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Introduction

L. Euler considers convenient numbers, that is, numbers N for
which a positive integer n has a unique representation of the form

n = x2 + Ny2 with gcd(x2,Ny2) = 1 if and only if n is a prime,

a prime power, twice one of these, or a power of 2. The set of
known convenient numbers, that is, the set

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, . . . , 1848}

consists of 65 numbers, and it is conjectured that these are all of
them. When we look at this set, we see that 11 is the first
inconvenient number. So, it is a natural question to ask which
positive integers have a representation of the form n = x2 + 11y2

with gcd(x , 11y) = 1, and when this representation is unique.
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Introduction

For the study of prime numbers of the form p = x2 + Ny2, there is
a huge literature, and many deep results have been found. In
particular, using these results, we can characterize prime numbers
of the form p = x2 + 11y2 as in Theorem 29.
However, for general positive integers of the form n = x2 + 11y2,
much less seems to be known. An algorithm for computing such a
representation, if it exists, is given by Özgür, but no
characterization is given when such a representation exists. One
reason for these difficulties may be that, since the quadratic form
x2 + 11y2 has discriminant -44 and its form class number is
h(−44) = 3, one should not expect simple congruence relations
that decide whether n is or is not of the form n = x2 + 11y2.
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Introduction

In another vein, B. Fine proved Fermat’s two-square theorem, that
is, the characterization of primes representable by x2 + y2, using
the modular group PSL2(Z). The second author, together with G.
Kern-Isberner, extended this method to all forms x2 + Ny2 such
that h(−4N) ≤ 2 and N 6= 15. In particular, they showed that, in
these cases, one may in essence characterize numbers of the form
x2 + Ny2 by the conditions that −N is a quadratic residue
modulo n, that n is a quadratic residue modulo N, and possibly a
simple congruence condition. This approach met with some
obstacles for the convenient number N = 15, because the
underlying class group G15 has a more complicated structure.
Notwithstanding such impediments, we attempt to generalize these
group theoretic methods further to the first inconvenient case
N = 11, and the central idea by Kern-Isberner and Rosenberger of
the current paper is to follow the approach in order to deduce as
many results about positive integers of the form n = x2 + 11y2 as
possible.
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Introduction

Let us have a closer look at the contents of the paper. In Section 2
we lay the group theoretic foundation. Our main goal here is to
introduce the class group G11 of level 11 and to give a detailed
description of its structure. In particular, we prove that there are
four conjugacy classes of elliptic elements of order 2, we provide
concrete matrices t1, t2, t3, t4 representing these conjugacy classes,
and we give an explicit presentation of G11 in terms of these
elements (see Corollary 8).
This allows us in Section 3 to initiate the study of the numbers of
the form x2 + 11y2 as follows: by conjugating the matrix
t1 =

(
0 1
−1 0

)
with an element of G11, we get a matrix whose top

right entry is of the form x2 + 11y2, where x , y ∈ Z and
gcd(x , 11y) = 1. Conversely, given a number n such that 11 - n,
such that n is a quadratic residue modulo 11, and such that −11 is
a quadratic residue modulo n, we construct an elliptic element
An(`) of order 2 in G11.
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Introduction

Then An(`) is conjugated to exactly one of the matrices ti , and n
is of the form n = x2 + 11y2 if and only if An(`) is conjugated
to t1. For i = 1, . . . , 4, let Si be the set of integers n for which the
top right corner of An(`) is n and An(`) is conjugated to ti . Thus
we are interested in

S1 = {n = x2 + 11y2 | x , y ∈ Z; gcd(x , 11y) = 1}

We prove that S2 = S3 and S4 = 2S2 (see Proposition 17) and
that S4 is easily discernible, since its elements n are exactly the
ones satisfying n ≡ 2 (mod 4). Consequently, the main task is to
distinguish S1 from

S2 = {n = 4x2 + 22xy + 33y2 | x , y ∈ Z; gcd(x , 11y) = 1}

inside C = S1 ∪ S2. We also show that the even numbers in C are
precisely the fourfolds of the odd numbers in C (see
Proposition 21) and that the set of odd numbers in C is
multiplicatively closed (see Proposition 22).
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Introduction

In order to move on, we need to introduce some methods of
Algebraic Number Theory in Section 4. More precisely, since
x2 + 11y2 = (x + y

√
−11)(x − y

√
−11), we look at the algebric

number field Q(
√
−11), its ring of integers Z[ω], where

ω = (−11 +
√
−11)/2, and its order Z[

√
−11] of conductor 2. We

describe the structure of Z[ω], and in particular which products of
its elements are contained in Z[

√
−11] (see Proposition 25). By

realizing the elements of S1 and S2 as the norms of elements
in Z[ω], we get basic properties of products of elements in S1

and S2 (see Corollary 26). Moreover, we describe how various
prime numbers split in Z[ω] (see Proposition 27).
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Introduction

Next we turn our attention to special types of numbers in S1 which
occur in our main theorem: prime numbers and cubic numbers. In
Section 5 we characterize prime numbers of the form x2 + 11y2.
This case has been studied extensively before, so that it suffices to
recall and simplify some results from Cox in order to get a good
characterization (see Theorem 29). We also show that every prime
is either in S1 or in S2 (see Proposition 30).

As for cubic numbers in C = S1 ∪ S2, we prove in Section 6 that
they are all odd and contained in S1 \ S2 (see Proposition 37.a).
More precisely, the numbers m such that m3 ∈ S1 are of the form
m = pα m̃, where p is a prime in S2, where α ∈ {0, 1, 2}, and
where m̃ is of the form m̃ = x2 + 11y2 (see Proposition 37.b).
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Finally, in Section 7, we provide a detailed decomposition of the
set S1 in Theorem 42. It says that every number n with a primitive
representation n = x2 + 11y2 such that x , y ∈ Z and
gcd(x , 11y) = 1 is of one of the following types:

(1) If n is even, it is of the form n = 4 ñ with an odd number
ñ ∈ S2.

