 
equation 

15. □ Find an expression for Qdot for 1-D, steady-state conduction in rectangular 
coordinates 

16. □ Using the electrical/resistance analogy, state what is analogous to V, I, and R. 

17. □ Express the generic convection relation using an electrical analogy 

18. □ Draw thermal “circuits” for 1-D, steady-state conduction problems and use them 
to find unknown temperatures, heat transfer rates, etc. 

19. □ Find an expression for Qdot for 1-D, steady-state conduction in cylindrical and 
spherical coordinates 



20. □ Explain why rectangular coordinate expression for Rth does not work in cylindrical 
and spherical coordinates 

21. □ Draw thermal “circuits” for 1-D, steady-state conduction problems and use them to 
find unknown temperatures, heat transfer rates, etc. 

22. □ Explain why the rectangular coordinate expression for Rth does not work in 
cylindrical and spherical coordinates 

23. □ Explain what a fin is, what it does and how 

24. □ Explain why the conduction equation and the resistance analogy cannot be used to 
find the temperature distribution in, or heat transfer of, a fin 

25. □ State how to use the insulated-tip BC for a fin to approximate a convective tip 

26. □ Define fin efficiency mathematically and in words 

27. □ Find the temperature distribution for extended surfaces (fins) 

28. □ Find the rate of heat transfer from extended surfaces (fins) 

29. □ Explain what a fin effectiveness is and how it is different from fin efficiency 

30. □ Use the idea of fin effectiveness to determine when it is a good idea to use a fin or 
not 

31. □ Use fin effectiveness in calculations to determine the rate of heat transfer from 
individual fins and also from fin arrays 

32. □ State the fundamental assumptions of the lumped capacitance model for transient 
conduction 

33. □ Calculate and explain the physical significance of the time constant for transient 
systems for which the lumped capacitance model is valid 

34. □ Test for the validity of the lumped capacitance model 

35. □ Calculate and explain the physical significance of the Biot number 

36. □ Recognize when a 1-D, transient conduction model is an appropriate model for a heat 
transfer system 

o Use the first-term approximation of the infinite-sum solution for 1-D transient 
conduction to find T = T([x or r], t) and Q([x or r], t) Note: Q, not Qdot!) 

o Infinite plane wall (slab) 
o Infinite cylinder 
o Sphere 

37. □ Determine when the first-term approximation of the infinite-sum solution for the 
above is valid 

38. □ Explain the difference between how Bi for 1-D transient conduction models and Bi 
for the lumped capacitance model is calculated 

39. □ State how these solutions can be used for specified T BCs instead of convective BC 



40. □ Distinguish between a 1-D transient conduction model in a slab and a 1-D transient 
conduction model in a semi-infinite medium and recognize when each model is 
appropriate 

41. □ Use the solution to 1-D transient conduction in a semi-infinite medium to find T = 
T([x or r], t) and Q([x or r], t) (Note: Q, not Qdot!) 

42. □ Determine when a 2-D and 3-D transient conduction model is appropriate for a given 
heat transfer system 

43. □ Use the solutions to the 1-D transient conduction of an infinite slab, an infinite 
cylinder, a sphere, and a semi-infinite medium to find the temperature distributions 

and heat transfersi in various 2-D and 3-D transient heat transfer systems using □ 
superposition. 

44. □ Describe mathematically and in words the following terms 
o no-slip boundary condition 
o viscosity 
o shear stress and skin friction coefficient 
o Nusselt number 
o velocity boundary layer 
o thermal boundary layer 

45. □ Explain why convection at a solid-fluid interface is really just conduction, and give 
a mathematical expression for it 

46. □ Describe how Prandtl number affects the relative thicknesses of momentum 
(velocity) boundary layers to thermal boundary layers 

47. □ Identify the appropriate Nusselt correlation to use based on  
o whether a flow is laminar or turbulent, 
o boundary condition, 
o whether a local or average values of h is required 

48. □ Discern between form drag and friction drag, and identify the major contributor to 
each  

49. □ Give the local variation of h (or Nu) with angle for flow around a cylinder or sphere. 

50. □ Define external flow and contrast it with internal flow. 

51. □ Explain the difference between developing flow and fully-developed flow. 

52. □ Explain the difference between hydrodynamically developing vs. fully-developed 
flow and thermally developing flow vs. fully-developed flow 

53. □ Identify whether an internal flow is developing or fully-developed 

54. □ Sketch how both friction factor (f) and Nusselt number (Nu) vary in the flow 

direction for developing flow and fully developed flow. 

55. □ Define, in words and mathematically, mean velocity and mean (mixing cup) 

temperature for internal flow. 



56. □ Identify the appropriate temperature difference to use for internal flow based on 
boundary condition. 

57. □ Define hydraulic diameter and explain when it is appropriate to use 

58. □ Identify an appropriate Nusselt correlation to use for a given internal flow situation 

59. □ Identify the trade-offs of increasing h by increasing flow rate 

60. □ Calculate the friction factor, pressure drop, and pumping power for flow through a 
length of pipe 

61. □ Explain the difference between forced convection and natural convection 

62. □ Explain how and why a fluid subject to natural convection moves 

63. □ Define volume expansion coefficient (β), mathematically and in words 

64. □ Define Grashof number and give its physical interpretation 

65. □ Sketch what velocity and thermal boundary layers look like for natural convection 
for Pr>1 and Pr<1. 

66. □ Explain what type of forces balance each other in natural convection boundary layers 
for Pr>1 and Pr<1. 

67. □ Find the appropriate Nusselt correlation for natural convection based on Ra, 
boundary condition, geometry and orientation of surface, etc. 

68. □ Sketch flow patterns for natural convection currents in enclosures 

69. □ State the driving temperature difference to use in the convection relation for natural 
convection in enclosures 

70. □ Find the effective thermal conductivity for natural convection in enclosures and use 
it to determine the rate of heat transfer assuming 1-D SS conduction 

71. □ Non-dimensionalize an equation by substituting dimensionless forms of variables 
into it  

72. □ Determine when a system subject to combined forced and natural convection has 
negligible natural convection or negligible force convection 

73. □ Calculate the Nusselt number and heat transfer coefficient for combined natural and 
forced convection 

74. □ Explain the ways in which radiation heat transfer is different than conduction and 
convection 

75. □ Explain how thermal radiation differs from other forms of E-M radiation 

76. □ Identify the wavelengths of the E-M spectrum for which thermal radiation is the dominant 
form of radiation 

77. □ Define a blackbody 

78. □ Define emissive power and give its dimensions along with a set of typical units 



79. □ Define the term spectral and spectral emissive power 

80. □ Sketch spectral blackbody emissive power as a function of wavelength with 
temperature shown as a parameter 

81. □ Find the fraction of emissive power emitted by a blackbody over a specified 
wavelength range using the black body radiation function 

82. □ Define the terms spectral emissivity, directional emissivity, hemispherical 
emissivity, total/total hemispherical emissivity, absorptivity, solar absorptivity, 
reflectivity, transmissivity, irradiation and opaque 

83. □ Relate the above mentioned properties to each other  

84. □ Use Kirchoff’s law to relate absorptivity and emissivity to each other 

85. □ Calculate the net radiation from a surface subject to solar radiation 

86. □ Define (mathematically and in words) and the terms solid angle, radiation, and 
view factor 

87. □ Find view factors for diffuse surfaces with common geometries and arrangements 

88. □ Calculate view factors for infinitely long 2-D bodies using the crossed string method 

89. □ Calculate the net rate of radiation heat transfer leaving a black surface as well as the 
net exchange of radiation heat transfer between black surfaces forming enclosures by 
making use of radiation space resistances  

90. □ Calculate the net radiation heat transfer from each surface and the net radiation 
heat transfer between surfaces in an enclosure made up of diffuse, gray surfaces by 
making use of radiation space resistances and radiation surface resistances 

91. □ Define, mathematically and in words, the terms radiosity and reradiating surface and 
give examples of surfaces that behave as reradiating surfaces 

92. □ Calculate the net radiation heat transfer between two surfaces that have one or 
more radiation shields between them. 

