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ME302 learning objectives

After studying the material and doing the associated activities and homework problems
students of this course will be able to:

1. 0O Find course information on webpages

2. O Explain how Heat Transfer as a separate discipline is different than the study of
Thermodynamics

O Give the “baby” form of the working equation for each mode of heat transfer
O Explain what each variable in the equations is

O Distinguish between Ty (or T.,) for convection and T, for radiation.

S

O Perform an energy balance (conservation of energy) on a surface subjected to heat
transfer

7. O Use a thermal energy balance and distinguish it from the more general

conservation of energy

8. O Use a 1-D conduction equation and distinguish it from the more general
conservation of energy

9. O Explain the meaning of each term in the above equations
10. O Explain when it is appropriate to use each of the above equations

11. O Define the terms

0 heat generation
0 thermal diffusivity

12. O Identify the major use of the general, 3-D conduction equation

13. O Use the conduction equation

0 in different coordinate systems
0 in multiple dimensions
0 with various assumptions (steady-state, constant properties, etc.)

14. O Find boundary conditions and initial conditions for use with the conduction
equation

15. O Find an expression for Qqot for 1-D, steady-state conduction in rectangular
coordinates

16. O Using the electrical/resistance analogy, state what is analogous to V, I, and R.
17. O Express the generic convection relation using an electrical analogy

18. O Draw thermal “circuits” for 1-D, steady-state conduction problems and use them
to find unknown temperatures, heat transfer rates, etc.

19. O Find an expression for Quot for 1-D, steady-state conduction in cylindrical and
spherical coordinates



20.

21.

22.

23.
24.

25.
26.
27.
28.
29.
30.

31.

32.

33.

34.
35.
36.

37.

38.

39.

O Explain why rectangular coordinate expression for Ry does not work in cylindrical
and spherical coordinates

O Draw thermal “circuits” for 1-D, steady-state conduction problems and use them to
find unknown temperatures, heat transfer rates, etc.

O Explain why the rectangular coordinate expression for Ry does not work in
cylindrical and spherical coordinates

O Explain what a fin is, what it does and how
O Explain why the conduction equation and the resistance analogy cannot be used to
find the temperature distribution in, or heat transfer of, a fin

O State how to use the insulated-tip BC for a fin to approximate a convective tip

O Define fin efficiency mathematically and in words

O Find the temperature distribution for extended surfaces (fins)

O Find the rate of heat transfer from extended surfaces (fins)

O Explain what a fin effectiveness is and how it is different from fin efficiency

O Use the idea of fin effectiveness to determine when it is a good idea to use a fin or

not

O Use fin effectiveness in calculations to determine the rate of heat transfer from
individual fins and also from fin arrays

O State the fundamental assumptions of the lumped capacitance model for transient
conduction

O Calculate and explain the physical significance of the time constant for transient
systems for which the lumped capacitance model is valid

O Test for the validity of the lumped capacitance model
O Calculate and explain the physical significance of the Biot number

O Recognize when a 1-D, transient conduction model is an appropriate model for a heat
transfer system

0 Use the first-term approximation of the infinite-sum solution for 1-D transient

conduction to find T = T([x or r], t) and Q([x or ], t) Note: Q, not Quo!)

0 Infinite plane wall (slab)

0 Infinite cylinder

0 Sphere
O Determine when the first-term approximation of the infinite-sum solution for the
above is valid

O Explain the difference between how Bi for 1-D transient conduction models and Bi
for the lumped capacitance model is calculated

O State how these solutions can be used for specified T BCs instead of convective BC



40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.
51.
52.

53.
54.

55.

O Distinguish between a 1-D transient conduction model in a slab and a 1-D transient
conduction model in a semi-infinite medium and recognize when each model is
appropriate

O Use the solution to 1-D transient conduction in a semi-infinite medium to find T =
T([x or r], t) and Q([x or r], ) (Note: Q, not Quo!)

O Determine when a 2-D and 3-D transient conduction model is appropriate for a given
heat transfer system

O Use the solutions to the 1-D transient conduction of an infinite slab, an infinite
cylinder, a sphere, and a semi-infinite medium to find the temperature distributions

and heat transfers! in various 2-D and 3-D transient heat transfer systems using O
superposition.
O Describe mathematically and in words the following terms

0 no-slip boundary condition

viscosity

shear stress and skin friction coefficient
Nusselt number

velocity boundary layer

0 thermal boundary layer

O O 0O

O Explain why convection at a solid-fluid interface is really just conduction, and give
a mathematical expression for it

O Describe how Prandtl number affects the relative thicknesses of momentum
(velocity) boundary layers to thermal boundary layers

O Identify the appropriate Nusselt correlation to use based on

0 whether a flow is laminar or turbulent,
0 boundary condition,
0 whether a local or average values of 1 is required

O Discern between form drag and friction drag, and identify the major contributor to
each

O Give the local variation of i (or Nu) with angle for flow around a cylinder or sphere.
O Define external flow and contrast it with internal flow.

O Explain the difference between developing flow and fully-developed flow.

O Explain the difference between hydrodynamically developing vs. fully-developed
flow and thermally developing flow vs. fully-developed flow

O Identify whether an internal flow is developing or fully-developed
O Sketch how both friction factor (f) and Nusselt number (Nu) vary in the flow
direction for developing flow and fully developed flow.

O Define, in words and mathematically, mean velocity and mean (mixing cup)

temperature for internal flow.



56.

57.
58.
59.
60.

61.
62.
63.
64.
65.

66.

67.

68.
69.

70.

71.

72.

73.

74.

75.
76.

77.
78.

O Identify the appropriate temperature difference to use for internal flow based on
boundary condition.

O Define hydraulic diameter and explain when it is appropriate to use

O Identify an appropriate Nusselt correlation to use for a given internal flow situation
O Identify the trade-offs of increasing h by increasing flow rate

O Calculate the friction factor, pressure drop, and pumping power for flow through a
length of pipe

O Explain the difference between forced convection and natural convection

O Explain how and why a fluid subject to natural convection moves

O Define volume expansion coefficient (§), mathematically and in words

O Define Grashof number and give its physical interpretation

O Sketch what velocity and thermal boundary layers look like for natural convection
for Pr>1 and Pr<1.

0O Explain what type of forces balance each other in natural convection boundary layers
for Pr>1 and Pr<1.

O Find the appropriate Nusselt correlation for natural convection based on Ra,
boundary condition, geometry and orientation of surface, etc.

O Sketch flow patterns for natural convection currents in enclosures
O State the driving temperature difference to use in the convection relation for natural
convection in enclosures

O Find the effective thermal conductivity for natural convection in enclosures and use
it to determine the rate of heat transfer assuming 1-D SS conduction

O Non-dimensionalize an equation by substituting dimensionless forms of variables
into it
O Determine when a system subject to combined forced and natural convection has

negligible natural convection or negligible force convection

O Calculate the Nusselt number and heat transfer coefficient for combined natural and
forced convection

O Explain the ways in which radiation heat transfer is different than conduction and
convection

O Explain how thermal radiation differs from other forms of E-M radiation

O Identify the wavelengths of the E-M spectrum for which thermal radiation is the dominant

form of radiation

O Define a blackbody

O Define emissive power and give its dimensions along with a set of typical units



79. O Define the term spectral and spectral emissive power

80. O Sketch spectral blackbody emissive power as a function of wavelength with

81

82

83

84

85
86

87
88
89

90

91

92

93

94

95.
96.