(2) The number n is a product of powers of primes in S1.

(3) The number n is a cubic number.

(4) The number n is an odd number in S1 ∩ S2.

Here only the second and third sets intersect non-trivially and in
the obvious way. For the odd numbers in S1 and S2, we then
remove cubic factors and go on to provide a detailed
characterization when they are in S1 \ S2 or S2 \ S1 or S1 ∩ S2

based on their prime factors (see Corollary 45).
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Introduction

Since we apply methods from a number of different areas, we tried
to keep this paper as self-contained as possible. The
knowledgeable readers may bear with us for including some
down-to-earth proofs which could have been replaced by high-level
references. Many characterizations and properties of the sets of
numbers we study were found and checked using the computer
algebra system ApCoCoA.
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The Class Group of Level 11

In the following we consider the subgroup G11 of PSL2(R)
consisting of the matrices of one of the types

U =

(
a b

√
11

c
√

11 d

)
with a, b, c , d ∈ Z and ad − 11bc = 1,

V =

(
a
√

11 b

c d
√

11

)
with a, b, c , d ∈ Z and 11ad − bc = 1.

where a matrix is identified with its negative. Equivalently, we
consider a matrix of one of these types as a linear fractional
transformation. This group is called the class group of level 11.
The matrices of type U form a normal subgroup H11 of index 2
in G11, and we have G11 = H11 ∪ T · H11, where T =

(
0 1
−1 0

)
.

Since T ·
(

a b
√

11
c
√

11 d

)
=
(

c
√

11 d
−a b

√
11

)
, the matrices in T ·H11 are

precisely the matrices of type V .
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The Class Group of Level 11

The group H11 can also be described as follows.

Remark 1

By conjugating G11 with the matrix X =

(
1 0

0
√

11

)
, we get the

discrete group
G ′11 = XG11X

−1 = H ′11 ∪ T ′ · H ′11

where H ′11 = {
(
a b
c ′ d

)
| ad − bc = 1, c ′ ≡ 0 (mod 11)} and

T ′ = XTX−1 =

(
0 1/

√
11

−
√

11 0

)
. Thus H ′11 is the Hecke

congruence subgroup of level 11

Γ0(11) =

{(
a b
c d

)
| a, b, c , d ∈ Z such that ad − bc = 1 and

c ≡ 0 (mod 11)}

of the (inhomogeneous) modular group Γ = PSL2(Z).
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The Class Group of Level 11

In the following we first determine the structure of the group G ′11

and then we translate everything back to the group G11. In
particular, we want to determine the conjugacy classes of the
elliptic elements of order 2 in G11 ⊂ PSL2(Z). Clearly, they have
to be residue classes of matrices of the form V . Notice that a
matrix V of this form satisfies V 2 = −I2 if and only if d = −a.
(Here I2 denotes the identity matrix of size 2× 2, and we may use
−I2, since we work in PSL2(Z).) It is known that the number of
these conjugacy classes is m(11) = 4 (cf. [?], p. 152). Our goal in
this section is to find explicit representatives of these conjugacy
classes. Recall that the group

Γ(11) =

{(
a b
c d

)
∈ PSL2(Z) |

(
a b
c d

)
≡
(

1 0
0 1

)
(mod 11)

}
is called the (inhomogeneous) principal congruence subgroup
of level 11 of the modular group Γ = PSL2(Z).
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The Class Group of Level 11

Remark 2 (The index and cosets of Γ0(11))

The principal congruence subgroup Γ(11) of Γ is a normal
subgroup, and it satisfies Γ/Γ(11) ∼= PSL2(F11). Hence the index
of Γ(11) in Γ is 1

2 113 (1− 1
112 ) = 660.

(a) The group Γ(11) is clearly a subgroup of Γ0(11). Under the
hypothesis that c ≡ 0 (mod 11), the condition ad − bc = 1
implies that the residue classes of a and d in F11 are inverses
of each other, and the residue class of b can be chosen freely.
Hence the congruence ad − bc ≡ 1 (mod 11) has 110
incongruent solutions for (a, b, d). Since we identify a matrix
with its negative, it follows that the index of Γ(11) in Γ0(11)
is 55. Altogether, we see that the index of Γ0(11) in Γ is 12.

(b) It is well-known that, as a system of representatives of
Γ/Γ0(11), we can use {S−5, S−4, . . . ,S5,T}, where
Si = S i =

(
1 0
−i 1

)
with S =

(
1 0
−1 1

)
, and where T =

(
0 1
−1 0

)
.
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The Class Group of Level 11

Next we want to determine generators for Γ0(11) via geometric
arguments. For this it is more convenient to use the isomorphic
group

Γ0(11) = T ·Γ0(11)·T−1 = {
(

d −c
−b a

)
| ad−bc = 1, −c ≡ 0 (mod 11)}

The conjugation of the above decomposition of Γ0(11) yields

Γ0(11) =
5⋃

i=−5

Γ0(11) · Ui ∪ Γ0(11) · T

where Ui = U i
1 =

(
1 i
0 1

)
and U1 = ( 1 1

0 1 ).
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The Class Group of Level 11

Remark 3 (A Fundamental Domain for Γ0(11))

Let H = {τ ∈ C | =(τ) > 0} denote the upper half plane, as usual.
Recall that the fundamental domain of the modular group Γ is
given by

DΓ = {τ ∈ H | |<(τ)| < 1
2 , |τ | > 1} ∪ {i∞}

∪ {τ ∈ H | <(τ) = −1
2 , |τ | ≥ 1}

∪ {τ ∈ H | |τ | = 1, −1
2 ≤ <(τ) ≤ 0}

Then a fundamental domain of Γ0(11) is given by

DΓ0(11) =
5⋃

i=−5

Ui (DΓ) ∪ T (DΓ).
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The Class Group of Level 11

In order to get a geometric presentation of Γ0(11), we need to
study the boundary correspondence for DΓ0(11) next. For
i = −5,−4, . . . , 5, we let Ei be the circular arc of radius 1 centered
at i , that is, we let Ei = {τ ∈ H | |τ − i | = 1}.

