A short proof of Greenberg's Theorem

Gareth Jones

University of Southampton, UK

March 16, 2020

Theorem (Greenberg, 1960)

Every countable group A is isomorphic to the automorphism group of a non-compact Riemann surface, with a finitely generated fundamental group if A is finite.

Theorem (Greenberg, 1973)

Every finite group is isomorphic to the automorphism group of a compact Riemann surface.

The proofs are long, complicated and non-constructive. In response to a question by Sasha Mednykh, I shall give a short and more constructive proof, using well-known properties of triangle groups, of part of Greenberg's results:

Theorem

Every finitely generated group A is isomorphic to the automorphism group of a Riemann surface, compact if A is finite.

Question Can one extend this proof to all countable groups A ?

Surface kernel epimorphisms of triangle groups

Given any hyperbolic triangle group

$$
\Delta:=\Delta(I, m, n)=\left\langle X, Y, Z \mid X^{\prime}=Y^{m}=Z^{n}=X Y Z=1\right\rangle
$$

(one with $l^{-1}+m^{-1}+n^{-1}<1$), Dirichlet's Theorem on primes in arithmetic progressions implies that there exist surface kernel epimorphisms

$$
\Delta \rightarrow G:=P S L_{2}(q)
$$

for infinitely many prime powers q such that

$$
I, m, n \left\lvert\, \frac{q+1}{2} .\right.
$$

The subgroups fixing ∞

$$
\begin{array}{cll}
\Delta(I, m, n) & \longrightarrow & G=P S L_{2}(q) \\
\mid q+1 & & q+1 \\
\Pi_{g} \cong N & \longrightarrow & G_{\infty}
\end{array}
$$

G acts primitively on the projective line $\mathbb{P}^{1}(q)=\mathbb{F}_{q} \cup\{\infty\}$.
The stabiliser G_{∞} of ∞, and hence its inverse image N in Δ, are maximal subgroups of index $q+1$ in G and Δ.
Since $I, m, n \mid(q+1) / 2$, the elliptic generators X, Y, Z of Δ act freely on $\mathbb{P}^{1}(q)$, so N is a surface group Π_{g}, of genus

$$
g=\frac{q+1}{2}\left(1-\frac{1}{l}-\frac{1}{m}-\frac{1}{n}\right)+1
$$

by the Riemann-Hurwitz formula.

The epimorphism θ

$$
\begin{array}{lllll}
& & \Delta(I, m, n) & & \longrightarrow
\end{array} \quad G=\operatorname{PSL}_{2}(q)
$$

Given any finitely generated group A, choose q large enough that

$$
g \geq d:=\operatorname{rank}(A) .
$$

Since N is a surface group

$$
N=\left\langle A_{i}, B_{i}(i=1, \ldots, g) \mid \prod\left[A_{i}, B_{i}\right]=1\right\rangle
$$

there is an epimorphism $\theta: N \rightarrow A$ with $A_{i} \mapsto$ generators, $B_{i} \mapsto 1$.

The kernel of θ

Define $M:=\operatorname{ker} \theta$, so $M \triangleleft N$ with $N / M \cong A$.
Then $N \leq N_{\Delta}(M) \leq \Delta$, and the maximality of N in Δ implies that $N_{\Delta}(M)=N$ (we can choose θ so that M is not normal in Δ).

$A \cong \operatorname{Aut} \mathcal{H}$

Since

$$
A \cong N / M=N_{\Delta}(M) / M
$$

we have realised A as Aut \mathcal{H} where \mathcal{H} is the oriented hypermap (bipartite map) of type (I, m, n) corresponding to the subgroup M. If A is finite, so is $|\Delta: M|$, so \mathcal{H} is compact, i.e. a dessin d'enfant.

However, to prove Greenberg's Theorem we want to show that

$$
A \cong \operatorname{Aut} \mathcal{S} \cong N(M) / M
$$

where \mathcal{S} is the Riemann surface \mathbb{H} / M and $N(M):=N_{P S L_{2}(\mathbb{R})}(M)$ (note that M is torsion-free!), so we need to show that

$$
N(M)=N
$$

Proving that $N(M)=N$

Let $g \in N(M)$. Then $M \triangleleft N$ implies $M=M^{g} \triangleleft N^{g}$, so

$$
N, N^{g} \leq N(M)
$$

Commensurators

For most (I, m, n), e.g. $(2,3,13), \Delta$ is maximal (Singerman 1972) and non-arithmetic (Takeuchi 1977). Then the commensurator

$$
\bar{\Delta}:=\left\{c \in P S L_{2}(\mathbb{R})| | \Delta: \Delta \cap \Delta^{c}\left|,\left|\Delta^{c}: \Delta \cap \Delta^{c}\right|<\infty\right\}\right.
$$

is a Fuchsian group (by non-arithmeticity, Margulis 1991) containing Δ. Hence $\bar{\Delta}=\Delta$ (by maximality) and so $\bar{N}=\Delta$ also.

N, N^{g} and $N(M)$ are cocompact, so $|N(M): N|$ and $\left|N(M): N^{g}\right|$ are finite, and hence so are $\left|N: N \cap N^{g}\right|$ and $\left|N^{g}: N \cap N^{g}\right|$.
Thus $g \in \bar{N}=\Delta$, so we have proved that $N(M) \leq \Delta$. Hence

$$
N(M)=N_{\Delta}(M)=N
$$

giving the required isomorphism

$$
\text { Aut } \mathcal{S} \cong N(M) / M=N / M \cong A
$$

Extension to countable groups of infinite rank?

If A has infinite rank, so must N, so N must be maximal of infinite index in Δ. There are plenty of these (J., J. Group Theory, 2019) with epimorphisms onto F_{∞} and hence onto A. Thus

$$
A \cong N / M=N_{\Delta}(M) / M \cong \operatorname{Aut} \mathcal{H}
$$

However, taking N of infinite index loses commensurability properties, so it's not clear how to ensure that $A \cong \operatorname{Aut} \mathcal{S}$.

THANK YOU FOR LISTENING!