97

temperature shown as a parameter

. O Find the fraction of emissive power emitted by a blackbody over a specified
wavelength range using the black body radiation function

. O Define the terms spectral emissivity, directional emissivity, hemispherical

emissivity, total/total hemispherical emissivity, absorptivity, solar absorptivity,
reflectivity, transmissivity, irradiation and opaque

. O Relate the above mentioned properties to each other

. O Use Kirchoff’s law to relate absorptivity and emissivity to each other

. O Calculate the net radiation from a surface subject to solar radiation

. O Define (mathematically and in words) and the terms solid angle, radiation, and
view factor

. O Find view factors for diffuse surfaces with common geometries and arrangements
. O Calculate view factors for infinitely long 2-D bodies using the crossed string method

. O Calculate the net rate of radiation heat transfer leaving a black surface as well as the
net exchange of radiation heat transfer between black surfaces forming enclosures by
making use of radiation space resistances

. O Calculate the net radiation heat transfer from each surface and the net radiation
heat transfer between surfaces in an enclosure made up of diffuse, gray surfaces by
making use of radiation space resistances and radiation surface resistances

. O Define, mathematically and in words, the terms radiosity and reradiating surface and
give examples of surfaces that behave as reradiating surfaces

. O Calculate the net radiation heat transfer between two surfaces that have one or
more radiation shields between them.

. O Show why the rate the rate of radiation heat transfer between surfaces is
diminished by the presence of radiation shields.

. O Identify the radiation surface properties and their relative values necessary to make
a radiation shield effective.

O Describe the construction of a double pipe heat exchanger, what it does and how.
O For a double pipe heat exchanger in both parallel flow and counter flow
configurations
0 Calculate the overall heat transfer coefficient for a double pipe heat
exchanger
0 Calculate the log mean temperature difference for a double pipe heat
exchanger

0 Calculate the rate of heat transfer

. O Use the LMTD-F method to perform heat exchanger design problems.



98. O Use the e-NTU method to perform heat exchanger analysis problems.

99. O Define heat exchanger effectiveness, &

100.

101.
102.
103.

104.
the boiling curve

105.

which one is accompanied by larger heat fluxes

O Define number of transfer units, NTU

O Define boiling
O Sketch the boiling curve and identify the various regions on it
O Define critical heat flux and explain the concept of burnout

O Identify appropriate boiling correlations to find heat flux for various regions on

O Explain the difference between dropwise and film condensation, and identify

106. O Calculate the Reynolds number for film condensation

107. O Find appropriate Nusselt relations for film condensation

Note: Terms in bold are key concepts or vocabulary words that you should be able to
define. This is true whether or not the learning objective is explicitly to define them.




Notes and examples







You and Me and Heat Transfer (Makes Three)

So what is heat transfer?
B Defined in Thermodynamics as

B In Heat Transfer as a separate discipline:

B We are usually interested in the of heat transfer.

B We are interested in the of energy transfer.

B We deal with processes.

B We will be interested in the of temperature.
Why should I care?

B Heat transfer processes are encountered in large numbers of engineering

systems and other aspects of life. For example:
|

What can I expect to get out of this course?
B A working knowledge of heat transfer such that:
B you can describe physical systems in terms of heat transfer models
B you can determine heat transfer rate(s) or temperature
distributions for existing systems
B you can determine the size of a system to achieve a specified heat
transfer rate or temperature distribution



Details, I want details!
Who is the hottest person in the room?
B There are three modes of heat transfer. Specifically,

u ( + advection)

and require mediums.

does not.




Exercises

1.

A 2-kg copper bar (not to be confused with the downtown Terre Haute watering hole)
is initially at a temperature of T; = 25°C. It is then heated at a constant rate for two
minutes until the temperature is T, = 80°C. If the specific heat of copper is ¢ = 385 J /kg-
°C, find the rate of heat transfer into the copper in W.

The same copper bar is sandwiched between two isothermal walls maintained at con-
stant temperatures. The bar is 15 cm long with a cross sectional area of 2 cm2. If the
hotter of the two walls is 40°C and the thermal conductivity of copper is k = 400 W/m-
K, find the temperature of the colder wall for the same rate of heat transfer as in Problem
1.

A solid wall is maintained at 50°C. Air at a temperature of 25°C with a convective heat
transfer coefficient of 10 W/m?2 °C blows past the wall at a velocity of 0.25 m/s. Find
the rate of heat transfer from the wall to the air in W/ma2.

The speed of the air blowing past the wall in Problem 3 is increased to 5.0 m/s. Find the
new value of the heat transfer coefficient and the new rate of heat transfer.






NOTES: The three modes of heat transfer

Conduction

Convection

Radiation
A perfect
4=
Not so perfect

q:



NOTES: The three modes of heat transfer
Small body enclosed in much larger enclosure

qnet =

~



Examples

1.

A surface area of 2 m? has a steady, uniform temperature of Tsout = 13°C and an emis-
sivity of &= 0.93. The temperature of the surroundings to which this surface radiates is
268 K. Find the net radiation heat transfer (in W) from the surface to the surroundings.

Concurrently, air at 10°C blows over the surface. The resulting convective heat transfer
coefficient is h = 20 W/m?2-K. Find the convection heat transfer (in W) from the surface
to the air.

The surface is actually a makeshift roof of a clubhouse. The roof material is 13 mm thick,
and the inside temperature is Tsin =25°C. Assuming that heat transfer through the roof
is one-dimensional and steady, find the thermal conductivity (in W/m-K) of the roof
material. (Hint: You will have to make some assumptions about the heat transfer
through the roof material to get an answer here. Can you defend your assumptions?)






NOTES: The thermal energy balance
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Example

A long cylinder of cross section A is insulated along its outer diameter and is subject to a
uniform internal heat generation per unit volume of €. Assuming constant conductivity
k and specific heat ¢, find a differential equation describing the temperature distribution as

a function of length and time.




Example
The temperature distribution in a wall 1m thick at a certain instant of time is given as
T(x) = a + bx +cx?
where T is in <C and x is in m. The constants are a = 900°C, b = -300°C/m and ¢ = - 50°C/m2.

A uniform heat generation €, =1000 W/m?3 exists in the wall. The wall area is 10 m? and
has the following properties: p = 1600 kg/m3, k =40 W/m-K and ¢, = 4 k] / kg-K. Determine:

1. the rate of heat transfer entering the wall and leaving the wall. (x=0 and 1 m,
respectively),

2. the rate of change of energy storage in the wall, and

3. the time rate of temperature change at x = 0 and 0.25 m.






Example

Electric current is passed through a long

conducting rod of radius ri and thermal

conductivity kr, resulting in a uniform vol-

umetric heat generation of €, . The rod is

wrapped in an electrically non-conducting conducting rod
cladding with outer radius r, and thermal

conductivity k.. The entire rod/cladding

combination is immersed in a flowing Fo cladding
fluid with known heat transfer coefficient

h and temperature T.