Proposition 4

Under the action of Γ0(11), there are precisely the following
boundary corespondences:

E−5 ↔ E−2, E5 ↔ E2, E−4 ↔ E3, E4 ↔ E−3, E−1 ↔ E1
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The Class Group of Level 11

Now we can read off the structure of Γ0(11) and Γ0(11).

Corollary 5

The groups Γ0(11) and Γ0(11) have genus 1 and are free groups of
rank 3.

(a) The group Γ0(11) is freely generated by Ã =

(
2 11
−1 −5

)
,

B̃ =

(
3 −11
−1 4

)
, and P̃ =

(
−1 0
−1 −1

)
.

(b) The group Γ0(11) is freely generated by A =

(
−5 1
−11 2

)
,

B =

(
4 1

11 3

)
, and P =

(
−1 1
0 −1

)
.

Notice that P is a parabolic element of Γ0(11). A further parabolic

element can be found via Q = P · [A,B−1] =

(
−21 −11
44 23

)
.
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The Class Group of Level 11

Next we determine the structure of the group G ′11.

Remark 6 (The Signature of G ′11)

From the preceding corollary and the fact that H ′11 = Γ0(11) has
index 12 in the modular group Γ, it follows that H ′11 is a co-finite
Fuchsian group.
In general, a co-finite Fuchsian group F has a presentation of the
form
F = 〈s1, . . . , sr , p1, . . . , pt , a1, b1, . . . , ag , bg |

sm1
1 = · · · = smr

r = s1 · · · sr · p1 · · · pr ·
g∏

i=1
[ai , bi ] = 1〉

where mi ≥ 2, where the elements si represent the conjugacy
classes of maximal elliptic cyclic subgroups, where the elements pj
represent the conjugacy classes of maximal parabolic cyclic
subgroups, and where g is the genus of F .
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The Class Group of Level 11

The group F can be described by the symbol (g ;m1, . . . ,mr ; t)
which is called the signature of F . Moreover, the (finite)
hyperbolic area for F is given by

µ(F ) = 2π (2g − 2 + t + (1− 1

m1
) + · · ·+ (1− 1

mr
) > 0

A subgroup F ′ of F of finite index is also a co-finite Fuchsian
group, and its hyperbolic area satisfies the Riemann-Hurwitz
relation µ(F ′) = [F : F ′] · µ(F ).
In our setting, the corollary says that H ′11 is a co-finite Fuchsian
group with signature (1; 0; 2) and we get
µ(H ′11) = 2π(2− 2 + 2) = 4π. Clearly, the group G ′11 is also a
co-finite Fuchsian group. Let (g ;m1, . . . ,mr ; g) be its signature.
Then [G ′11 : H ′11] = 2 implies t = 1 and m1 = · · · = mr = 2.
Moreover, we get µ(G ′11) = 2π, and hence 2g − 2 + r

2 = 0. This is
possible only if g = 0 and r = 4, so that altogether we obtain the
signature (0; 2, 2, 2, 2; 1) for G ′11.
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The Class Group of Level 11

Using the information gathered above, we are ready to construct a
nice presentation of G ′11.

Proposition 7

In G ′11, consider the following elements:

T1 =

(
0 1/

√
11

−
√
11 0

)
, T2 =

(
−
√
11 4/

√
11

−3
√
11

√
11

)
,

T3 =

(√
11 −3/

√
11

4
√
11 −

√
11

)
, T4 =

(
−
√
11 −6/

√
11

2
√
11

√
11

)
, and P =

(
−1 1
0 −1

)
Then the group G ′11 has the presentation

G ′
11 = 〈T1,T2,T3,T4,P | T 2

1 = T 2
2 = T 2

3 = T 2
4 = T2T3T1T4P = 1〉

where T1,T2,T3,T4 are elliptic elements of order 2 representing
the conjugacy classes of such elements, and where P is a parabolic
element.
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The Class Group of Level 11

The last step is to translate the above presentation of G ′11 to a
presentation of G11 This is easily achieved by conjugating back
using the matrix X of Remark 1.

Corollary 8

The group G11 has a presentation

G11 = 〈t1, t2, t3, t4, p | t2
1 = t2

2 = t2
3 = t2

4 = t2t3t1t4p = 1〉

where t1 = X−1T1X =
(

0 1
−1 0

)
, t2 = X−1T2X =

(
−
√

11 4
−3

√
11

)
,

t3 = X−1T3X =
(√

11 −3
4 −

√
11

)
, t4 = X−1T4X =

(
−
√

11 −6
2
√

11

)
, and

p = X−1PX =
(
−1
√

11
0 −1

)
.

Here t1, t2, t3, t4 are elliptic elements of order 2 representing the
conjugacy classes of such elements, and p is a parabolic element.
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Representing Numbers in the Form x2 + 11y 2

In this section we want to represent numbers in the form
n = x2 + 11y2 with x , y ∈ Z using the matrices in the class group
of level 11. Let us begin with some easy observations.

Remark 9

In the following we let n ∈ Z.