93. □ Show why the rate the rate of radiation heat transfer between surfaces is 
diminished by the presence of radiation shields. 

94. □ Identify the radiation surface properties and their relative values necessary to make 
a radiation shield effective. 

95. □ Describe the construction of a double pipe heat exchanger, what it does and how. 

96. □ For a double pipe heat exchanger in both parallel flow and counter flow 
configurations  

o Calculate the overall heat transfer coefficient for a double pipe heat 
exchanger 

o Calculate the log mean temperature difference for a double pipe heat 
exchanger 

o Calculate the rate of heat transfer 

97. □ Use the LMTD-F method to perform heat exchanger design problems. 



98. □ Use the ε-NTU method to perform heat exchanger analysis problems. 

99. □ Define heat exchanger effectiveness, ε 

100. □ Define number of transfer units, NTU 

101. □ Define boiling 

102. □ Sketch the boiling curve and identify the various regions on it 

103. □ Define critical heat flux and explain the concept of burnout 

104. □ Identify appropriate boiling correlations to find heat flux for various regions on 
the boiling curve 

105. □ Explain the difference between dropwise and film condensation, and identify 
which one is accompanied by larger heat fluxes 

106. □ Calculate the Reynolds number for film condensation 

107. □ Find appropriate Nusselt relations for film condensation 
 

 

Note: Terms in bold are key concepts or vocabulary words that you should be able to 
define. This is true whether or not the learning objective is explicitly to define them. 
 

 

 

 
 



Notes and examples 

  



 



You and Me and Heat Transfer (Makes Three) 
 
So what is heat transfer? 
 Defined in Thermodynamics as  

 
 

 
 In Heat Transfer as a separate discipline:  

 We are usually interested in the ____________ of heat transfer. 
 
 
 
 

 We are interested in the __________ of energy transfer. 

 We deal with _________________ processes. 

 We will be interested in the _________________ of temperature. 

 
 
Why should I care? 
 Heat transfer processes are encountered in large numbers of engineering 

systems and other aspects of life. For example: 
 _______________________ 

 _______________________ 

 _______________________ 

 _______________________ 

 
 
What can I expect to get out of this course? 
 A working knowledge of heat transfer such that: 

 you can describe physical systems in terms of heat transfer models 
 you can determine heat transfer rate(s) or temperature 

distributions for existing systems 
 you can determine the size of a system to achieve a specified heat 

transfer rate or temperature distribution 
 
  



Details, I want details! 
 
Who is the hottest person in the room? 
 
 There are three modes of heat transfer. Specifically, 

 
 ________________ 

 ________________ ( _________________ + advection) 

 ________________ 

 

________________ and ________________ require mediums. 

________________ does not. 



Exercises 
 
1. A 2-kg copper bar (not to be confused with the downtown Terre Haute watering hole) 

is initially at a temperature of T1 = 25°C. It is then heated at a constant rate for two 
minutes until the temperature is T2 = 80°C. If the specific heat of copper is c = 385 J/kg-
°C, find the rate of heat transfer into the copper in W. 

 
2. The same copper bar is sandwiched between two isothermal walls maintained at con-

stant temperatures. The bar is 15 cm long with a cross sectional area of 2 cm2.  If the 
hotter of the two walls is 40°C and the thermal conductivity of copper is k = 400 W/m-
K, find the temperature of the colder wall for the same rate of heat transfer as in Problem 
1. 

 
3. A solid wall is maintained at 50°C. Air at a temperature of 25°C with a convective heat 

transfer coefficient of 10 W/m2·°C blows past the wall at a velocity of 0.25 m/s. Find 
the rate of heat transfer from the wall to the air in W/m2. 

 
4. The speed of the air blowing past the wall in Problem 3 is increased to 5.0 m/s. Find the 

new value of the heat transfer coefficient and the new rate of heat transfer. 
 
 





 
NOTES: The three modes of heat transfer 
 
 
Conduction 
 

=q  
 
 
 
 
 
 
Convection 

 
=q  

 
 
 
 
 
 
Radiation 
 

A perfect ________ 
 
=q  

 
Not so perfect ________ 
 
=q  

 



NOTES: The three modes of heat transfer 
 
Small body enclosed in much larger enclosure 
 

=netq  

 
 
 



Examples 
 
1. A surface area of 2 m2 has a steady, uniform temperature of TS,out = 13°C and an emis-

sivity of ε = 0.93. The temperature of the surroundings to which this surface radiates is 
268 K. Find the net radiation heat transfer (in W) from the surface to the surroundings. 

 
2. Concurrently, air at 10°C blows over the surface. The resulting convective heat transfer 

coefficient is h = 20 W/m2-K. Find the convection heat transfer (in W) from the surface 
to the air. 

 
3. The surface is actually a makeshift roof of a clubhouse. The roof material is 13 mm thick, 

and the inside temperature is TS,in =25°C. Assuming that heat transfer through the roof 
is one-dimensional and steady, find the thermal conductivity (in W/m⋅K) of the roof 
material. (Hint: You will have to make some assumptions about the heat transfer 
through the roof material to get an answer here. Can you defend your assumptions?) 

 
 
 
 
 
 
 





 
NOTES: The thermal energy balance 
 

 
  



NOTES: The thermal energy balance 
 

 



Example 
 
A long cylinder of cross section A is insulated along its outer diameter and is subject to a 
uniform internal heat generation per unit volume of gene . Assuming constant conductivity 
k and specific heat c, find a differential equation describing the temperature distribution as 
a function of length and time. 
 

 
 
 
 
 

  



Example 
 
The temperature distribution in a wall 1m thick at a certain instant of time is given as 
 

T(x) = a + bx +cx2 
 
where T is in cC and x is in m. The constants are a = 900°C, b = -300°C/m and c = - 50°C/m2. 
A uniform heat generation gene  = 1000 W/m3 exists in the wall. The wall area is 10 m2 and 
has the following properties: ρ  = 1600 kg/m3, k = 40 W/m-K and cp = 4 kJ/kg-K. Determine: 
 

1. the rate of heat transfer entering the wall and leaving the wall. (x=0 and 1 m, 
respectively), 

 
2. the rate of change of energy storage in the wall, and 
 
3. the time rate of temperature change at x = 0 and 0.25 m. 
 
 
 
 
 
 
 
 
 





Example 
 
Electric current is passed through a long 
conducting rod of radius ri and thermal 
conductivity kr, resulting in a uniform vol-
umetric heat generation of gene .  The rod is 
wrapped in an electrically non-conducting 
cladding with outer radius ro and thermal 
conductivity kc. The entire rod/cladding 
combination is immersed in a flowing 
fluid with known heat transfer coefficient 
h and temperature T. 
 