(@) Reduce the conduction equation for steady-state conditions and state the appropriate
boundary conditions for the conducting rod.

(b) Reduce the conduction equation for steady-state conditions and state the appropriate
boundary conditions for the cladding.



Example

Jeff Spicoli is trying out a new surfboard designed for use on the northern California coast.
Since the NoCal waters are noticeably colder than those at Sunset Cliffs, the new board
makes use of electrical resistance heating. The surfboard has rectangular cross section and
has a width W that is much greater than its thickness H. The bottom of the surfboard is
initially in contact with the ocean at its lower surface, and the temperature throughout the
board is approximately equal to that of the ocean To. Suddenly Spicoli turns on the heater
and catches a tasty wave such that an electric current is passed through the entire board
and an air-stream of temperature T, is passed over the top surface at a constant rate. The
bottom surface continues to be maintained at To,

Assuming the board has a constant thermal conductivity k, obtain the differential equation
and the boundary and initial conditions that could be used to determine the temperature
as a function of time and position in the board.






ACTIVE LEARNING EXERCISE—Thermal resistance

Consider a chunk of material with thickness L and surface area A as shown in the figure.
The left hand face is maintained at a constant temperature T; while the right hand side is
maintained at a constant temperature of T>. Is the material has a constant thermal conduc-
tivity and is subject to 1-D steady-state conduction with no heat generation,

(a) find the temperature distribution T = T(x).

(b) Use your answer to (a) to find an expression for the rate of heat transfer through the
chunk, Q
(c) Rearrange your answer in (b) to look like

_ Tl _T2
~ something

—
v

= |
F———x






Example

Dr. Thom bakes lots of brownies. In the process, he drips large amounts of brownie goo in
his oven. He therefore is looking for a self-cleaning oven. One such oven design involves
the use of a composite window separating the oven cavity from the room. The composite
consists of two high temperature plastics (A and B) with thermal conductivities ka = 0.15
W/ (m<C) and ks = 0.08 W/(m K) and thicknesses La = 2Ls. During the self-cleaning pro-
cess, the oven air temperature is Ta = 400°C, while the room air temperature is T, = 25°C.
Convective heat transfer coefficients in and out of the oven are approximately 25
W/(m2°C).

(a) Find the minimum window thickness L = La + Lg needed to ensure a temperature of
50°C on the outer window surface. (Hint: Use the resistance analogy and draw a ther-
mal circuit. Assume that the cross sectional area of the window in 1 m? to make life
easier.)

(b) Repeat part (a) if there is also a radiation heat transfer coefficient inside the oven of hy = 25
W/(m2°C).

A=y

Ta=400°C
T, =25°C

Mmm,
brownie
goo La=2Ls Ls

L T=50°C







NOTES: Contact resistance

Contact resistance
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Example

A 10-mm diameter pipe containing a condensing refrigerant is to be insulated with a
material that has a conductivity of Kinsu = 0.055 W/m-°C. For the air surrounding the pipe,
Tair = 20°C and hair =5 W/m2-°C. The temperature of the refrigerant is -10°C. Assuming that
the inside wall temperature is the same as the refrigerant temperature

(a) calculate the rate of heat transfer per unit pipe length for an insulation thickness of t =

2 mm, and
(b) t=5mm.

Tairy hair
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NOTES: Fins
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NOTES: Fins
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Example

A straight aluminum fin (k = 200 W/m-K) is 3.00 mm thick and 7.5 cm long. It protrudes
from a wall whose temperature is maintained at 300°C. The ambient air temperature is Tair
= 50°C with hair = 10 W/m2-K. Calculate the heat loss from the fin per unit depth assuming

(a) an infinitely long fin, and
(b) an insulated tip with a corrected fin length.

/\ Tair , hair
Twall \ﬂ




Example

(c) Repeat part b) using the fin efficiency concept.
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NOTES: Fin effectiveness
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NOTES: Fin effectiveness
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Example

A motorcycle cylinder is constructed from 2024-T6 aluminum alloy (k = 186 W/m-°C) and
has a height of H = 0.15 m and an outer diameter of D = 50 mm. The temperature of the
outer diameter of the cylinder is 500 K under typical conditions. The surrounding air has a
temperature is Tar = 300 K with hair = 50 W/ m2-K. It is suggested that the heat transfer from
the motorcycle can be enhanced by adding annular fins of length L = 20 mm and thickness
t = 6 mm. Calculate the increase of heat transfer due to adding five such fins, all equally
spaced.







ACTIVE LEARNING EXERCISE: The lumped capacitance method

Consider a frozen olive initially at a temperature of T; that is dropped into a martini at a
temperature T... We then stir the martini with a flamingo swizzle stick. We are interested in
how the olive temperature changes with time, most notably how long it takes to warm up
to Te.

Write thermal energy balance for the frozen olive for the time after is dropped into the
martini. Assume that the entire olive is at only one temperature at any point in time. This is the
lumped capacitance assumption.

What is the mode of heat transfer to the olive?

Rewrite the thermal energy balance.

This is a linear, non-homogeneous first order differential equation. We can make is homo-
geneous by letting

o=T-T

o0
Do it!



Solve by direct integration:

Apply the initial condition:

The solution to this equation is given by

Rearrange a bit

T-T
o0

T T
| 0

where




Now this model says that the olive never reaches T, but it is generally accepted that 47 is
close enough. (At 4 ‘TC you're 98% of the way there).

If the convective heat transfer coefficient between an olive and the martini is h = 100
W/ (m?2 K) and the properties of a typical 2-cm diameter spherical olive are given by p = 850
kg/m3 and ¢, = 1780 J/ (kg 'K), we can calculate TC to be

IC=

which means that in about (or 4 TC) the olive has reached T..

In this, we assumed that the entire olive was at one temperature. In other words, we ignored
any temperature gradients within the olive and therefore any heat
transfer within it.! Was this a good assumption? Let’s find out.

The is a measure of the internal resistance to con-
duction of an object to the external convection to which it is subject. It is defined as

Bi

! Actually, we’re not ignoring it as much as we are assuming that it is infinitely efficient!



If the Biot number is small (Bi << 1) then this assumption isn’t too bad. With Kiive = 0.350
W/ (m2-C%) and Lenar = Vo/A = 1/3, for the macro-olive we get

100 )Y .00u3)m
Bj—__m-.c’ _

B <<1 Bi=1 Bi >>1




Example

Let’s take one last look at the frozen olive problem. We drop a frozen olive ini-
tially at a temperature of T; = 0°C into a martini at a temperature T., = 5°C. We
then stir the martini with a flamingo swizzle stick resulting in a convection co-
efficient of h =10 W/(m2 -C’). The olive is modeled as a sphere with 1-cm diam-
eter with p =850 kg/m?3, k = 0.350 W/ (m?2-C") and ¢, = 1780 J / (kg C°)

(a) Find the Biot number for the olive in the martini. Is the lumped capacitance
model OK?

(b) Find the time constant for the olive in the martini.

(c) How long does it take the olive to warm up to 4°C?

(d) What it the rate of heat transfer into the olive when T = 4°C? What is the total
amount of heat transferred (Q with no dot!) to the olive during this time?