(a) Suppose that n is divisible by 11, and write n = 11 ñ with
ñ ∈ Z. Then n is of the form n = x2 + 11y2 if and only of ñ is
of this form.
Namely, if ñ = x2 + 11y2, then n = 11 ñ = (11y)2 + 11x2.
Conversely, if n = x2 + 11y2 is divisible by 11, then x is
divisible by 11 and we can write x = 11 x̃ with x̃ ∈ Z.
Consequently, we have ñ = y2 + 11x̃2. So, from now on we
shall assume that n is not divisible by 11.

(b) Clearly, n ≡ x2 (mod 11) says that n is a quadratic residue
modulo 11. So, from now on we only consider numbers n
which are quadratic residues modulo 11.
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Representing Numbers in the Form x2 + 11y 2

(c) If n = x2 + 11y2 and gcd(n, x , y) = 1, we say that (n, x , y) is
a primitive representation of n. Clearly, if gcd(n, x) > 1 or
gcd(n, y) > 1 or gcd(x , y) > 1 then the representation is not
primitive. Moreover, it suffices to check whether n has a
primitive representation, as all representations can be obtained
by multiplying a primitive representation by a square number.
To check whether a number n has a representation of the
form n = x2 + 11 y2, it suffices to check whether n, or a
number n/s with a square number s dividing n, has a
primitive representation. Therefore we will be interested only
in primitive representations.

(d) If n has a primitive representation of the form n = x2 + 11y2

then −11 is a quadratic residue modulo n. In effect, we have
x2 + 11y2 ≡ 0 (mod n) and gcd(y , n) = 1. Hence y is a unit
modulo n and −11 ≡ (x/y)2 (mod n) is a quadratic residue
modulo n.
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Representing Numbers in the Form x2 + 11y 2

Altogether, we are led to define the following sets.

Notation 10

The set D of all positive integers n such that 11 - n, and such that
-11 is a quadratic residue modulo n, is called the domain of our
investigation. We have

D = {1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 23, 25, 27, 30, 31, 36, 37, 45, 46, 47, 50, ...}

Moreover, the set of all numbers n ∈ D which have a primitive
representation n = x2 + 11y2 with x , y ∈ Z is denoted by

S1 = {n ∈ D | n = x2 + 11y 2 for some x , y ∈ Z with gcd(x , y) = 1}
= {1, 12, 15, 20, 27, 36, 45, 47, 53, 60, 69, 75, 92, 93, 100, 103, 111, 115, 124, ...}
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Representing Numbers in the Form x2 + 11y 2

Notice that, if -11 is a quadratic residue modulo n, then n is a
quadratic residue modulo 11, so that the second condition in the
definition of D is actually superfluous. For prime numbers n, both
conditions are equivalent by the Quadratic Reciprocity Theorem,
since 11 ≡ 3 (mod 4). The following construction is the key for
representing numbers in the form x2 + 11y2.
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Representing Numbers in the Form x2 + 11y 2

Remark 11

Let n ∈ D. Consider the following steps:

(a) Since −11 is a unit modulo n, we can calculate
b = (−11)−1 (mod n).

(b) Then b is a square modulo n, that is, we can find a number
` ∈ Z such that `2 ≡ b (mod n).

(c) In particular, we have (−11) `2 ≡ 1 (mod n). Hence we find
q ∈ Z such that −11 `2 + n q = 1.

(d) Now we form the matrix An(`) =
(
`
√

11 n
−q −`

√
11

)
.

In this way we obtain a matrix An(`) ∈ G11 which satisfies
An(`)2 = −I2. Consequently, the matrix An(`) is conjugate in G11

to exactly one of the matrices t1, t2, t3, t4 in Corollary 8.

Gerhard Rosenberger University of Hamburg



Representing Numbers in the Form x2 + 11y 2

Notice that, for a given number n, there exist infinitely many
different matrices An(`). In order to find out which of the
matrices t1, t2, t3, t4 is conjugate to a given matrix An(`), we first
calculate the general shapes of the conjugates of these matrices.
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Representing Numbers in the Form x2 + 11y 2

Lemma 12

Let the elements of G11 be described by the matrices of type

U =
(

a b
√

11
c
√

11 d

)
and V =

(
a
√

11 b
c d

√
11

)
as at the beginning of

Section 2. Then the following equalities hold:

(a) U t1 U
−1 =

(
(−ac−bd)

√
11 a2+11b2

−11c2−d2 (ac+bd)
√

11

)
(b) V t1 V

−1 =
(

(−ac−bd)
√

11 11a2+b2

−c2−11d2 (ac+bd)
√

11

)
.

(c) U t2 U
−1 =

(
(−4ac−11bc−ad−3bd)

√
11 4a2+22ab+33b2

−44c2−22cd−3d2 (4ac+11bc+ad+3bd)
√

11

)
.

(d) V t2V
−1 =

(
(−4ac−bc−11ad−3bd)

√
11 44a2+22ab+3b2

−4c2−22cd−33d2 (4ac+bc+11ad+3bd)
√

11

)
.

(e) U t3 U
−1 =

−
(

(−3ac−11bc−ad−4bd)
√

11 3a2+22ab+44b2

−33c2−22cd−4d2 (3ac+11bc+ad+4bd)
√

11

)
.
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Representing Numbers in the Form x2 + 11y 2

(f) V t3 V
−1 =

−
(

(−3ac−bc−11ad−4bd)
√

11 33a2+22ab+4b2

−3c2−22cd−44d2 (3ac+bc+11ad+4bd)
√

11

)
.

(g) U t4 U
−1 =

−
(

(−6ac+11bc+ad−2bd)
√

11 6a2−22ab+22b2

−66c2+22cd−2d2 (6ac−11bc−ad+2bd)
√

11

)
.