(a) Reduce the conduction equation for steady-state conditions and state the appropriate 

boundary conditions for the conducting rod. 
 

(b) Reduce the conduction equation for steady-state conditions and state the appropriate 
boundary conditions for the cladding. 

 
 
 
 
 
 
 

ri 

ro 

conducting rod 

cladding 



Example 
 
Jeff Spicoli is trying out a new surfboard designed for use on the northern California coast. 
Since the NoCal waters are noticeably colder than those at Sunset Cliffs, the new board 
makes use of electrical resistance heating. The surfboard has rectangular cross section and 
has a width W that is much greater than its thickness H. The bottom of the surfboard is 
initially in contact with the ocean at its lower surface, and the temperature throughout the 
board is approximately equal to that of the ocean T0. Suddenly Spicoli turns on the heater 
and catches a tasty wave such that an electric current is passed through the entire board 
and an air-stream of temperature T∞ is passed over the top surface at a constant rate. The 
bottom surface continues to be maintained at T0.  
 
Assuming the board has a constant thermal conductivity k, obtain the differential equation 
and the boundary and initial conditions that could be used to determine the temperature 
as a function of time and position in the board. 

  





ACTIVE LEARNING EXERCISE—Thermal resistance  
 
Consider a chunk of material with thickness L and surface area A as shown in the figure. 
The left hand face is maintained at a constant temperature T1 while the right hand side is 
maintained at a constant temperature of T2. Is the material has a constant thermal conduc-
tivity and is subject to 1-D steady-state conduction with no heat generation, 
 
(a) find the temperature distribution T = T(x). 
(b) Use your answer to (a) to find an expression for the rate of heat transfer through the 

chunk, Q . 
(c) Rearrange your answer in (b) to look like 

 

something
21 TT

Q
−

=  

 

T2 
T1 

x 

L 





Example 
 
Dr. Thom bakes lots of brownies. In the process, he drips large amounts of brownie goo in 
his oven. He therefore is looking for a self-cleaning oven. One such oven design involves 
the use of a composite window separating the oven cavity from the room. The composite 
consists of two high temperature plastics (A and B) with thermal conductivities kA = 0.15 
W/(m·°C) and kB = 0.08 W/(m·K) and thicknesses LA = 2LB. During the self-cleaning pro-
cess, the oven air temperature is Ta = 400°C, while the room air temperature is T∞ = 25°C. 
Convective heat transfer coefficients in and out of the oven are approximately 25 
W/(m2·°C). 
 
(a) Find the minimum window thickness L = LA + LB needed to ensure a temperature of 

50°C on the outer window surface. (Hint: Use the resistance analogy and draw a ther-
mal circuit. Assume that the cross sectional area of the window in 1 m2 to make life 
easier.) 

(b) Repeat part (a) if there is also a radiation heat transfer coefficient inside the oven of hr = 25 
W/(m2·°C). 

 
 
 
 

T = 50°C 

Ta = 400°C 
 T∞ = 25°C 

 

LA = 2LB LB 

Mmm, 
brownie 

goo 





NOTES: Contact resistance 

adams1
Text Box
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Text Box
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NOTES: Contact resistance 
 

 



Example 
 
A 10-mm diameter pipe containing a condensing refrigerant is to be insulated with a 
material that has a conductivity of kinsul = 0.055 W/m-°C. For the air surrounding the pipe, 
Tair = 20°C and hair = 5 W/m2-°C. The temperature of the refrigerant is –10°C. Assuming that 
the inside wall temperature is the same as the refrigerant temperature 
 
(a) calculate the rate of heat transfer per unit pipe length for an insulation thickness of t = 

2 mm, and 
(b) t = 5 mm.  
 
 
 
 
 
 
 

Tair, hair 

Tref 

t 





NOTES: Fins 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



NOTES: Fins 

 

 



NOTES: Fins 

 

 



NOTES: Fins 

 

 

  



NOTES: Fins 

 

 

 





Example 
 
A straight aluminum fin (k = 200 W/m-K) is 3.00 mm thick and 7.5 cm long. It protrudes 
from a wall whose temperature is maintained at 300°C. The ambient air temperature is Tair 
= 50°C with hair = 10 W/m2-K. Calculate the heat loss from the fin per unit depth assuming 
 
(a) an infinitely long fin, and 
(b) an insulated tip with a corrected fin length. 
 
 
 
 
 
 
 
 
 
 
 

Tair , hair 

Twall 



Example 
 
(c) Repeat part b) using the fin efficiency concept. 
 
 
 
 



NOTES: Fin effectiveness  

 

 



NOTES: Fin effectiveness  

 



NOTES: Fin effectiveness  

 





Example 
 
A motorcycle cylinder is constructed from 2024-T6 aluminum alloy (k = 186 W/m-°C) and 
has a height of H = 0.15 m and an outer diameter of D = 50 mm. The temperature of the 
outer diameter of the cylinder is 500 K under typical conditions. The surrounding air has a 
temperature is Tair = 300 K with hair = 50 W/m2-K. It is suggested that the heat transfer from 
the motorcycle can be enhanced by adding annular fins of length L = 20 mm and thickness 
t = 6 mm. Calculate the increase of heat transfer due to adding five such fins, all equally 
spaced. 
 
 
 
 
 
 
 
 
 
 
 
 





ACTIVE LEARNING EXERCISE: The lumped capacitance method 
 
Consider a frozen olive initially at a temperature of Ti that is dropped into a martini at a 
temperature T∞. We then stir the martini with a flamingo swizzle stick. We are interested in 
how the olive temperature changes with time, most notably how long it takes to warm up 
to T∞. 
 

 
Write thermal energy balance for the frozen olive for the time after is dropped into the 
martini. Assume that the entire olive is at only one temperature at any point in time. This is the 
lumped capacitance assumption.  
 
 
 
 
 
What is the mode of heat transfer to the olive? _________________. 
 
Rewrite the thermal energy balance. 
 
 
 
 
This is a linear, non-homogeneous first order differential equation. We can make is homo-
geneous by letting 
 

∞= −TTθ  

Do it! 
 
 
 



Solve by direct integration: 
 
 
 
 
 
 
 
 
 
 
Apply the initial condition: 
 
 
 
 
 
 
The solution to this equation is given by  
 
 
 
 
 
Rearrange a bit 

=
−
−

∞

∞
TT
TT

i
 

 
where 
 

 
 
 
 
 

TC = 



Now this model says that the olive never reaches T∞, but it is generally accepted that 4τ is 
close enough. (At 4·TC you’re 98% of the way there). 
 
If the convective heat transfer coefficient between an olive and the martini is h = 100 
W/(m2·K) and the properties of a typical 2-cm diameter spherical olive are given by ρ = 850 
kg/m3 and cp = 1780 J/(kg·K), we can calculate TC to be  
 
 

TC =     
 
 
which means that in about _________________ (or 4·TC) the olive has reached T∞. 
 
In this, we assumed that the entire olive was at one temperature. In other words, we ignored 
any temperature gradients within the olive and therefore any _________________ heat 
transfer within it.1 Was this a good assumption? Let’s find out. 
 
