On Large Groups of Automorphisms of Riemann Surfaces

Milagros Izquierdo joint work with S. Reyes-Carocca

In Memoriam of Bill Harvey

Automorphisms of Riemann Surfaces, Subgroups of Mapping Class Group and Related Topics

> AMS Spring Eastern Sectional Meeting Medford MA, March 2020

Given an orientable, closed surface X of genus $g \ge 2$ The

equivalence:

 $(X, \mathcal{M}(X), \text{ complex atlas})$ $(\mathcal{M}(X) = \langle x, y \rangle, p(x, y) = 0$, the field of meromorphic functions on X)

 $X \equiv \frac{\mathbb{H}}{\Delta}$, with Δ a (cocompact) Fuchsian group Δ discrete subgroup of $PSL(2, \mathbb{R})$

 $(X, \mathcal{M}(X), \text{ complex curve})$ $(\mathcal{M}(X) = \mathbb{C}[x, y]/p(x, y)$, the field of rational functions on X)

The curve X given by the polynomial p(x, y) and the meromorphic function $x : X \to \widehat{\mathbb{C}}$.

Some classic results on automorphisms of curves of genus $g \ge 2$:

▶ There is a unique curve having an automorphism of order 4g + 2: Wiman's curve of type I $y^2 = (x^{2g+1} - 1)$, with autom. gr. $G = C_{4g+2}$,

Except for g = 3, there is a unique curve having an automorphism of order 4g: Wiman's curve of type II y² = x(x^{2g} − 1), and autom. gr. G = C_{4g} ⋊_{2g−1} C₂,

In genus two the group is $G_2 = GL(2,3)$. The exception in genus 3 is Picards's curve $y^3 = (x^4 - 1)$, and gr. $G = C_{12}$

The largest number of automorphisms, of type ag + b, of a curve in all genera is 8g + 8. For genera g ≡ 0, 1, 2 mod 4 there is a unique curve: Accola-Maclachlan's curve y² = x(x^{2g+2} - 1), and gr. G = (C_{2g+2} × C₂) ⋊ C₂. For genera g ≡ 3 mod 4 there is one more curve: Kulkarni curve y^{2g+2} = x(x - 1)^{g-1}(x + 1)^{g+2}, and gr.

$$G = \langle x, y : x^{2g+2} = y^4 = (xy)^2 = 1; y^2 xy^2 = x^{g+2} = 1 \rangle$$

Wiman 1895, Accola 1968, Maclachlan 1969, Kulkarni 1991, 1997

Kulkarni showed that, if the Riemann surfaces in a family (of RS of genus g) have more than 4g - 4 automorphisms, then the Teichmüller dimension of the family is 0 or 1.

A finite group G acting on a surface X_g of genus $g, g \ge 2$, is a large group of automorphisms of X_g if $|G| \ge 4g - 4$.

Some not that classic results:

Consider families with infinite many genera: g = p + 1, p prime large enough.

- $g \equiv 2 \mod 3$, there are two surfaces 12(g-1) automorphisms, gr. $G = (C_p \rtimes C_6) \times C_2$,
- ▶ $g \equiv 2 \mod 3$, there are four surfaces 10(g-1) automorphisms, gr. $G = C_p \rtimes C_{10}$,
- $g \equiv 2 \mod 8$, there are two surfaces 8(g-1) automorphisms, gr. $G = (C_p \rtimes C_8)$
- ► All genera: an equisymmetric family of dimension one whose surfaces have 4(g + 1) automorphisms, gr. G = D_{g+1} × C₂
- ► All even genera: an equisymmetric family of dimension two whose surfaces have 4(g − 1) automorphisms, gr. G = D_{2g−2}

Belolipetsky-Jones 2005, Costa-I 2018, Reyes-Carocca 2020 and the second second

э

Question: What can we say on families of infinite many genera g of Riemann surfaces admitting large groups of automorphisms of order ag + b, with a and b integers? (In particular, g = p + 1, p prime, b = -a)

Accola,1995, showed that for primes $p \ge 89$ the only possible orders (at least 8g + 8) are 12(g - 1), 10(g - 1), 8(g + 3) and, of course, 8(g + 1).

Wiman's curves of type II provide examples of surfaces in all genera having 8g automorphisms.