(h) V t4 V
−1 =

−
(

(−6ac+bc+11ad−2bd)
√

11 66a2−22ab+2b2

−6c2+22cd−22d2 (6ac−bc−11ad+2bd)
√

11

)
.
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Representing Numbers in the Form x2 + 11y 2

The following proposition lies at the heart of our method.

Proposition 13

For n ∈ D, the following conditions are equivalent:

(a) The number n has a primitive representation n = x2 + 11y2

with x , y ∈ Z.

(b) There exists a number ` ∈ Z such that `2 ≡ (−11)−1 (mod n)

and such that the matrix An(`) =
(
`
√

11 n
−q −`

√
11

)
is conjugate

to t1 =
(

0 1
−1 0

)
in G11, where q = (1 + 11 `2)/n.

The following example shows that different choices of ` may yield
matrices which are conjugate to different matrices ti .
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Example 14

Consider the number n = 12. It is a quadratic residue modulo 11,
−11 ≡ 1 (mod 12) is a quadratic residue modulo n, and it has
representations n = x2 + 11y2 with x = y = 1 as well as
n = 4a2 + 22ab + 33b2 with a = −5 and b = 2. Let us examine
the conjugacy classes of the following matrices An(`).

(a) For U =
(

1
√

11√
11 12

)
, we see that

U t1U
−1 =

(
−13
√

11 12
−155 13

√
11

)
= An(`) for ` = −13. Thus

An(−13) is conjugate to t1 in G11.

(b) For U =
(
−5 2

√
11

2
√

11 −9

)
, we see that

U t2U
−1 =

(
5
√

11 12
−23 −5

√
11

)
= An(`) for ` = 5. Thus An(5) is

conjugate to t2 in G11.

Indeed, both ` = −13 and ` = 5 satisfy
`2 ≡ (−11)−1 ≡ 1 (mod 12).
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To get the dependency of the conjugacy class of An(`) in ` under
control, we may use the following proposition.

Proposition 15

Let n ∈ D, let ` ∈ Z be chosen such that `2 ≡ (−11)−1 (mod n),
and let i ∈ {1, . . . , 4} be such that An(`) is in the conjugacy class
of ti in G11.

(a) The matrices An(`− n) and An(`+ n) are in the conjugacy
class of ti .

(b) The matrix An(−`) is in the conjugacy class of t1 if and only
if An(`) is in the conjugacy class of t1.
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This proposition allows us to characterize primes of the form
x2 + 11y2 as follows.

Corollary 16

For an odd prime number p ∈ D, the following conditions are
equivalent.

(a) The number p has a primitive representation p = x2 + 11y2

with x , y ∈ N.

(b) There exists a number ` ∈ Z such that `2 ≡ (−11)−1 (mod p)
and such that Ap(`) is in the conjugacy class of t1 in G11.

(c) For every number ` ∈ Z such that `2 ≡ (−11)−1 (mod p), the
matrix Ap(`) is in the conjugacy class of t1 in G11.

The following proposition collects some properties of the numbers
represented by the quadratic forms in the top right corners of the
matrices in Lemma 12.
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Proposition 17

Consider the following six quadratic forms:
u2 = 4x2 + 22xy + 33y2, v2 = 44x2 + 22xy + 3y2,
u3 = 3x2 + 22xy + 44y2, v3 = 33x2 + 22xy + 4y2,
u4 = 6x2 − 22xy + 22y2, and v4 = 66x2 − 22xy + 2y2.

(a) For x , y ∈ Z and (x , y) 6= (0, 0), these quadratic forms
represent positive integers.

(b) Let
S2 = {u2(x , y) | x , y ∈ Z; (x , y) 6= (0, 0); gcd(x , 11y) = 1}
be the set of numbers represented by u2, and let
S ′2 = {v2(x , y) | x , y ∈ Z; (x , y) 6= (0, 0); gcd(11x , y) = 1}
be the set of numbers represented by v2. Then we have
S ′2 = S2.
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(c) Both the set of numbers represented by u3 and the set of
numbers represented by v3 agree with S2.

(d) Let
S4 = {u4(x , y) | x , y ∈ Z; (x , y) 6= (0, 0); gcd(x , 11y) = 1}
be the set of numbers represented by u4. This set agrees with
the set of numbers represented by v4, and we have
S4 = {2n | n ∈ S2} ∪ {2}.

(e) The domain D is the disjoint union of S1 ∪ S2 and S4. More
precisely, the numbers in S4 are precisely those numbers n
in D which satisfy n ≡ 2 (mod 4).
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Thus we can now write down a simple characterization of the
numbers in S1 ∪ S2.

Corollary 18

For a number n ∈ N+, the following conditions are equivalent.

(a) The number n is of the form n = x2 + 11y2 or of the form
n = 4x2 + 22xy + 33y2 with x , y ∈ Z and gcd(x , 11y) = 1.

(b) We have n ∈ D and n 6≡ 2 (mod 4).

The preceding proposition and its corollary suggest to introduce
the following notation.
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Notation 19

The set of all positive integers n of the form n = 4x2 + 22xy + 33y2

with x , y ∈ Z and gcd(x , 11y) = 1 is denoted by

S2 = {3, 4, 5, 9, 12, 15, 20, 23, 25, 31, 36, 37, 45,

59, 60, 67, 69, 71, 75, 81, 89, 92, . . . }

The union S1 ∪ S2 is called the set of candidate numbers and
denoted by

C =S1 ∪ S2

= {1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 23, 25, 27, 30,

31, 36, 37, 45, 46, 47, 50, 53, . . . }
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Thus we are left with the task of distinguishing between the
sets S1 and S2 inside the candidate set C . For further usage, let us
describe the sets S2 and C in different ways.