 
 
 
The _________________  _________________  is a measure of the internal resistance to con-
duction of an object to the external convection to which it is subject. It is defined as 
 
 
 
                                                                                    =≡Bi  
 
 
 
 
 
 
  

                                                           
1 Actually, we’re not ignoring it as much as we are assuming that it is infinitely efficient! 



If the Biot number is small (Bi << 1) then this assumption isn’t too bad. With kolive = 0.350 
W/(m2·C°) and Lchar = V0/A = r/3, for the macro-olive we get 
 
 
 
 

=
⋅

=

⋅

⋅

  
m

W 0.350

m (0.01/3)  
m

W 100

oC

oC2
Bi  

 
 
 
 

Bi  << 1        Bi = 1                   Bi  >> 1 



Example 
 
Let’s take one last look at the frozen olive problem. We drop a frozen olive ini-
tially at a temperature of Ti = 0°C into a martini at a temperature T∞ = 5°C. We 
then stir the martini with a flamingo swizzle stick resulting in a convection co-
efficient of h = 10 W/(m2·C°). The olive is modeled as a sphere with 1-cm diam-
eter with ρ = 850 kg/m3, k = 0.350 W/(m2·C°) and cp = 1780 J/(kg·C°) 
 
(a) Find the Biot number for the olive in the martini. Is the lumped capacitance 

model OK? 
(b) Find the time constant for the olive in the martini. 
(c) How long does it take the olive to warm up to 4°C? 
(d) What it the rate of heat transfer into the olive when T = 4°C? What is the total 

amount of heat transferred (Q with no dot!) to the olive during this time?  
 
 
 





NOTES: Transient conduction 

 

 

 

 



NOTES: Transient conduction 

 

 

 

 

 

 

 

 

 



NOTES: Transient conduction 

 

 

 

  



NOTES: Transient conduction 

 

 

 

 



CONCEPT QUESTIONS - Transient conduction  
 
1. For the following questions, assume that the conductive body in question is initially all 

at one temperature, Ti and is put into a convective environment at time t = 0. The con-
vective environment has a heat transfer coefficient of h and is at temperature T∞. 
 
a. Find an expression for the dimensions temperature (θ) at the center of an infinite 

slab of half thickness L as a function of time. 
 
 
 
 
 
 
b. Find an expression for the dimensions temperature (θ) at the center of an infinitely 

long cylinder as a function of time. 
 
 
 
 
 
 
c. Find an expression for the dimensions temperature (θ) at the center of a solid sphere 

as a function of time. 
 
 
 
 
 
 
d. Comment on your answers to a-c. 
 
 
 
 
 
 

 
2. Find an expression for the maximum heat that can be transferred (Q with no dot) to a 

slab, infinitely long cylinder or sphere as described in problem 1. (Hints: At what time 
does Qmax occur? What is the temperature of the entire body at this time?) 

 
 
 
 





Example 
 
A one meter long aluminum cylinder 15.0 cm in diameter and ini-
tially at 200○C is suddenly exposed to a convection environment at 
70○C and h = 573 W/(m2-K).  
 
(a) Calculate the temperature at a radius of 1.73 cm 1 min after the 

cylinder is exposed to the environment. 
(b) Calculate the heat lost 1 min after the cylinder is exposed to 

the environment. Express your answer in J. 
 
 
 
   
 
 
 

T∞ = 70°C 
h = 573 W/(m2-K) 

Ti = 200°C 





NOTES: Conduction in a semi-∞ medium  

 

 

 

 

 

 

 

 



NOTES: Conduction in a semi-∞ medium  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



NOTES: Conduction in a semi-∞ medium  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



NOTES: Conduction in a semi-∞ medium  

 

 



Example 
 
In laying water mains, utilities are concerned about the possibility of freezing during cold 
periods. What minimum burial depth would you recommend for a water main under the 
following conditions: Soil, initially at a uniform temperature of 20°C, is subjected to a con-
stant surface temperature of –15°C for 60 days. Assume the properties of soil to be ρ = 2050 
kg/m3, k = 0.52 W/m-°C, c = 1840 J/kg-°C and α = (k/ρc) = 0.138 x 10-6 m2/s. 
 
   
 
 
 

water main 

Ti, soil = 20oC 

Ts = -15oC 

Xm 





Example 
 
A semi-infinite aluminum cylinder (k = 237 W/m-°C, α  = 9.71 x 10-5 m2/s) of diameter D = 
15 cm is initially at a uniform temperature of Ti = 150°C. The cylinder is now placed in water 
at 10°C, where the convection heat transfer coefficient is h = 140 W/m2-°C. Determine the 
temperature at the center of the cylinder 10 cm from the end surface 8 min after the start of 
the cooling. 
 
   
 
 
 
 

 ∞ 

15 cm T∞ = 10 oC 
h = 140 W/m2-oC 





NOTES: Intro to convection  

 

 

 



NOTES: Intro to convection  

 

 



NOTES: Intro to convection  

 
 



NOTES: Intro to convection  

 

 

 

 



NOTES: Intro to convection  

 

 

 

 





Example 
 
Air at a pressure of 6 kPa and a temperature of 300°C flows with a velocity of 10 m/s over 
a plate of length 0.5 m. Estimate the cooling rate per unit width of the plate needed to main-
tain it at a surface temperature of 20°C. 
 
 
 
 

T∞ = 300oC 
U∞ = 10 m/s 
p∞ = 6 kPa Ts = 20oC 

L = 0.5 m 





NOTES: External convection 
 

 

 

 



NOTES: External convection 

 

 



Example 
 
Assume that a person can be approximated as a cylinder of 0.3-m diameter and 1.8 m height 
with a surface temperature of 25°C. Calculate the body heat loss while this person is sub-
jected to a 15 m/s wind whose temperature is –5°C. 
 

  

T∞ = -5oC 
U∞ = 15 m/s 

L = 1.8 m 
 

D = 0.3 m 
 



Example 
 

To enhance heat transfer form a silicon chip, a copper pin fin is brazed 
to the surface of the chip. The pin length and diameter are L = 12 mm 
and D = 2 mm, respectively. The surface of the chip, and hence the 
base of the pin are maintained at a temperature of Tb = 350 K. The pin 
is subject to atmospheric air in cross flow with V = 10 m/s and T∞ = 
300 K 
 
(a) What is the average convection coefficient for the surface of the 

pin? 
(b) Assuming h at the tip of the fin to be the same as that calculated 

in a), calculate the heat transfer rate from the pin. (I.e., assume an 
insulated tip with a corrected fin length.) 

 
 
 
 
 
 
 

V 
T∞ 

L 

D 

chip, Tb 



EXERCISE: Find the correlation 
 

1. A fluid flows past a flat plate of length L=1.0 m maintained at a constant temperature. 
The Reynolds number based on plate length is found to be Re=2.0×106 and the Prandtl 
number of the fluid is Pr=0.9. You wish to know the rate of heat transfer from the plate. 
What correlation for Nu do you use? 
 
 
 
 
 

2. A fluid flows past a flat plate of length L=1.0 m maintained at a constant temperature. 
The Reynolds number based on plate length is found to be Re=2.0×104 and the Prandtl 
number of the fluid is Pr=0.9. You wish to know the rate of heat transfer from the plate. 
What correlation for Nu do you use? 

 
 
 
 
 

3. A fluid flows past a flat plate of length L=1.0 m maintained at a constant temperature. 
The Reynolds number based on plate length is found to be Re=2.0×106 and the Prandtl 
number of the fluid is Pr=0.9. You wish to know the heat flux at the trailing edge of the 
plate, i.e., at x=L. What correlation for Nu do you use? 
 