Conder-Kulkarni, 1992, provided several families of infinite many genera with Riemann surfaces admitting large groups of automorphisms of order $ag + b \neq \lambda(g - 1)$.

Belolipetsky-Jones, 2005, showed the existence of the families of infinite many genera with Riemann surfaces admitting large groups of automorphisms of order $\lambda(g-1)$, with $\lambda \ge 7$, the genus g = p + 1, where p is a prime $p \ge 17$. They are the only possible surfaces of the corresponding genus admitting at least 7(g-1) automorphisms.

One question left: Orders 6(g-1) and 5(g-1)?

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のQ@

Fuchsian Groups

- Δ (cocompact) discrete subgroup of $PSL(2,\mathbb{R})$
- A (compact) Riemann Surface (Orbifold) of genus $g \geq 2$ $X = \frac{\mathbb{H}}{\Delta}$
- Δ has presentation:

generators: $x_1, ..., x_r, a_1, b_1, ..., a_h, b_h$ relations: $x_i^{m_i}, i = 1 : r, x_1...x_r a_1 b_1 a_1^{-1} b_1^{-1} ... a_h b_h a_h^{-1} b_h^{-1}$ x_i : generator of the maximal cyclic subgroups of Δ $X = \frac{\mathbb{H}}{\Delta}$: orbifold with *r* cone points and underlying surface of genus *g*

Algebraic structure of Δ and geometric structure of X are determined by the signature $s(\Delta) = (h; m_1, \dots, m_r)$ Δ is the orbifold-fundamental group of X.

(ロ) (同) (E) (E) (E)

Introduction Fuchsian groups

Area of Δ : area of a fundamental region P

 $\mu(\Delta) = 2\pi (2h - 2 + \sum_{1}^{r} (1 - \frac{1}{m_{i}}))$ X hyperbolic equivalent to $P/\langle \text{pairing} \rangle$ Poincaré's Th: $\Delta = \langle \text{pairing} \rangle$ But from now on $\mu(\Delta) = (2h - 2 + \sum_{1}^{r} (1 - \frac{1}{m_{i}}))$, reduced area.

Riemann-Hurwitz Formula: If Λ is a subgroup of finite index, N, of a Fuchsian group Δ , then $N = \frac{mu(\Lambda)}{\mu(\Delta)}$ RUT: Any Riemann surface of genus g > 2 is uniformized by a

surface Fuchsian group

$$\Gamma_g = \langle a_1, b_1, ..., a_g, b_g; a_1b_1a_1^{-1}b_1^{-1}...a_gb_ga_g^{-1}b_g^{-1} \rangle$$

(ロ) (同) (E) (E) (E)

Introduction Fuchsian groups

Groups of Automorphisms

G finite group of automorphisms of $X_g=\mathbb{H}/\Gamma_g$, Γ_g a surface Fuchsian group iif there exist

 Δ Fuchsian group and epimorphism $\theta : \Delta \to G$ with $Ker(\theta) = \Gamma_g$ θ is the monodromy of the regular covering $f : \mathbb{H}/\Gamma_g \to \mathbb{H}/\Delta$

$$X/ = \mathbb{H}/\Gamma_g$$
 \downarrow Δ : lifting to \mathbb{H} of G
 $X/G = \mathbb{H}/\Delta$

ТНТ

A morphism $f : X = \mathbb{H}/\Lambda \to Y = \mathbb{H}/\Delta$, X, Y compact Riemann orbifolds, group inclusion $i : \Lambda \to \Delta$ Covering f determined by monodromy $\theta : \Delta \to \Sigma_N$, $\Lambda = \theta^{-1}(Stb(1))$ (symbol $\leftrightarrow \Lambda$ -coset \leftrightarrow sheet for $f \leftrightarrow$ copy of fund. polygon for Δ)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のQ@

Teichmüller and Moduli Spaces

 $\begin{array}{l} \Delta \text{ abstract Fuchsian group} \qquad s(\Delta) = (h; m_1, \ldots, m_r) \\ \mathcal{T}_{\Delta} = \{ \sigma : \Delta \to PSL(2, \mathbb{R}) \mid \sigma \textit{ injective, } \sigma(\Delta) \text{ discrete } \} / PSL(2, \mathbb{R}) \end{array}$

Teichmüller space \mathcal{T}_{Δ} has a complex structure of dim 3h - 3 + r, diffeomorphic to a ball of dim 6h - 6 + 2r.