NOTES: Transient conduction
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NOTES: Transient conduction
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NOTES: Transient conduction



CONCEPT QUESTIONS - Transient conduction

1. For the following questions, assume that the conductive body in question is initially all
at one temperature, T; and is put into a convective environment at time t = 0. The con-
vective environment has a heat transfer coefficient of 1 and is at temperature T..

a. Find an expression for the dimensions temperature (6) at the center of an infinite
slab of half thickness L as a function of time.

b. Find an expression for the dimensions temperature () at the center of an infinitely
long cylinder as a function of time.

c. Find an expression for the dimensions temperature (¢) at the center of a solid sphere
as a function of time.

d. Comment on your answers to a-c.

2. Find an expression for the maximum heat that can be transferred (Q with no dot) to a
slab, infinitely long cylinder or sphere as described in problem 1. (Hints: At what time
does Qmax occur? What is the temperature of the entire body at this time?)






Example

A one meter long aluminum cylinder 15.0 cm in diameter and ini-
tially at 200°C is suddenly exposed to a convection environment at
70°C and h = 573 W/ (m?2-K).

(a) Calculate the temperature at a radius of 1.73 cm 1 min after the
cylinder is exposed to the environment.

(b) Calculate the heat lost 1 min after the cylinder is exposed to
the environment. Express your answer in J.

T, =200°C

T, =70°C
h = 573 W/(m?K)
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NOTES: Conduction in a semi-00 medium
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NOTES: Conduction in a semi-00 medium
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NOTES: Conduction in a semi-00 medium
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Example

In laying water mains, utilities are concerned about the possibility of freezing during cold
periods. What minimum burial depth would you recommend for a water main under the
following conditions: Soil, initially at a uniform temperature of 20°C, is subjected to a con-
stant surface temperature of -15°C for 60 days. Assume the properties of soil to be p= 2050
kg/m3, k=0.52 W/m-°C, ¢ = 1840 ] /kg-°C and a = (k/pc) = 0.138 x 10-¢ m?/s.

Ti, soil = 20°C

e water main






Example

A semi-infinite aluminum cylinder (k = 237 W/m-°C, a =9.71 x 10> m?/s) of diameter D =
15 cmis initially at a uniform temperature of T; = 150°C. The cylinder is now placed in water
at 10°C, where the convection heat transfer coefficient is 1 = 140 W/m?2-°C. Determine the
temperature at the center of the cylinder 10 cm from the end surface 8 min after the start of
the cooling.

15cm T-=10°C
h = 140 W/m?2-°C







NOTES: Intro to convection
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NOTES: Intro to convection
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NOTES: Intro to convection
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NOTES: Intro to convection
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NOTES: Intro to convection
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Example

Air at a pressure of 6 kPa and a temperature of 300°C flows with a velocity of 10 m/s over
a plate of length 0.5 m. Estimate the cooling rate per unit width of the plate needed to main-
tain it at a surface temperature of 20°C.

T».=300°C o
Uso=10mls
Ts=20°C

P~ = 6 kPa r

«<—— L=05m —>







NOTES: External convection
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NOTES: External convection
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Example

Assume that a person can be approximated as a cylinder of 0.3-m diameter and 1.8 m height
with a surface temperature of 25°C. Calculate the body heat loss while this person is sub-

jected to a 15 m/s wind whose temperature is -5°C.

T =-5°C -
Ux=15m/s —:
L=18m

D=03m




Example

To enhance heat transfer form a silicon chip, a copper pin fin is brazed
to the surface of the chip. The pin length and diameter are L =12 mm
and D = 2 mm, respectively. The surface of the chip, and hence the
base of the pin are maintained at a temperature of Tp = 350 K. The pin

is subject to atmospheric air in cross flow with V=10 m/s and T.. =
300 K

(a) What is the average convection coefficient for the surface of the
pin?

(b) Assuming h at the tip of the fin to be the same as that calculated
in a), calculate the heat transfer rate from the pin. (I.e., assume an
insulated tip with a corrected fin length.)

RS




EXERCISE: Find the correlation

1. A fluid flows past a flat plate of length Z=1.0 m maintained at a constant temperature.
The Reynolds number based on plate length is found to be Re=2.0x10¢ and the Prandtl
number of the fluid is Pr=0.9. You wish to know the rate of heat transfer from the plate.
What correlation for Nudo you use?

2. A fluid flows past a flat plate of length Z=1.0 m maintained at a constant temperature.
The Reynolds number based on plate length is found to be Re=2.0x10* and the Prandtl
number of the fluid is Pr=0.9. You wish to know the rate of heat transfer from the plate.
What correlation for Nudo you use?

3. A fluid flows past a flat plate of length Z=1.0 m maintained at a constant temperature.
The Reynolds number based on plate length is found to be Re=2.0x10¢ and the Prandtl
number of the fluid is Pr=0.9. You wish to know the heat flux at the trailing edge of the
plate, i.e., at x=L. What correlation for Nu do you use?

4. A fluid flows past a flat plate of length Z=1.0 m maintained at a constant temperature.
The Reynolds number based on plate length is found to be Re=2.0x105 and the Prandtl
number of the fluid is Pr=0.9. You wish to know the rate of heat transfer from the plate.
What correlation for Nu do you use?

5. A fluid flows past a flat plate of length Z=1.0 m subject to a constant surface heat flux.
The Reynolds number based on plate length is found to be Re=8.0x105 and the Prandtl
number of the fluid is Pr=0.9. You wish to know the heat flux at the trailing edge of the
plate, i.e., at x=L. What correlation for Nudo you use?



6. A fluid flows past a flat plate of length Z=1.0 m maintained at a constant temperature.
The Reynolds number based on plate length is found to be Re=8.0x105 and the Prandtl
number of the fluid is Pr=0.9. You wish to know the heat flux at a location x=0.25 m
from the leading edge of the plate. What correlation for Nu do you use?

7. A fluid flows past a flat plate of length Z=1.0 m maintained at a constant temperature.
The Reynolds number based on plate length is found to be Re=8.0x10% and the Prandtl
number of the fluid is Pr=0.9. You wish to know total rate of heat transfer from the
plate. What correlation for Nu do you use?

8. A fluid at temperature 7. flows past a flat plate of length Z=1.0 m subject to a known
constant surface heat flux g. The Reynolds number based on plate length is found to be
Re=2.0x105 and the Prandtl number of the fluid is Pr=0.9 You wish to know the surface
temperature at the trailing edge of the plate, i.e., at x=L. What correlation for Nudo you
use and how do you calculate the temperature?



NOTES: The Prandtl number
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NOTES: Internal convection

TWO TYPES OF s EXTEENAL

/L Oﬁ/b e (NTERNAL

! EXT'E:ENAL\ ] INTERNAL

i
P e '
Al
A}
\
-
.