Proposition 20

The set S2 defined above is equal to each of the following sets.

(a) S2,a = {4x2 + 22xy + 33y2 | x , y ∈ Z, gcd(x , 11y) = 1}
(b) S2,b = {3x2 + 22xy + 44y2 | x , y ∈ Z, gcd(x , 11y) = 1}
(c) S2,c = {3x2 + 2xy + 4y2 | x , y ∈ Z, gcd(x , y) = 1, 11 -

(3x2 + 2xy + 4y2)}

Gerhard Rosenberger University of Hamburg



Representing Numbers in the Form x2 + 11y 2

Proposition 21

The set C = S1 ∪ S2 is the disjoint union of the following two sets:

C1 = {n ∈ Z | n = x2 + 11xy + 33y2; x , y ∈ Z; gcd(x , 11y) = 1}
C2 = {n ∈ Z | n = x2 + 11xy + 33y2; x , y ∈ Z; gcd(x , 11y) = 2}

Here the numbers in C1 are odd and the numbers in C2 are
divisible by 4. The numbers in C1 will be called the odd candidates
and the numbers in C2 the even candidates.
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Another useful property is the fact that C1 is multiplicatively
closed, as the following proposition shows.

Proposition 22

For odd numbers n1, n2 ∈ C , we have n1n2 ∈ C . In particular, the
set of odd candidates C1 is a multiplicative submonoid of N+.

At this point we need to insert further background material.
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In this section we provide some basic material from Algebraic
Number Theory. Since we have
x2 + 11y2 = (x + y

√
−11)(x − y

√
−11), it is natural to study the

quadratic field Q(
√
−11) and its ring of integers. Let us collect

some well-known facts.

Proposition 23

Let K = Q(
√
−11), and let OK be the ring of integers of K .

(a) The ring of integers of K is given by
OK = Z[(1 +

√
−11)/2] = Z[ω], where ω = (−11 +

√
−11)/2.

It is a free Z-module of rank 2 with basis {1, ω}.
(b) The minimal polynomial of ω is µω(x) = x2 + 11x + 33. In

particular, we have OK
∼= Z[x ]/〈x2 + 11x + 33〉.

(c) The Galois group of K/Q has two elements. The non-trivial
automorphism maps

√
−11 to −

√
11 and ω to

ω = (−11−
√
−11)/2.
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(d) We have ω + ω = −11 and ω · ω = 33.

(e) The ideal class number of Z[ω] is 1, that is, this ring is a PID.
In particular, it is a factorial ring.

(f) The unit group of OK is {1,−1}.
(g) The norm map NOK

: OK → Z is given by
NOK

(a + bω) = (a + bω)(a + bω) = a2 − 11ab + 33b2 for all
a, b ∈ Z. It turns the ring Z[ω] into a Euclidean domain.

As the factorization x2 + 11y2 = (x + y
√
−11)(x − y

√
−11)

actually takes place in the ring Z[
√
−11], let us also introduce its

properties and its relation to Z[ω].
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Remark 24

Let K = Q(
√
−11) and OK = Z[ω] with ω = (−11 +

√
11)/2.

(a) The ring O = Z[
√
−11] is the order of conductor 2 in Z[ω]. In

particular, we have O = Z + 2ωZ.

(b) The ring Z[
√
−11] is a free Z-module with basis {1,

√
−11},

the ring Z[ω] is a Z[
√
−11]-module which is generated by

{1, ω}, and 2ω ∈ Z[
√
−11]. Thus the elements of Z[ω] are

either in Z[
√
−11] or in ω + Z[

√
−11].
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Using this remark, we can analyze products of elements of Z[ω] as
follows.

Proposition 25

Let a + bω, a′ + b′ω be elements of Z[ω], where a, a′, b, b′ ∈ Z and
ω = (−11 +

√
−11)/2.

(a) The element a + bω is contained in Z[
√
−11] if and only if b

is even.

(b) For a + bω ∈ Z[
√
−11] and a′ + b′ω /∈ Z[

√
−11] we have

(a + bω)(a′ + b′ω) ∈ Z[
√
−11] if and only if a is even, that is,

if and only if a + bω is a multiple of 2.

(c) For a + bω, a′ + b′ω /∈ Z[
√
−11], we have

(a + bω)(a′ + b′ω) ∈ Z[
√
−11] if and only if a + a′ is odd.

(d) For every element a + bω ∈ Z[ω] with a, b ∈ Z, we have
(a + bω)3 ∈ Z[

√
−11].
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This proposition yields the following properties of products of
elements in C .

Corollary 26

In the setting of the proposition, let S1 be the set of all numbers
of the form c2n where c ∈ Z and n ∈ S1. Then the following
statements hold.

(a) The element NOK
(a + bω) = (a + bω)(a + bω) is contained

in C if and only if gcd(a, 11b) = 1.

(b) The element NOK
(a + bω) = (a + bω)(a + bω) is contained

in S1 if and only if b is even and gcd(a, 11b) = 1.

(c) Assume that we have a + bω, a′ + b′ω ∈ Z[
√
−11]. Then the

element NOK
((a + bω)(a′ + b′ω)) is in S1. Consequently, the

product of two numbers in S1 is contained in S1.
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(d) Assume that we have a + bω ∈ Z[
√
−11] and

a′ + b′ω /∈ Z[
√
−11]. Then the element

NOK
((a + bω)(a′ + b′ω)) is in S1 if and only if a is even, that

is, if and only if 2 divides a + bω. Consequently, the product
of a number n in S1 and a number in S2 \ S1 is contained
in S1 if and only if n is even.