 $\Gamma_g = \pi_1(X)$, surface X of genus g, the **Teichmüller space** is $\mathcal{T}_g := \mathcal{T}_{\Gamma_g}$

The mapping class group $M_g^+ = Out(\Gamma_g) = \frac{Diff^+(X)}{Diff_0(X)}$

The moduli space $\mathcal{M}_g = \mathcal{T}_g / M_{(g)}^+$

Mapping class group $M^+(\Delta) = Out(\Delta) = \frac{Diff^+(\mathbb{H}/\Delta)}{Diff_0(\mathbb{H}/\Delta)}$ $\Delta = \pi_1(\mathbb{H}/\Delta)$ as orbifold $M^+(\Delta)$ acts properly discontinuously on \mathcal{T}_Δ $\mathcal{M}_\Delta = \mathcal{T}_\Delta/M^+(\Delta)$

Surfaces with Non-Trivial Automorphisms

If Λ subgroup of Δ $(i : \Lambda \to \Delta) \Rightarrow i_* : \mathcal{T}_{\Delta} \to \mathcal{T}_{\Lambda}$ embedding $\Gamma_{\sigma} < \Delta$ $\mathcal{T}_{\Lambda} \subset \mathcal{T}_{\sigma}$ *G* finite group $\mathcal{T}_{\sigma}^{G} = \{ [\sigma] \in \mathcal{T}_{\sigma} \mid g[\sigma] = [\sigma] \forall g \in G \} \neq \emptyset$ \mathcal{T}_{σ}^{G} : surfaces with G as a group of automorphisms. Marked surface $\sigma(X) \in \mathcal{T}_g$ and $\beta \in M_g^+$, $\mathbb{H}/\Delta_{\sigma} = X \stackrel{\sigma}{\rightarrow} \sigma(X)$ ↓ ↓ biconformal $\beta_*(X) \xrightarrow{\sigma} \sigma \beta(X)$ $\beta[\sigma] = [\sigma] \qquad \Leftrightarrow \quad \gamma \in PSL(2,\mathbb{R}), \quad \sigma(\Gamma_{g}) = \gamma^{-1}\sigma\beta(\Gamma_{g})\gamma$ γ induces an automorphism of the RS $[\sigma(X)]$, $Stb_{\mathcal{M}_{\sigma}}[\sigma] = Aut([\sigma(X)])$ Action: $\theta : \Delta \to Aut(X_{\sigma}) = G$, $ker(\theta) = \Gamma_{\sigma}$ Harvey 1971: $\mathcal{T}_{e}^{G} = \bigcup Im(i_{*})$, for normal inclusions $i : \Gamma_{g} \to \Delta$ such that $G \cong \Delta / \Gamma_{\sigma}$.

For $g \ge 3$ the branch locus of the (orbifold-) universal covering $\mathcal{T}_g \to \mathcal{M}_g$ consists of the RS with non-trivial automorphisms

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○○○○

 $Aut(X_g) = G$ conjugate $Aut(Y_g)$ iff $w \in Aut(G), h \in Diff^+(X)$ $\epsilon, \epsilon' : G \to Diff^+(X), \epsilon'(g) = h\epsilon w(g) h^{-1}$ Two (surface) monodromies $\theta_1, \theta_2 : \Delta \to G$ topologically equiv. actions of G iff θ_1, θ_2 equiv under $Out(\Delta) \times Aut(G)$. (G, θ) , determines the symmetry of X $X_{\varepsilon}, Y_{\varepsilon}$ equisymmetric if $Aut(X_{\varepsilon})$ conjugate to $Aut(Y_{\varepsilon})$ $(Aut(X_{\sigma}))$: full automorphism group) Broughton (1990): Equisymmetric Stratification $\mathcal{M}_{g}^{G,\theta} = \{X \in \mathcal{M}_{g} \mid \text{symmetry type of } X \text{ is } G\}.$ $\overline{\mathcal{M}}_{g}^{\tilde{G},\theta} = \{ X \in \mathcal{M}_{g} \mid \text{symmetry type of } X \text{ contains } G \}.$ $\overline{\mathcal{M}}_{g}^{G,\theta} \text{ connected, closed alg. var. of } \mathcal{M}_{g} \text{ with interior } \mathcal{M}_{g}^{G,\theta}.$ $\mathcal{M}_{g}^{\mathcal{G}, \theta}$ empty iff $\mathcal{G} \neq Aut(X_{g})$ for any Riemann surface in $\overline{\mathcal{M}}_{x}^{\mathcal{G}, \theta}$ Singerman's list of non-maximal signatures. A signature s is called finitely **maximal** if for any Fuchsian group Δ with $s(\Delta) = s$ and a group Δ' containing Δ we have dim $\mathcal{T}_{\Delta'}$ <dim \mathcal{T}_{Δ}