[ﬁNTEG NAL FLOWﬂ — S

R, —

¢ How does inlernal i adiffer fom extana/ 7‘7:’&«’
in terms o buundsy leyers T

VELOC\TY (MOMPMTUMY  BOUND. LAYER
i

27 : 90 ‘75’0’-’ ﬁy)ﬂff
(I S Cplorf) & Py
R to ke }fiﬁ/pt’/ 77
lhe (/(’Vf/q()fﬂy

THECMAL  BOUNDARY LAXER re5n o the

futy circlys
e 2 //V/aj 7




NOTES: Internal convection

MOU CAN SEE TRAT  [=Vor) & 7 =76) i THE (WTECNAL FLOW

Fiw ALunn

CASE . LET US DEFINE, THEM

T

s O FIND

O=hACT, ~72)

@E WHAT T_=T, Do 1 use D

TAKE A SMALL SUCE o PIPE

Cons ié-_f?fiﬁ; —

. AE . .
% r = QL AW+ S A,
- P TrdT Ac e
j'E\ —S Mihr..)
¢ M—— PeRiMETER o
7
1 " @

LEQN 1]



NOTES: Internal convection
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NOTES: Internal convection
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NOTES: Internal convection
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Example

The average convection coefficient for water flowing through a circular tube is to be deter-
mined experimentally. In the experiment, steam condenses on the outer surface of a thin-
walled circular tube with 50-mm diameter and 6-m length. This maintains the tube at a
uniform surface temperature of 100°C. Water flows through inside the tube at a rate of m=
0.25 kg/s, and its inlet and outlet temperatures are T = 15°C and Tme = 57°C, respectively.
What is the experimentally determined average convection coefficient associated with the
water flow?

Ts=100°C







Example

Water flows through a section of 2.54-cm diameter tube 3.0 m long. The water enters the
section at 60°C with a velocity of 2 cm/s. Assuming that the flow is fully developed (buzza

buzza buzz) by the time it enters the region of interest and that the wall is subject to constant
wall heat flux,

(@) calculate the wall heat flux (in W/m?) needed to heat the water to 80°C.
(b) Calculate the wall temperatures at the inlet and the exit.
(c) Repeat part a) and b) if the velocity of the water is increased to 2 m/s.

:@ @::>
Tmi = 60°C 2 Tme =80°C






Example

Water flows through a section of 2.54-cm diameter tube 3.0 m long. The water enters the
section at 60°C with a velocity of 2 cm/s. Assuming that the flow is fully developed (buzza
buzza buzz) by the time it enters the region of interest and that the wall is subject to constant
wall heat flux,

(a) ealewdate-the-wallheattho(in-W/m?)needed-to-heat-thewater to-80°c: DONE!
(b) i it: DONE!
(
(

C) i i 5 - DONE!
d) Find the pressure drops and the pumping powers required for the two velocities
above.

—q =7

:@ @::>
Tmi = 60°C 2 Tme = 80°C







NOTES: Natural convection
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NOTES: Natural convection

NOW RATHER THAM A RUBBER DUGIE LET'S SAY YoU VE &OT
A FLUW PaTICLE THATS T A MEDIWUM TWHAT'S

W
F-uer,u? = j
WHAT DO YOoU ENnoW
AROUT oF  Hov
F, S

N

FLUIDS = COMPAZED
T € of CoLD FLuws? |

WE SEL THEN THAT

CAUSE

C AUSE

AND WHERE THERE'S THERE'S  CoNVE TG,

THAT'S  NATURAL CONVECTION !




NOTES: Natural convection
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NOTES: Natural convection
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ACTIVE LEARNING EXERCISE—Natural convection boundary layers

Remember that one interpretation of Prandtl number is a measure of the relative thickness
of a momentum (velocity) boundary layer to a thermal boundary layer. With this thought
in mind,

1. sketch the momentum and thermal 2. Sketch the momentum and thermal
boundary layers for natural convec- boundary layers for natural convec-
tion on a vertical wall with Ts > T., if tion on a vertical wall with Ts > T., if
Pr > 1. Include the variation of veloc- Pr < 1. Include the variation of veloc-
ity and temperature across the layers. ity and temperature across the layers.

Te Te

\ T5>Tm \ T5>T°°

Pr>1 Pr<i1







Example

A large vertical plate 4.0 m high is maintained at 60°C and exposed to atmospheric air at
10°C. Calculate the heat transfer rate from the plate if it is 10 m wide.

Ts=60°C

e
Tair = 10°C
A




Example

The surface of a horizontal pipe 1 ft (0.3048 m) in diameter is maintained at a temperature
of 250°C in a room where the ambient air is at 15°C. Calculate the free-convection heat loss

per meter of length.

Tw =5°C

\ Ts = 250°C



ACTIVE LEARNING EXERCISE—Natural convection in enclosures

1. Imagine a vertical plate at a temperature Ts; in a quiescent fluid at T.. Assuming that
Ts1 > To, sketch the velocity boundary layer that forms as a result of the temperature-
induced density gradients next to the wall.

T

Tsyl > T, _/

2. Now imagine a vertical plate at a temperature Ts1 in a quiescent fluid at T, but this time
assume that Ts1 < T, sketch the velocity boundary layer that forms as a result of the
temperature-induced density gradients next to the wall.

\_ Ts2<Tw

3. Let us bring the two vertical plates close to each other, and then cap the top and bottom
to form an . Sketch what you think the flow pattern of fluid would
look like in the enclosure.

Ts,l >Tw —/ \_ Ts,z < Too

4. We know the fluid is not stationary, but if it were, what would be the mode of heat
transfer between the walls?



5. For steady state, write an expression for the rate of heat transfer between the two walls
assuming no fluid motion.

surface area
— L —||/ )
v A

Ts,l >Tw —/ \_ Ts,z < Too

6. Since there really is fluid motion, we know the mode of heat transfer is .
Does it make since to use (Ts1 - T) as the temperature difference for the total heat trans-
fer rate across the entire enclosure? What about (Ts.2 - T.)? What temperature difference
does make sense to use? What would your expression for the rate of heat transfer look
like, then?

7. We can still calculate the rate of heat transfer assuming we have steady-state, 1-D con-
duction as in part 5., if we use a pretend, effective conductivity of the fluid.

This pretend conductivity is larger/smaller than the actual conductivity due to the fluid
motion. (circle one)

And so finally, equate your expressions for heat transfer rate in parts 5. and 6., but write
the equation and solve it for the effective thermal conductivity of the fluid. (Hint, re-
member that Nu = hLcn/k where K is the real thermal conductivity of the fluid.



Example

A double pane window is 40 cm high and 1 m wide. The air gap between the two pieces of
glass is 1 cm. The inside and outside temperatures of the window are 22°C and -15°C, re-
spectively. Neglecting the thermal resistance of the glass,

(a) calculate the rate of heat transfer through the glass ignoring the effects of natural con-
vection; i.e., if heat transfer is by conduction only.

(b) Calculate the rate of heat transfer through the window considering natural convection.
(c) Repeat part b) if the gap thickness is increased to 2 cm. Discuss the results.

22°C|
| -15°C

40 cm

5

airgap, 1 cm






Example

In a fit of temporary insanity, a frustrated Rose student painted a piece of ply wood to
resemble a giant novelty-sized heat transfer book, took it to the front lawn, and set it on
fire. Luckily, the fire was put out quickly and no one was hurt. Sometime after the fire was
put out, it was observed that the "book" temperature was 85°C and the surrounding air
temperature was 29°C. A small fan was placed beneath the "book" to aid in its cooling.

(a) Determine the minimum air velocity for which natural convection is negligible.
(b) Find the rate of heat transfer from the "book" if the air velocity is 5 m/s.