(e) Assume that we have a + bω, a′ + b′ω /∈ Z[
√
−11]. Then the

element NOK
((a + bω)(a′ + b′ω)) is in S1 if and only if a + a′

is an odd integer.

(f) A number n ∈ C is contained in S2 if and only if we have a
representation n = NOK

(a + bω) with a, b ∈ Z and
gcd(a, 11b) = 1, an even number a and an odd number b.
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Finally, we collect results about the splitting of primes in the
factorial ring Z[ω].

Proposition 27

Consider the ring of integers OK = Z[ω] of the quadratic number
field K = Q(

√
−11), where ω = (−11 +

√
−11)/2.

(a) The only ramified prime in OK is p = 11.

(b) The prime 2 is inert in OK

(c) An odd prime p 6= 11 splits in OK if and only if −11 is a
quadratic residue modulo p. In particular, all primes
in S1 ∪ S2 split in OK .

(d) Let p be an odd prime in C = S1 ∪ S2. Then p is contained
in S1 if and only if the two factors of p are already contained
in Z[

√
−11].
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For powers of primes in S1, this proposition implies the following
result.

Corollary 28

Given a prime number p ∈ S1, we have pα ∈ S1 for every α ≥ 1.

As a byproduct of the proof of Proposition 27, we see that p ∈ S2

implies p /∈ S1. A better criterion for distinguishing the primes
in S1 and S2 is coming up next.
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The next task is to characterize the prime numbers of the form
x2 + 11y2. This problem has been explored intensively using Class
Field Theory and other methods of Algebraic Number Theory. As
mentioned in the preceding section, the form x2 + 11y2 splits in
the ring O = Z[

√
−11] which is the order of conductor 2 in the

ring of integers OK of the field K = Q(
√
−11). Thus it is not a

Dedekind domain. The discriminant of this order is −44. As a
result of these studies, we have the following theorem.
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Theorem 29 (Characterization of Primes of the Form x2 + 11y2)

A prime number p ≥ 13 is of the form p = x2 + 11y2 with
x , y ∈ Z if and only if the following two conditions are satisfied:

(a) The number −11 is a quadratic residue modulo p.

(b) The polynomial f11(x) = x3 − 2x2 + 2x − 2 has a zero
modulo p.

Notice that the polynomial f11 actually splits into linear factors
in Fp, if p is a prime of the form p = x2 + 11y2.
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To distinguish the prime numbers of the form p = x2 + 11y2 from
the prime numbers of the form p = 3x2 + 2xy + 4y2, we need one
further ingredient.

Proposition 30

Let S1 and S2 be the sets defined in the preceding section. Then
every prime number in S1 ∪ S2 lies either in the set S1 or in the
set S2, but not in both.
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As an immediate consequence of this proposition and the above
theorem, we obtain the following characterization of primes of the
form p = 3x2 + 2xy + 4y2.

Corollary 31

A prime number p ≥ 3 with p 6= 11 is of the form
p = 3x2 + 2xy + 4y2 with x , y ∈ Z if and only if the following
conditions hold:

(a) The number -11 is a quadratic residue modulo p.

(b) The polynomial f11(x) = x3 − 2x2 + 2x − 2 is irreducible
modulo p.
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Finally, we point out that for the primes of the forms in the
theorem and the corollary, we have the following uniqueness
property.

Proposition 32

Let p ≥ 3 with p 6= 11 be a prime number such that −11 is a
quadratic residue modulo p.

(a) If f11(x) = x3− 2x2 + 2x − 2 splits in Fp[x ] into linear factors,
then there exists a unique pair of numbers (x , y) ∈ N2 such
that p = x2 + 11y2.

(b) If f11(x) = x3 − 2x2 + 2x − 2 is irreducible in Fp[x ], then
there exists a unique pair of numbers (x , y) ∈ N×Z such that
p = 3x2 + 2xy + 4y2.
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In this section we examine cubic numbers m3 of the form
m3 = x2 + 11y2 with m, x , y ∈ N. Recall the sets S1 and S2

defined in Notation 10 and Notation 19. The following easy
observations will help us.

Lemma 33

Every cubic number of the form m3 = x2 + 11y2 with x , y ∈ Z and
gcd(x , 11y) = 1 is odd.

Lemma 34

For every cubic number of the form m3 = x2 + 11y2 with x , y ∈ Z
and gcd(x , 11y) = 1, the number m is contained in the set S1 ∪ S2.
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Lemma 35

Let S1 be the set of all integers n such that n = x2 + 11y2 for
some x , y ∈ Z and such that gcd(n, 11) = 1, and let p1, p2 be
prime numbers in C .

(a) If p1, p2 ∈ S1 then we have pα1
1 pα2

2 ∈ S1 for all α1, α2 ∈ N.

(b) If p ∈ S2 then we have p2 ∈ S2 \ S1.

(c) If p1 ∈ S1 and p2 ∈ S2 then we have pα1
1 pα2

2 ∈ S2 \ S1 for
α1, α2 ∈ {1, 2}.

(d) If p1, p2 ∈ S2 are distinct primes, then we have
pα1

1 pα2
2 ∈ S1 ∩ S2 for α1, α2 ∈ {1, 2}.

Lemma 36

Let a ∈ Z be even and b ∈ Z be odd. Then
gcd(a + bω, a + bω) = 1 holds in Z[ω].
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Finally, we can characterize cubic numbers of the form x2 + 11y2

as follows.

Proposition 37

Let the sets S1, S2, and C be defined as in Section 3, let
S̄1 = {x2 + 11y2 | x , y ∈ Z; gcd(x , 11) = 1}, and let Scube

1 be the
set of cubic numbers in C . Then the following statements hold.