 
 
 
 

4. A fluid flows past a flat plate of length L=1.0 m maintained at a constant temperature. 
The Reynolds number based on plate length is found to be Re=2.0×105 and the Prandtl 
number of the fluid is Pr=0.9. You wish to know the rate of heat transfer from the plate. 
What correlation for Nu do you use? 

 
 
 
 
 

5. A fluid flows past a flat plate of length L=1.0 m subject to a constant surface heat flux. 
The Reynolds number based on plate length is found to be Re=8.0×105 and the Prandtl 
number of the fluid is Pr=0.9. You wish to know the heat flux at the trailing edge of the 
plate, i.e., at x=L. What correlation for Nu do you use? 

 
 
 
 



6. A fluid flows past a flat plate of length L=1.0 m maintained at a constant temperature. 
The Reynolds number based on plate length is found to be Re=8.0×105 and the Prandtl 
number of the fluid is Pr=0.9. You wish to know the heat flux at a location x=0.25 m 
from the leading edge of the plate. What correlation for Nu do you use? 

 
 
 
 
 

7. A fluid flows past a flat plate of length L=1.0 m maintained at a constant temperature. 
The Reynolds number based on plate length is found to be Re=8.0×105 and the Prandtl 
number of the fluid is Pr=0.9. You wish to know total rate of heat transfer from the 
plate. What correlation for Nu do you use? 

 
 
 
 
 
8. A fluid at temperature T∞ flows past a flat plate of length L=1.0 m subject to a known 

constant surface heat flux q̇. The Reynolds number based on plate length is found to be 
Re=2.0×105 and the Prandtl number of the fluid is Pr=0.9 You wish to know the surface 
temperature at the trailing edge of the plate, i.e., at x=L. What correlation for Nu do you 
use and how do you calculate the temperature? 

 

 



NOTES: The Prandtl number 

 

 

  



NOTES: The Prandtl number 

 

 

 



NOTES: Internal convection 

 

 

 

 

 



NOTES: Internal convection  
 

 

 

 

 

 

 

 

 

 

 



NOTES: Internal convection  
 

 

 

 

 



NOTES: Internal convection 
 

 
 

 

 



NOTES: Internal convection 
 

 
 
 
 
 
 
 
 





Example 
 
The average convection coefficient for water flowing through a circular tube is to be deter-
mined experimentally. In the experiment, steam condenses on the outer surface of a thin-
walled circular tube with 50-mm diameter and 6-m length. This maintains the tube at a 
uniform surface temperature of 100°C. Water flows through inside the tube at a rate of m = 
0.25 kg/s, and its inlet and outlet temperatures are Tm,i = 15°C and Tm,e = 57°C, respectively. 
What is the experimentally determined average convection coefficient associated with the 
water flow?  
 
 
 
 
 
 

TS = 100°C 

Tm,e = 57°C Tm,i = 15oC 





Example 
 
Water flows through a section of 2.54-cm diameter tube 3.0 m long. The water enters the 
section at 60°C with a velocity of 2 cm/s. Assuming that the flow is fully developed (buzza 
buzza buzz) by the time it enters the region of interest and that the wall is subject to constant 
wall heat flux, 
 
(a) calculate the wall heat flux (in W/m2) needed to heat the water to 80°C. 
(b) Calculate the wall temperatures at the inlet and the exit. 
(c) Repeat part a) and b) if the velocity of the water is increased to 2 m/s. 
 
 
 
 
 
 
 
 

Tm,e = 80°C 

 = ? 

Tm,i = 60°C 





Example 
 
Water flows through a section of 2.54-cm diameter tube 3.0 m long. The water enters the 
section at 60°C with a velocity of 2 cm/s. Assuming that the flow is fully developed (buzza 
buzza buzz) by the time it enters the region of interest and that the wall is subject to constant 
wall heat flux, 
 
(a) calculate the wall heat flux (in W/m2) needed to heat the water to 80°C. DONE! 
(b) Calculate the wall temperatures at the inlet and the exit. DONE! 
(c) Repeat part (a) and (b) if the velocity of the water is increased to 2 m/s. DONE! 
(d) Find the pressure drops and the pumping powers required for the two velocities 

above.  
 
 
 
 
 
 
 
 
 

 

NEW! q  = ? 

Tm,e = 80°C Tm,i = 60°C 





NOTES: Natural convection 

 

 

 

 



NOTES: Natural convection  
 

 
 

 



NOTES: Natural convection  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



NOTES: Natural convection 
 

 
 

 



ACTIVE LEARNING EXERCISE—Natural convection boundary layers 
 
Remember that one interpretation of Prandtl number is a measure of the relative thickness 
of a momentum (velocity) boundary layer to a thermal boundary layer. With this thought 
in mind, 
 

 
1. sketch the momentum and thermal 

boundary layers for natural convec-
tion on a vertical wall with Ts > T∞ if 
Pr > 1. Include the variation of veloc-
ity and temperature across the layers. 
 

 
 
 

 
2. Sketch the momentum and thermal 

boundary layers for natural convec-
tion on a vertical wall with Ts > T∞ if 
Pr < 1. Include the variation of veloc-
ity and temperature across the layers. 

 

 
 
 
 
 

T∞ 

Ts > T∞ 

Pr > 1 

T∞ 

Ts > T∞ 

Pr < 1 





Example 
 
A large vertical plate 4.0 m high is maintained at 60°C and exposed to atmospheric air at 
10°C. Calculate the heat transfer rate from the plate if it is 10 m wide. 
 
 

  

Tair = 10°C 

10 m 

4 m 

TS = 60°C 

Q = ? 



Example 
 
The surface of a horizontal pipe 1 ft (0.3048 m) in diameter is maintained at a temperature 
of 250°C in a room where the ambient air is at 15°C. Calculate the free-convection heat loss 
per meter of length. 
 
 

 
 
 
 

g 

Ts = 250oC 

T∞ = 5oC 
 



ACTIVE LEARNING EXERCISE—Natural convection in enclosures 
 
1. Imagine a vertical plate at a temperature Ts,1 in a quiescent fluid at T∞. Assuming that 

Ts,1 > T∞, sketch the velocity boundary layer that forms as a result of the temperature-
induced density gradients next to the wall. 

 

 
 
2. Now imagine a vertical plate at a temperature Ts,1 in a quiescent fluid at T∞, but this time 

assume that Ts,1 < T∞, sketch the velocity boundary layer that forms as a result of the 
temperature-induced density gradients next to the wall. 

 

 
 
3. Let us bring the two vertical plates close to each other, and then cap the top and bottom 

to form an __________________. Sketch what you think the flow pattern of fluid would 
look like in the enclosure. 

 

 
 
4. We know the fluid is not stationary, but if it were, what would be the mode of heat 

transfer between the walls?  
 
 
 

T∞ 

Ts,1 > T∞ 

T∞ 

Ts,2 < T∞ 

Ts,2 < T∞ Ts,1 > T∞ 



5. For steady state, write an expression for the rate of heat transfer between the two walls 
assuming no fluid motion. 

 

 
 
 
 
 
 
 
 
 
6. Since there really is fluid motion, we know the mode of heat transfer is ______________. 

Does it make since to use (Ts,1 - T∞) as the temperature difference for the total heat trans-
fer rate across the entire enclosure? What about (Ts,2 - T∞)? What temperature difference 
does make sense to use? What would your expression for the rate of heat transfer look 
like, then? 