Heat

5m
pr. THO"







ACTIVE LEARNING EXERCISE — Non-dimensionalization

Remember the velocity (momentum) boundary layer equation (conservation of

applied at within the boundary layer)?

Now if we have buoyancy as well, we have to add a buoyancy term:

~

2
W2 Y

ox oy oy 2

Non-dimensionalization gives us a way to weigh the relative importance of different phys-
ical phenomena. One way to arrive at these dimensionless groups is to use the Buckingham
Pi Theorem to derive the dimensionless groups, or pi terms, directly. Another way is to
define dimensionless versions of the variables which show up in the working equations,
and then to substitute those variables into the equations. For example, a dimensionless ver-
sion of the x-direction velocity, u is given by:

u" = u/Us

Wherever the variable u shows up in the boundary layer equation, then, we would substi-
tute u'U., instead.

Let us continue with this idea by defining dimensionless versions of the rest of the variables
and substituting...






Radiation terms

Radiation heat transfer lingo is bountiful. To make matters worse, many of these terms seem
like they should mean the same thing, but actually refer to different concepts. Below is a
list of some of these terms. You are encouraged to write the definitions of these terms as
you come across them in the readings. A clear understanding of what these terms mean will
make your study of radiation go more smoothly.

ABSORPTIVITY

BLACK BODY

DIFFUSE

DIRECTIONAL

EMISSIVE POWER

EMMISIVITY

GRAY

IRRADIATION

(MORE ON BACK)



OPAQUE

RADIATION

RADITIATION INTENSITY

RADIOSITY

REFLECTIVITY

RERADIATING SURFACE

SHAPE (VIEW) FACTOR

SPECTRAL

TOTAL, TOTAL HEMISPHERICAL

TRANSMISIVITY



ation
E Introduction to Radiation g




NOTES: Intro to radiation
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NOTES: Intro to radiation

Types of radiation as a function of wavelength
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NOTES: Blackbody radiation

BLACKPODY RADIATION ®
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NOTES: Blackbody radiation
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NOTES: Blackbody radiation

Ep 4

)

Eb. 0-A l(T) -

Eb/l('l’ T)

R
>V






Example

Consider a large, isothermal enclosure that is maintained at a uniform temperature of 2000
K.

(a) Calculate the emissive power of the radiation that emerges from a small aperture on the
surface.

(b) What is the wavelength below which 10% of the emission is concentrated?

(c) What is the wavelength above which 10% of the radiation is concentrated?

(d) Determine the maximum spectral emissive power and the wavelength at which it oc-

curs.

enclosure

T=2000K






NOTES: Radiation properties
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NOTES: Radiation properties
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NOTES: Radiation properties
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NOTES: Radiation properties
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Example

The reflectivity of aluminum coated with lead sulfate is 0.35 for radiation at wavelengths
less than 3 um and 0.95 for radiation greater than 3 um. (This is the spectral reflectivity.)

(a) Determine the average absorptivity of this surface for solar radiation. (T = 5800 K). As-
sume that the incident radiation is well approximated by black body radiation. (Hint:
Can you relate reflectivity to the absorptivity?)

(b) Determine the absorptivity of the surface for radiation coming from sources at room
temperature (T = 300 K). Ditto on the B-B stuff, and the hint too.

(c) Determine the emissivity of the surface at 300 K. Based on your results, would this be
good stuff to use for solar collectors? Why or why not?






NOTES: Solar radiation
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Example

The wall of a 6-m tall building is made of red brick, for which the emissivity, ¢, is 0.93 and
the solar absorptivity, o, is 0.63. On a sunny day, it is observed that the direct and diffuse
components of solar radiation are Gp = 900 W/m?2 and G4 = 500 W/m?, respectively, and
that the sun makes a 48.2° angle with a normal to the surface of the wall. The outside tem-
perature of the brick is 54°C, and the ambient air temperature is 20°C.

(a) Calculate the heat flux, in W/m?, from the wall due to convection.

(b) If the heat flux through the brick due to conduction is 154 W/m?2 (into the building),
what is the effective sky temperature?

% Tair = ZOOC

Goong = 154 W/m3




NOTES: View factors
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Example

Two concentric cylinders are nested together coaxially as shown in the figure. Assuming
the surfaces are diffuse,

(a) calculate the fraction of radiation leaving the outer surface of the inner cylinder that
goes through the top and bottom openings.

(b) Calculate the fraction of radiation leaving the outer surface of the inner cylinder that
goes through just the top opening.

(c) Calculate the fraction of radiation leaving the inner surface of the outer cylinder that
goes through the top and bottom openings.

Douter = 10 cm

(=>

L=25cm

Dinner = 6 cm
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NOTES: Radiation between black surfaces
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NOTES: Radiation between black surfaces
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NOTES: Radiation between black surfaces
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Example

Two blackbody rectangles, 0.6 m by 1.2 m, are parallel and directly opposed. The bottom
rectangle is at T1 = 500 K and the top rectangle is at T = 900 K. The two rectangles are 1.2 m
apart.

(a) Find the view factors Fi.; and Fz1.

(b) Find the radiant exchange between the two surfaces.

(c) Find the rate at which the bottom rectangle is losing energy if the surroundings (other
than the top rectangle) are considered to be a blackbody at 300 K.

For the heat transfer calculations, you are strongly encouraged to draw all relevant resistors and
currents (heat transfer rates).






Example

Reconsider the last example, but this time assume the surfaces are both diffuse and gray
with & = & = 0.7. Otherwise, the conditions are the same. (The bottom rectangle is at T; =
500 K and the top rectangle is at T = 900 K. The two rectangles are 1.2 m apart. The
surroundings can be considered a blackbody at 300 K.)

(a) Draw a resistance network showing all the relevant heat transfer rates and resistances.
(b) Find the net radiant exchange between the two surfaces.

(c) Find the rate at which the bottom rectangle is losing energy.

(d) Repeat (b) and (c) if the surroundings are treated as a reradiating surface instead.






Example

A cryogenic fluid flows through a long tube of 20 mm diameter, the outer surface of which
is diffuse and gray with & = 0.02 and T1 = 77 K. (Ooh, that’s cold!) The tube is concentric
with a larger tube of 50 mm diameter, the inner surface of which is diffuse and gray with &
= 0.05 and T, = 300 K. The space between the surfaces is evacuated. If the tube is 1 m long
(into the paper)

(a) calculate the heat gain by the cryogenic fluid.