(a) Every cube of a number in C is contained in S1 \ S2, that is,
we have Scube

1 ⊂ S1 \ S2.

(b) Every number m such that m3 ∈ Scube
1 is of the form

m = pα m̃ with a prime number p ∈ S2, with 0 ≤ α ≤ 2, and
with m̃ ∈ S̄1.

(c) The set Scube
1 is the multiplicative monoid generated by the

cubes of the prime numbers in S1 ∪ S2.
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The next example shows that it is possible that m3 has a primitive
representation of the form x2 + 11y2, while m ∈ S̄1 does not.

Example 38

The number m = 675 = 25 · 27 is not contained in S1, since the
only representations m = 202 + 11 · 52 = 242 + 11 · 32 are not
primitive. However, 6753 = 121362 + 11 · 38172 is a primitive
representation, and thus we have 6753 ∈ S1.
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In this section we prove several decompositions of the set S1. To
simplify the discussion, we introduce the following abbreviations.

Notation 39

Let the sets C , S1, and S2 be defined according to Notation 10
and Notation 19. For i ∈ {1, 2}, we define

Seven
i = {n ∈ Si | n is even }
Sodd
i = {n ∈ Si | n is odd }

Sprim
i = {n ∈ Si | n is a prime }

Scube
1 = {n ∈ S1 | n is a cubic number }

Proposition 40

The even numbers in S1 satisfy Seven
1 = 4 · Sodd

2 .
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In view of this proposition, our task of decomposing S1 is reduced
to decomposing Sodd

1 and Sodd
2 . In order to move to the main

theorem of this section, we need one final ingredient.

Lemma 41

Let p ∈ Sprim
2 and α ≥ 1. Then we have pα ∈ S1 if α is divisible

by 3, and pα ∈ S2 otherwise.
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The following decomposition is one of the main results of this
paper.

Theorem 42

The set S1 is the union

S1 = Seven
1 ∪ 〈Sprim

1 〉 ∪ Scube
1 ∪ (Sodd

1 ∩ Sodd
2 )

where 〈Sprim
1 〉 is the multiplicative monoid generated by the prime

numbers in S1, and where the only non-trivial intersection is

〈Sprim
1 〉 ∩ Scube

1 = {p3α1
1 · · · p3αs

s | pi ∈ Sprim
1 ; αi ≥ 1}.
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Remark 43

Using the theory of modular functions, several formulas for the
number a(n, 11) of representations of a given number n of the
form n = x2 + 11y2 are derived by Petersson. They are based on
Fourier expansions of theta series and count primitive as well as
imprimitive representations. In particular, it is shown that

a(n, 11) = 2
3 α(n, 11) + 4

3 β(n, 11)

where α(n, 11) =
∑

d |n(−1)(d−1)(n/d−1)
(
d
11

)
involves Legendre

symbols, and where β(n, 11) =
∑

(x ,y)∈M sign(xy)
(
−1
|xy |

)
involves

Jacobi symbols. Here the sum extends over the set M of all pairs
(x , y) ∈ Z2 \ {(0, 0)} such that x ≡ y ≡ 1 (mod 6) and
x2 + 11y2 = 12n. Clearly, this formula is hard to evaluate in
general, because it involves finding particular solutions of the
equation x2 + 11y2 = 12n.
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In comparison, the above theorem describes the set of numbers n
having a primitive representation of the form n = x2 + 11y2 as the
disjoint union of several special cases which are studied in greater
detail in other parts of this paper.

As a consequence of the proof of this theorem, we can decompose
Sodd

1 further. We shall use the following subsets.

Definition 44

A number n ∈ C is called cubically reduced if there is no cubic
number c ∈ Scube

1 \ {1} such that c | n. For i = 1, 2, we denote
the set of cubically reduced numbers in Sodd

i by Scro
i .
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With this terminology, we can decompose Sodd
1 as follows.

Corollary 45

In the above setting, the following claims hold.

(a) Every number n ∈ Sodd
1 has a uniquely determined

decomposition n = c ñ with c ∈ Scube
1 and ñ ∈ Scro

1 .

(b) Every number n ∈ Scro
1 ∪ Scro

2 has a prime decomposition

n = pα1
1 · · · pαs

s · q
β1
1 · · · q

βt
t where pi ∈ Sprim

1 , where

qj ∈ Sprim
2 , and where αi , βj ∈ {1, 2}.

(c) A number n as in (b) is contained in Scro
1 \ Scro

2 if and only if
t = 0.

(d) A number n as in (b) is contained in Scro
2 \ Scro

1 if and only if
s = 0.

(e) A number n as in (b) is contained in Scro
1 ∩ Scro

2 if and only if
s ≥ 1 and t ≥ 1.
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To complete the discussion, we formulate a similar decomposition
for the set S2. Since the proof of the next proposition uses the
same tools from Section 4 and proceeds in analogy to the proof of
the above theorem and its corollary, we leave it to the interested
reader.
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Proposition 46

For the set S2, the following claims hold.

(a) We have

Seven
2 = Seven

1 ∪ 4 Scube
1 ∪ 4 〈Sprim

1 〉 = 4Sodd
2 ∪ 4 Scube

1 ∪ 4 〈Sprim
1 〉

where the unions are disjoint except for the union of Scube
1

and 〈Sprim
1 〉.

(b) The set Sodd
2 is the disjoint union of Sodd

1 ∩ Sodd
2 and the set

of all numbers pα1
1 · · · pαs

s · q
β1
1 · · · q

βs
s such that pi ∈ Sprim

1 ,

qj ∈ Sprim
2 , and βj = 3γj + δj with δj ∈ {0, 1, 2} satisfying

δ1 + · · ·+ δt ≡ 1 (mod 2).
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