 
 
 
 
 
 
7. We can still calculate the rate of heat transfer assuming we have steady-state, 1-D con-

duction as in part 5., if we use a pretend, effective conductivity of the fluid.  
 
This pretend conductivity is larger/smaller than the actual conductivity due to the fluid 
motion. 

 
 

And so finally, equate your expressions for heat transfer rate in parts 5. and 6., but write 
the equation and solve it for the effective thermal conductivity of the fluid. (Hint, re-
member that Nu = hLchr/k where k is the real thermal conductivity of the fluid. 

 
 

 

Ts,2 < T∞ Ts,1 > T∞ 

L surface area, 
A 

(circle one) 



Example 
 
A double pane window is 40 cm high and 1 m wide. The air gap between the two pieces of 
glass is 1 cm. The inside and outside temperatures of the window are 22°C and -15°C, re-
spectively. Neglecting the thermal resistance of the glass, 
 
(a) calculate the rate of heat transfer through the glass ignoring the effects of natural con-

vection; i.e., if heat transfer is by conduction only. 
(b) Calculate the rate of heat transfer through the window considering natural convection. 
(c) Repeat part b) if the gap thickness is increased to 2 cm. Discuss the results. 
 
 
 
 
 
 
 
 
 
 
 
 

40 cm 

1 m 

air gap, 1 cm 

-15°C 
22°C 





Example 
 
In a fit of temporary insanity, a frustrated Rose student painted a piece of ply wood to 
resemble a giant novelty-sized heat transfer book, took it to the front lawn, and set it on 
fire. Luckily, the fire was put out quickly and no one was hurt. Sometime after the fire was 
put out, it was observed that the "book" temperature was 85°C and the surrounding air 
temperature was 29°C. A small fan was placed beneath the "book" to aid in its cooling. 
 
(a) Determine the minimum air velocity for which natural convection is negligible. 
(b) Find the rate of heat transfer from the "book" if the air velocity is 5 m/s. 
 
 
 
 
 
 

5 m 

1 m 





ACTIVE LEARNING EXERCISE – Non-dimensionalization 
 
Remember the velocity (momentum) boundary layer equation (conservation of 

_______________ applied at ____ ________ _________ within the boundary layer)? 
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Now if we have buoyancy as well, we have to add a buoyancy term: 
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Non-dimensionalization gives us a way to weigh the relative importance of different phys-
ical phenomena. One way to arrive at these dimensionless groups is to use the Buckingham 
Pi Theorem to derive the dimensionless groups, or pi terms, directly. Another way is to 
define dimensionless versions of the variables which show up in the working equations, 
and then to substitute those variables into the equations. For example, a dimensionless ver-
sion of the x-direction velocity, u is given by: 
 

u* = u/U∞ 

 
Wherever the variable u shows up in the boundary layer equation, then, we would substi-
tute u*U∞ instead.  
 
Let us continue with this idea by defining dimensionless versions of the rest of the variables 
and substituting… 
  

 
 
 



  



(MORE ON BACK) 

Radiation terms  
 
Radiation heat transfer lingo is bountiful. To make matters worse, many of these terms seem 
like they should mean the same thing, but actually refer to different concepts. Below is a 
list of some of these terms. You are encouraged to write the definitions of these terms as 
you come across them in the readings. A clear understanding of what these terms mean will 
make your study of radiation go more smoothly. 
 
ABSORPTIVITY 
 
 
 
 
BLACK BODY 
 
 
 
 
DIFFUSE 
 
 
 
 
DIRECTIONAL 
 
 
 
 
EMISSIVE POWER 
 
 
 
 
EMMISIVITY 
 
 
 
 
GRAY 
 
 
 
 
IRRADIATION 
 
 
 



 

OPAQUE  
 
 
 
 
RADIATION 
 
 
 
 
RADITIATION INTENSITY 
 
 
 
 
RADIOSITY 
 
 
 
 
REFLECTIVITY 
 
 
 
 
RERADIATING SURFACE 
 
 
 
 
SHAPE (VIEW) FACTOR 
 
 
 
 
 
SPECTRAL 
 
 
 
 
TOTAL, TOTAL HEMISPHERICAL 
 
 
 
 
TRANSMISIVITY 
 
 
 
 
 



NOTES: Intro to radiation 
 

 

 

 

 

 

 

 

 

 

 



NOTES: Intro to radiation  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Tsun 

Tearth 

Tspace 

 

radQ

Radiation does _________________, but 
it can go through one, even if   

 
 
 
 

I.e., radiation heat transfer occurs as an 
exchange ____________________. 

Radiation is a _________ phenomenon. 



NOTES: Intro to radiation  
 

Types of radiation as a function of wavelength 

 





NOTES: Blackbody radiation 

 

  



NOTES: Blackbody radiation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



NOTES: Blackbody radiation 

 

 

 

 

 





Example 
 
Consider a large, isothermal enclosure that is maintained at a uniform temperature of 2000 
K.  
 
(a) Calculate the emissive power of the radiation that emerges from a small aperture on the 

surface.  
(b) What is the wavelength below which 10% of the emission is concentrated?  
(c) What is the wavelength above which 10% of the radiation is concentrated? 
(d) Determine the maximum spectral emissive power and the wavelength at which it oc-

curs. 
 
 
 
 
 

enclosure 
 

T = 2000 K 





NOTES: Radiation properties 
 

 
 

 



NOTES: Radiation properties 
 

 
 
 

 
 
 
 
 
 

 



NOTES: Radiation properties 
 

 
 

 



NOTES: Radiation properties 
 

 
 

 



Example 
 
The reflectivity of aluminum coated with lead sulfate is 0.35 for radiation at wavelengths 
less than 3 µm and 0.95 for radiation greater than 3 µm. (This is the spectral reflectivity.) 
 
(a) Determine the average absorptivity of this surface for solar radiation. (T = 5800 K). As-

sume that the incident radiation is well approximated by black body radiation. (Hint: 
Can you relate reflectivity to the absorptivity?) 

(b) Determine the absorptivity of the surface for radiation coming from sources at room 
temperature (T = 300 K). Ditto on the B-B stuff, and the hint too. 

(c) Determine the emissivity of the surface at 300 K. Based on your results, would this be 
good stuff to use for solar collectors? Why or why not? 

 
  





NOTES: Solar radiation 

 

 



Example 
 
The wall of a 6-m tall building is made of red brick, for which the emissivity, ε, is 0.93 and 
the solar absorptivity, αs, is 0.63. On a sunny day, it is observed that the direct and diffuse 
components of solar radiation are GD = 900 W/m2 and Gd = 500 W/m2, respectively, and 
that the sun makes a 48.2° angle with a normal to the surface of the wall. The outside tem-
perature of the brick is 54°C, and the ambient air temperature is 20°C. 
 
(a) Calculate the heat flux, in W/m2, from the wall due to convection. 
(b) If the heat flux through the brick due to conduction is 154 W/m2 (into the building), 

what is the effective sky temperature? 
 