(b) If a thin radiation shield of 35 mm diameter and & = 0.02 on both sides is inserted mid-
way between the inner and outer surfaces, calculate the heat gain by the cryogenic fluid.
What is the percentage change in heat gain?

no shield with shield
T2=_300K Ds = 35 mm
D = 50 mm &= 0.02 (Both sides)
& =0.05
T1=77K
D1 =20 mm

&= 0.02






NOTES: Heat exchangers

ﬁ)’ou'@ﬁ_ PIPE. (POUBLE PIPE) HEAT EXCH&MQER?E

FLUAD
1] .
q_ e N \)/ ‘»
| FLUD —/ l

NOTATION: T Ed.,
Tt: : _I_C,c\.'l' -
(IN) 2 |
IGIIOR Th,in=

[Two ARRANGEHENT| ———=

mp R

} 1
~= T e e
| } |

AIfUMPTIONS TOR ANALYSIf!
i3 )

2) H)



NOTES: Heat exchangers
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NOTES: Heat exchangers
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Example

A counter-flow double-pipe heat exchanger is to heat water from 20°C to 80°C at a flow rate
of 1.2 kg/s. The warmer fluid is geothermal water available at 160°C and a flow rate of 2
kg/s. The inner tube is thin-walled with a diameter of 1.5 cm. If the overall heat transfer
coefficient is 640 W/m?2-C?, find the required heat exchanger length.

| |
U |

)




Example

Reconsider the last example, but this time make the heat exchanger a parallel flow design.
As before, the heat exchanger is a double-pipe design, and is used to heat water from 20°C
to 80°C at a flow rate of 1.2 kg/s. The warmer fluid is geothermal water available at 160°C
and a flow rate of 2 kg/s. The inner tube is thin-walled with a diameter of 1.5 cm. If the
overall heat transfer coefficient is 640 W/m2-C°, find the required heat exchanger length.

| |
U |

)




ACTIVE LEARNING EXERCISE—HXR flow directions

Of the two heat exchangers in the
last two examples, which one is
better? Why?

Why is this the case?

Let’s explore this a bit more. Consider a parallel flow heat exchanger with a warm fluid inlet
temperature Thin and a cold fluid inlet temperature Tcin. Sketch the variation of fluid
temperatures with heat exchanger axial location, X (or area, A).

Th,out T
|_> X (or A)

Tc,in Tc,out

Thin T

temperature

A

» X (orA)




Now consider a counter-flow arrangement of the same heat exchanger. The warm fluid inlet
temperature is still Thin and the cold fluid inlet temperature is still T¢in. Sketch the variation
of fluid temperatures with heat exchanger axial location, x (or area, A).

|_> X (or A)

Thin l

Tc,in

Th,out l

temperature

4

A

»

»

x (or A)

TC,OUt



NOTES: Heat exchangers
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NOTES: Effectiveness-NTU method
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NOTES: Effectiveness-NTU method
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NOTES: Effectiveness-NTU method
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Example

0.2 kg/s of hot oil (¢, = 2200 J/kg-°C) is to be cooled by water (c, = 4180 J/kg-°C) in a 2-12
shell and tube HXR. The water flows through thin-walled tubes with a diameter of 1.8 cm
at a rate of 0.1 kg/s. The length of each tube pass is 3 m and the overall heat transfer coef-
ficient is 340 W/m2-°C. (Tube side or shell side? Does it matter?) The inlet temperatures of
the oil and water are 160°C and 18°C, respectively.

(a) Find the rate of heat transfer in the exchanger and
(b) the exit temperatures of both fluids.

1







ACTIVE LEARNING EXERCISE: e-NTU Discovery Session

The effectiveness-NTU (e-NTU) method not only gives us an easy way to perform heat ex-
changer analysis problems, it gives us physical insight into the performance of HXRs. The
basis of this insight is that the effectiveness, ¢, tells us how well our HXR performs compared
to the theoretically best heat exchanger. Using the e-NTU relationships (equations and
charts), answer the following questions.

(1) What is the possible range for effectiveness? (Holy cow, that’s easy!)

(2) For a given NTU and C, which heat exchanger construction/flow direction combination
has the highest effectiveness?

(3) How does effectiveness vary with C?

(4) For what value of Cis effectiveness at its maximum?

a. How does this value of C for & .. vary with HXR type? flow direction?



b. For this value of C, what does this mean for one of the fluid's ma.c, value? What
does it mean about this fluid physically?

(5) If NTU < 0.3, which equation would you use for €2 Why?

(6) Let’s say you are thinking about increasing the effectiveness of your HXR by increasing
its UA value. You can do this in two ways:

a. You can increase flowrate(s) which increases h(s) and thereby U. But that means in-
creasing your operational cost. (Bigger Ap means bigger pumping power required.)

b. You can increase A, but that increases the capital cost of the HXR. (Bigger A means
more material to build the HXR.)

By consulting the ¢ -NTU charts, come up with a criterion by which you can determine
whether it is worth the increase in either operational or capital cost to increase your UA.
(Hint: Think about where UA shows up in the e-NTU method.)
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NOTES: Boiling heat transfer
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NOTES: Boiling heat transfer
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NOTES: Boiling heat transfer
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NOTES: Boiling heat transfer
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NOTES: Boiling heat transfer
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Example

A starving Rose-Hulman student is preparing Ramen Noodles in a copper-bottomed pan
bought from Goodwill. The diameter of the bottom of the pan is 0.3-m, and is maintained
at 118°C by an electric heating element.

a) Estimate the power required to boil the water in the pan.

b) What is the evaporation rate?

c) Estimate the critical heat flux.

d) Estimate the number of shrimp used to create one flavor packet for shrimp-flavored
Ramen Noodles.

(
(
(
(

s=118°C







Exira materials

Cartoon summairies, charts, tables, and other
miscellaneous resources






Forms of the conduction equation
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Forms of the conduction equation

Conduction equation
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properties?
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Conduction model flowchart

\ 4

. L Yep
1-D, steady-state, 4//)893/—' Stuff changing with time? —— Transient
constant properties,

no generation?

\ 4

Ye Bi=hLgr/k<0.17?
. Neither? . Ap/
Is it Lumped capacitance
or model

1-D conduction,
nothing happening Long, skinny, Y 1-D?
. . . . ep
perpendicular to it? convection perpendicular
y to conduction What geometry/direction? Nooe
ep
l Yep
Resistance analogy Fo>02?
Model as a fin
Semi-infinite solid Infinite
plane/cylinder?
sphere?
L>5(1/m)? Yen
Nope
Yep Nope Fo>0.27 Nope Construct 3-D geometry
Yep P * from 1 term approximations

Adiabatic tip

and superposition

Infinitely long fin (with corrected

fin length)

1t term approximation

of infinite solution
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THE LUMPED CAPACITANCE METHOD
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HoW T PERFORM A

o . il BECOME AWARE o THE
GENERIC GEOMETRY 1S T A RAT
CONVECTION PLATES A CYLINDERT

MCALCULATION

| D SPECIF( THE APPROPRIATE
W REFERENCE TEMPERATURE
& FIND THE FLUWD PROPECES,

USUALLY  (NoT ALWAYS) Y0U WANT THE

FILM TEMPER NTURE -

g\/(Lof‘De'\r) _ V (L,D ete)
H 2

% cAReFUL !

4}0 DEGIDE IF YoU WANT THE LOCAL 02 AVERALE
HEAT" TRANSER COEFFICIENT. B

5° SEIECT THE APPROPRIATE INVSSELT CORPELATIA.