 
 
 
 

6 m 

condq  = 154 W/m2 

Tair = 20°C 

Twall = 54°C 



NOTES: View factors 
 

 
 

 
 
 



NOTES: View factors 
 

 
 
 
 
 
 
 
 
 

 



Example 
 
Two concentric cylinders are nested together coaxially as shown in the figure. Assuming 
the surfaces are diffuse, 
 
(a) calculate the fraction of radiation leaving the outer surface of the inner cylinder that 

goes through the top and bottom openings. 
(b) Calculate the fraction of radiation leaving the outer surface of the inner cylinder that 

goes through just the top opening.  
(c) Calculate the fraction of radiation leaving the inner surface of the outer cylinder that 

goes through the top and bottom openings. 
 
 
 
 

Douter = 10 cm 

Dinner = 6 cm 

L = 2.5 cm 





NOTES: Crossed string method 
 

 
 
 
 





NOTES: Radiation between black surfaces 
 

 
 

 



NOTES: Radiation between black surfaces 
 

 

 



NOTES: Radiation between black surfaces 
 

 
 
 
 
 
 

 
 





Example 
 
Two blackbody rectangles, 0.6 m by 1.2 m, are parallel and directly opposed. The bottom 
rectangle is at T1 = 500 K and the top rectangle is at T2 = 900 K. The two rectangles are 1.2 m 
apart. 
 
(a) Find the view factors F1->2 and F2->1. 
(b) Find the radiant exchange between the two surfaces. 
(c) Find the rate at which the bottom rectangle is losing energy if the surroundings (other 

than the top rectangle) are considered to be a blackbody at 300 K. 
 

For the heat transfer calculations, you are strongly encouraged to draw all relevant resistors and 
currents (heat transfer rates). 

 
 
 
 
 

0.6 m 
1.2 m 

1.2 m 





Example 
 
Reconsider the last example, but this time assume the surfaces are both diffuse and gray 
with ε1 = ε2 = 0.7. Otherwise, the conditions are the same. (The bottom rectangle is at T1 = 
500 K and the top rectangle is at T2 =  900 K. The two rectangles are 1.2 m apart. The 
surroundings can be considered a blackbody at 300 K.) 
 
(a) Draw a resistance network showing all the relevant heat transfer rates and resistances. 
(b) Find the net radiant exchange between the two surfaces. 
(c) Find the rate at which the bottom rectangle is losing energy. 
(d) Repeat (b) and (c) if the surroundings are treated as a reradiating surface instead. 
 
 
 
 
 
 

0.6 m 
1.2 m 

1.2 m 





Example 
 
A cryogenic fluid flows through a long tube of 20 mm diameter, the outer surface of which 
is diffuse and gray with ε1 = 0.02 and T1 = 77 K. (Ooh, that’s cold!) The tube is concentric 
with a larger tube of 50 mm diameter, the inner surface of which is diffuse and gray with ε2 
= 0.05 and T2 = 300 K. The space between the surfaces is evacuated. If the tube is 1 m long 
(into the paper)  
 
(a) calculate the heat gain by the cryogenic fluid. 
(b) If a thin radiation shield of 35 mm diameter and ε3 = 0.02 on both sides is inserted mid-

way between the inner and outer surfaces, calculate the heat gain by the cryogenic fluid. 
What is the percentage change in heat gain? 

 
 
 
 
 
 
 
 
 
 T1 = 77 K 

D1 = 20 mm 
ε1 = 0.02 

T2 = 300 K 
D2 = 50 mm 
ε2 = 0.05 

D3 = 35 mm 
ε3 = 0.02 (Both sides) 

no shield with shield 





NOTES: Heat exchangers 
 

 
 

 
 



NOTES: Heat exchangers 
 

 

 

 
 

 



NOTES: Heat exchangers 
 

 
 
 
 
 
 
 

 





Example 
 
A counter-flow double-pipe heat exchanger is to heat water from 20°C to 80°C at a flow rate 
of 1.2 kg/s. The warmer fluid is geothermal water available at 160°C and a flow rate of 2 
kg/s. The inner tube is thin-walled with a diameter of 1.5 cm. If the overall heat transfer 
coefficient is 640 W/m2-C°, find the required heat exchanger length. 
 
 
 
 
 



Example 
 
Reconsider the last example, but this time make the heat exchanger a parallel flow design. 
As before, the heat exchanger is a double-pipe design, and is used to heat water from 20°C 
to 80°C at a flow rate of 1.2 kg/s. The warmer fluid is geothermal water available at 160°C 
and a flow rate of 2 kg/s. The inner tube is thin-walled with a diameter of 1.5 cm. If the 
overall heat transfer coefficient is 640 W/m2-C°, find the required heat exchanger length. 
 
 
 
 
 
 
 



ACTIVE LEARNING EXERCISE—HXR flow directions 
 

 
Why is this the case? 
 
 
 
Let’s explore this a bit more. Consider a parallel flow heat exchanger with a warm fluid inlet 
temperature Th,in and a cold fluid inlet temperature Tc,in. Sketch the variation of fluid 
temperatures with heat exchanger axial location, x (or area, A). 

 

Of the two heat exchangers in the 
last two examples, which one is 
better? Why? 

Tc,in Tc,out 

Th,in 

Th,out 

x (or A) 

x (or A) 

temperature 



Now consider a counter-flow arrangement of the same heat exchanger. The warm fluid inlet 
temperature is still Th,in and the cold fluid inlet temperature is still Tc,in. Sketch the variation 
of fluid temperatures with heat exchanger axial location, x (or area, A). 
 
 
 

Th,out 

x (or A) 

x (or A) 

temperature 

Th,in 

Tc,in Tc,out 



NOTES: Heat exchangers 
 

 
 

 
 



NOTES: Heat exchangers 
 

 
 

 
 
 
 
 
 



NOTES: Heat exchangers 
 

 
 
 
 
 
 
 
 
 
 
 

 



NOTES: Effectiveness-NTU method 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



NOTES: Effectiveness-NTU method 
 

 

 

 



NOTES: Effectiveness-NTU method 
 

 
 

 



Example 
 
0.2 kg/s of hot oil (cp = 2200 J/kg-°C) is to be cooled by water (cp = 4180 J/kg-°C) in a 2-12 
shell and tube HXR.  The water flows through thin-walled tubes with a diameter of 1.8 cm 
at a rate of 0.1 kg/s. The length of each tube pass is 3 m and the overall heat transfer coef-
ficient is 340 W/m2-°C. (Tube side or shell side? Does it matter?) The inlet temperatures of 
the oil and water are 160°C and 18°C, respectively.  
 
(a) Find the rate of heat transfer in the exchanger and 
(b) the exit temperatures of both fluids. 
 
 
 
` 
 
 





ACTIVE LEARNING EXERCISE: ε-NTU Discovery Session  
 
The effectiveness-NTU (ε-NTU) method not only gives us an easy way to perform heat ex-
changer analysis problems, it gives us physical insight into the performance of HXRs. The 
basis of this insight is that the effectiveness, ε, tells us how well our HXR performs compared 
to the theoretically best heat exchanger. Using the ε-NTU relationships (equations and 
charts), answer the following questions. 
 
(1) What is the possible range for effectiveness? (Holy cow, that’s easy!) 

 
 
 
 
 
 
 

(2) For a given NTU and C, which heat exchanger construction/flow direction combination 
has the highest effectiveness? 
 
 
 
 
 
 
 

(3) How does effectiveness vary with C? 
 
 
 
 
 
 
 

(4) For what value of C is effectiveness at its maximum? 
 
 
 

a. How does this value of C for ε max vary with HXR type? flow direction? 
 
 
 
 
 
 



b. For this value of C, what does this mean for one of the fluid’s mdotcp value? What 
does it mean about this fluid physically? 

 
 
 
 
 
 
 
 
(5) If NTU < 0.3, which equation would you use for ε? Why? 

 
 
 
 
 
 
 

(6) Let’s say you are thinking about increasing the effectiveness of your HXR by increasing 
its UA value. You can do this in two ways: 

 
a. You can increase flowrate(s) which increases h(s) and thereby U. But that means in-

creasing your operational cost. (Bigger Δp means bigger pumping power required.) 
 

b. You can increase A, but that increases the capital cost of the HXR. (Bigger A means 
more material to build the HXR.) 
 

By consulting the ε -NTU charts, come up with a criterion by which you can determine 
whether it is worth the increase in either operational or capital cost to increase your UA. 
(Hint: Think about where UA shows up in the ε-NTU method.) 
 
 
 
 
 
 
 
 
 
 
 

 



NOTES: Boiling heat transfer  
 

 

 



NOTES: Boiling heat transfer  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



NOTES: Boiling heat transfer  
 

 
  



NOTES: Boiling heat transfer 
 

 
 



NOTES: Boiling heat transfer 
 

 
 
 
 
 
 
 
 
 
 
 



NOTES: Boiling heat transfer 
 

 
  



NOTES: Boiling heat transfer 
 

 





Example 
 
A starving Rose-Hulman student is preparing Ramen Noodles in a copper-bottomed pan 
bought from Goodwill. The diameter of the bottom of the pan is 0.3-m, and is maintained 
at 118°C by an electric heating element.  
 
(a) Estimate the power required to boil the water in the pan.  
(b) What is the evaporation rate? 
(c) Estimate the critical heat flux. 
(d) Estimate the number of shrimp used to create one flavor packet for shrimp-flavored 

Ramen Noodles. 
 
 
 
 
 
 
 
 

Ts = 118°C 

Q  



 

 



Extra materials 

 

 

 

 

 

 

 

 

 

Cartoon summaries, charts, tables, and other 
miscellaneous resources   

  





Forms of the conduction equation 

Conduction equation 1-D or 3-D? Coordinate 
system? 

Constant 
properties? 
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𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑘𝑘𝑘𝑘

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� + 𝑒̇𝑒𝑔𝑔𝑔𝑔𝑔𝑔 

   

1
𝛼𝛼
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� +

1
𝑟𝑟2
𝜕𝜕2𝑇𝑇
𝜕𝜕𝜙𝜙2 +

𝜕𝜕2𝑇𝑇
𝜕𝜕𝑧𝑧2

+
𝑒̇𝑒𝑔𝑔𝑔𝑔𝑔𝑔
𝑘𝑘

 

   

 



Forms of the conduction equation 

Conduction equation 1-D or 3-D? Coordinate 
system? 

Constant 
properties? 

1
𝛼𝛼
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� +

𝑒̇𝑒𝑔𝑔𝑔𝑔𝑔𝑔
𝑘𝑘

 

   

 𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑘𝑘𝑘𝑘

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� +

1
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

� +
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑘𝑘
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� + 𝑒̇𝑒𝑔𝑔𝑔𝑔𝑔𝑔 

   

𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
1
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑘𝑘𝑟𝑟2

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� + 𝑒̇𝑒𝑔𝑔𝑔𝑔𝑔𝑔  

   

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝜕𝜕2𝑇𝑇
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑇𝑇
𝜕𝜕𝑦𝑦2

+
𝜕𝜕2𝑇𝑇
𝜕𝜕𝑧𝑧2

+
𝑒̇𝑒𝑔𝑔𝑔𝑔𝑔𝑔
𝑘𝑘

 

   

1
𝛼𝛼
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
1
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑟𝑟2

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� +

𝑒̇𝑒𝑔𝑔𝑔𝑔𝑔𝑔
𝑘𝑘

 

   

𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� +

𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� +

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑘𝑘
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� + 𝑒̇𝑒𝑔𝑔𝑔𝑔𝑔𝑔 

   

 







 
                                    (a) Midplane temperature 

 

 
                                (b) Temperature                                                   (c) Total heat transfer 
 
 

Fo = αt/L2 

𝜃𝜃 0
=
𝑇𝑇 0
−
𝑇𝑇 ∞

𝑇𝑇 𝑖𝑖
−
𝑇𝑇 ∞

 

1st term solutions for 1-D 
transient conduction in 
an infinite plane 

𝜃𝜃
=
𝑇𝑇
−
𝑇𝑇 ∞

𝑇𝑇 𝑖𝑖
−
𝑇𝑇 ∞

 

Bi2Fo = h2αt/k2 

𝑄𝑄
𝑄𝑄 𝑚𝑚

𝑚𝑚𝑚𝑚
 



 
(a) Midplane temperature 

 
 

 
                                (b) Temperature                                                   (c) Total heat transfer 
 

Fo = αt/ro2 

𝜃𝜃 0
=
𝑇𝑇 0
−
𝑇𝑇 ∞

𝑇𝑇 𝑖𝑖
−
𝑇𝑇 ∞

 

1st term solutions for 1-D 
transient conduction in 
an infinite cylinder 

𝜃𝜃
=
𝑇𝑇
−
𝑇𝑇 ∞

𝑇𝑇 𝑖𝑖
−
𝑇𝑇 ∞

 

Bi2Fo = h2αt/k2 

𝑄𝑄
𝑄𝑄 𝑚𝑚

𝑚𝑚𝑚𝑚
 



 

 
                                    (a) Midplane temperature 
 

 

 
                                (b) Temperature                                                   (c) Total heat transfer 

Fo = αt/ro2 

𝜃𝜃 0
=
𝑇𝑇 0
−
𝑇𝑇 ∞

𝑇𝑇 𝑖𝑖
−
𝑇𝑇 ∞

 

1st term solutions for 1-D 
transient conduction in a 
sphere 

𝜃𝜃
=
𝑇𝑇
−
𝑇𝑇 ∞

𝑇𝑇 𝑖𝑖
−
𝑇𝑇 ∞

 

Bi2Fo = h2αt/k2 

𝑄𝑄
𝑄𝑄 𝑚𝑚

𝑚𝑚𝑚𝑚
 





 

Conduction model flowchart 

1-D, steady-state, 
constant properties, 

no generation? 

Transient 

Bi = hLchr/k < 0.1 ? 

Long, skinny, 
convection perpendicular 

to conduction 

1-D conduction, 
nothing happening 
perpendicular to it? 

Resistance analogy 
Model as a fin 

L > 5(1/m) ? 
 

Infinitely long fin 
Adiabatic tip  

(with corrected 
fin length) 

Lumped capacitance 
 model 

Fo > 0.2 ? 

1st term approximation 
 of infinite solution  

1-D ? 

Semi-infinite solid 

What geometry/direction? 

Construct 3-D geometry 
from 1st term approximations 

and superposition 

Stuff changing with time? Nope 
Yep 

Fo > 0.2 ? 

Yep 
Yep 

Yep Nope 

Yep 

Yep 

Infinite  
plane/cylinder? 

sphere? 
Yep 

Yep 

Yep 

or 
Is it 

Neither? 

Nope 

Nope 

Nope 

Nope 
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