( PEM EMBER Ny = h(L,Detz.) )

2 e
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i,
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SUMMARY o} COREELATIOMSL

( FOR EXTERNAL FlLow!)

o ———

P —

lCorrelations for Ts = const. Boundary Condition]

Correlation Geometry Conditions
C;, = 0.664Re, " Flat plate Laminar, Local, Use Ty
Laminar, Local, Use T}, Pr
_ 12p 173 ) , I3
Nu, = 0.332Re, “Pr Flat plate > 06
C;=1.328Re, " Flat plate Laminar, Average, Use Ty
Nu= 0.664Re,"Pr'" Flat plate I&%‘Tﬁ *<A5V(‘;rage’ Use Ty
Turbulent, Local, Use T,
— -1/5 3 ) I
G =0.0592Re, Flat plate 5% 10° < Re, < 107
Turbulent, Local, Use T},
Nu,= 0.0296Re,**Pr'"? Flat plate 5% 10° < Re, < 10’ Pr>
0.6
. Turbulent, Average, Use
_ 1/5 ) )
Cr=0.074Re,, Flat plate T, 5% 10° < Re, < 107
Turbulent, Average, Use
Nu= 0.037Re,**Pr'? Flat plate Te, 5% 10° < Re, < 107 Pr
> 0.6
Mixed laminar and
_ 5 1 turbulent flow, Average,
C;=0.074Re; " - 1742Re;, Flat plate Use T;, 5 % 10° < Re, <
107
Mixed laminar and
_ 415 113 turbulent flow, Average,
Nu=(0.037Re;"" - 87T1)Pr Flat plate Use T 5 105 < Re, <
107 0.6 < Pr < 60
0.62Re 1/2Pr1/3 51872
Nup =03+ D YERID Circular Average, Use T;, RepPr >
(1+04/Pr)y~ 7] cylinder 0.2
1/4 Average, Use T.. for all
1/2 2/3 oo i
Nup =2+[04Re "% +006Re *'* 1pr04| B properties except s, for
D D Sphere which you use T, 3.5 <

Re < 80,000,0.7< Pr<
380

Circular and

Average, Use Ty, Use
Tableg In text to

Nu = CRe"PY noncflrcu]ar find C. m and » and Re
cylinders
ranges.
ICorrelations for ¢ = const. Boundary Condition|
Correlation Geometry Conditions
Nu,= 0.453Re,"*Pr'” Flat plate Laminar, Local, Use T}, Pr> 0.6
Nu= 0.906Re,2Pr'" Flat plate Iggmmar, Average, Use T, 0.6 < Pr<
_ 4455 113 Turbulent, Local, Use T, 5 x 10° <
Nu, = 0.0308Re,”Pr Flat plate Re, < 107, Pr>0.6
5
Nu,= 0.0385Re,pr'” Flat plate Turbulent, Average, Use T, 5 x 10° <

Re, < 10" Pr>0.6




HOW T0 PERFORM A _

I - Lyleryal Flow' )

i) BECOME AWARE ¢ THE GlZO;:__LM
@ ﬂl \F ITS A AMON/- g/BCULAE ez,
N — FIND

GENERIC ZTN THE

CONVECTION D= —/ HYDRAULIC

CALCULATION P DIAMETE R

\m-"ﬂ!;/ @ SPEC\FY THE APPROPRIATE
0

REFERENCE TEMPERATURE *.

e

FIND THE FWID PROPERMES. VUSUALL{ (NOT ALWANS) YoU
WANT THE

BULK MEAN FLUWD TEMPERATURE

+ OETERMINE I THE FLOW 1S

FULLY- DEVELOPED  -oc-  DEVELOPINC



HOW To PERFORM A @ - /lefxl’d/ fdm/fcllz@

4, BEOME AWARE o THE

RSt o CEOMETRY

1007 NaTWRAL

GENERI(, 2, SPECIFY THE APPROPRIATE
CONVECT|ON REFERENCE TEMPERCATUEE
2 FIND THE PROPERTIES
) sy T fL TEMPERKTLRE

4 SELECT THE APPROPRIATE NUSSELT CORRELATION.

g%’ ASSUMED B.C. ON MOST CORRELATIONS 15 T, =CONST.
@ W/méfoéofg =6073icmzf?

o

—

P77
77720707

V

D ABOVE 4 STEPS W/
THESE CRANGES C>

SUREACE 2777



ng VSE Ty = ot lee ;—r‘z

BE, USE (T,-T,.) D Fno G /e Ra.

5@0 FIND /éﬂ:;:‘ =é;u,m 'Nu « THEN TREAT THE
ENCLOSED sPAE AS A SOLID SUBJET TO
S-S , 4-D CONDWTION (W bsus =bpm)

- o

COMBINE ONE PAQTY
FORCED CONVECTGM

FORCED & NATURAL

CONVECTI6N
L. <o ONLY FORCED CONVECTIN
Re 15 IMPHRTANT
Qr_.z > 10 ONUY NATURAL CONVECTION
Re 1S IMPORTANT

O1< &0 <10 B ARE IMPORTANT
ke AND YOU NEED [>

-
| N = (N, = Nui,) h

ik S o e 7 _A-Tm_ =]

m M + IF MC l‘_%n N;—L‘Z?L
= IF NC "HueTs’ —



4P, DETERMINE THE BOUNDARY CONDITYUN . \F ITS
T, = CONSTANT (& YoU WANT THE AVEL4LE k)

0L NEED THE
LOG MEAN TEMPERATURE DIFFERENCE

/
0

e ————— e T T

P
AT ; E‘-s —TM\QUD - C‘r‘ﬁ-—rﬁ\.‘n)
[ 0
An Ta-Taor
Ts- Tm,:n

SELECT THE
APPROPRIATE
CORRELATLN ..

7 Sl ol

ﬁ[‘ SUMMARY o CORRELAT m@[ﬁ{

ICorrelations for Ts = const. Boundary Condition|

( Fo? INTERNAL,  FLOW)
C-—/

-~

Correlation

Geometry

Conditions

f= 64/R€D

Circular duct

Laminar, Fully developed,
Use T,

NuD = 3.66

Circular duct

Laminar, Fuily developed,
Use T},

RePrD (1
Nu =1.86 —
L H

]0.14

Circular duct

Laminar, Developing, Use
T, for all properties except
Us, for which you use Ty

f=constant/Rep,,

Non-circular duct

Laminar, Fully developed,
Use T, Use Tableg - in
+ex{ to find constant

Nup, = constant

Non-circular duct

Laminar, Fully developed,
Use T.. Use Tables . in
text 4o find constant

f=0.184Rep,

Circular or non-
circular ducts

Turbulent, Fully developed,
smooth surfaces, Use T},

f= Use Moody Chart

Circular or non-
circular ducts

Turbulent, Fully developed,
smooth or rough surfaces,
Use Tb

Nupy = 0.125*f*Rep,*Pri?

Circular or non-
circular ducts

Turbulent, Fully developed,
smooth or rough surfaces,
Use T,

Nupy, = 0.023*Rep,>3*pr"

n = 0.4 for heating

= 0.3 for cooling

Circular or non-
circular ducts

Turbulent, Fully developed,
smooth or rough surfaces,
Use Ty, 0.7 < Pr < 160, Re >
10,000

ICorrelations for § = const. Boundary Condition|
Geometry

Circular duct

Conditions
Laminar, Fully developed, Use T},
Laminar, Fully developed, Use T,
Use Tables in texT tofind
constant
Turbulent flow is rather insensitive to boundary conditions. Use previous correlations.

Correlation
Nup = 4.36

Nup, = constant Non-circular duct
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