6(g-1) Automorphisms

Let $g \ge 8$ such that g - 1 is prime. There exists a compact Riemann surface of genus g with a group of automorphisms of order 6(g - 1) if and only if $g \equiv 2 \mod 3$. Moreover, in this case:

- the Riemann surfaces form a closed one-dimensional equisymmetric family *F*_g of Riemann surfaces *S* with a group of automorphisms *G* isomorphic to C_{g-1} ⋊₆ C₆ = ⟨a, c : a^{g-1} = c⁶ = 1, cac⁻¹ = a^m⟩, where *m* is a primitive 6-th root of unity in the field of g 1 elements, and *G* acts with signature (0; 2, 2, 3, 3),
- (2) \overline{F}_g contains two Riemann surfaces X_1 and X_2 with a group of automorphisms G' of order 12(g-1) isomorphic to $(C_{g-1} \rtimes_6 C_6) \times C_2$, acting with signature (0; 2, 6, 6), and
- (3) if $S \in \mathcal{F}_g$, where \mathcal{F}_g the interior of $\bar{\mathcal{F}}_g$, then G is the full automorphism group of S, and
- (4) if g > 14 then the subset $\overline{\mathcal{F}}_g \setminus \mathcal{F}_g$ of $\overline{\mathcal{F}}_g$ is $\{X_1, X_2\}$, with full automorphism group G'.

イロト イボト イヨト イヨト 二日

Results Sketch of the Proof

5(g-1) Automorphisms

Let $g \ge 8$ such that g - 1 is prime. There exists a compact Riemann surface S of genus g with a group of automorphisms G of order 5(g - 1) if and only if $g \equiv 2 \mod 5$. Moreover, in this case:

(1) the group G is isomorphic to

$$C_{g-1}
times 5 C_5 = \langle a,b:a^{g-1}=b^5=1,bab^{-1}=a^r
angle,$$

where r is a primitive 5-th root of unity in the field of g - 1 elements, and G acts with signature (0, 5, 5, 5),

(2) the action of G extends to an action of a group G' isomorphic to

$$C_{g-1} \rtimes_{10} C_{10} = \langle a, c : a^{g-1} = c^{10} = 1, cac^{-1} = a^{-r} \rangle,$$

with r as before, and G' acts with signature (0; 2, 5, 10),

(3) there are exactly four pairwise non-isomorphic such Riemann surfaces S,
(4) the full automorphism group of S is G', and

Remarks

1. For $g \ge 8$, the two surfaces X_1 , X_2 above are the two surfaces with 12(g-1) automorphisms obtained by Belolipetsky-Jones (2005). 2. For g = 14, there are three other surfaces in $\overline{\mathcal{F}}_{14}$ with automorphism group PSI(2, 13). These surfaces were obtained by Macbeath (1968), also Belolipetsky-Jones (2005).

3. The four surfaces admitting 5(g-1) automorphisms are in fact the four surfaces obtained by Belolipetsky-Jones (2005) with exactly 10(g-1) automorphisms.

4. For genera $g \ge 8$ such that g - 1 is prime. There exists a compact Riemann surface S of genus g with a group of automorphisms of order 3(g - 1) if and only if $g \equiv 2 \mod 3$. Furthermore, in this case the Riemann surface belongs to the family $\overline{\mathcal{F}}_g$ above. As a consequence, there are no compact Riemann surfaces of genus g with full automorphism group of order 3(g - 1).

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Results Sketch of the Proof

6(g-1) Automorphisms

S, a compact Riemann surface of genus $g \ge 8$, where p = g - 1 is prime, and *G* a group of automorphism of order 6q.

1. By the Riemann–Hurwitz formula the possible signatures of the action of G on S are $\sigma_1 = (0; 2, 2, 3, 3), \sigma_2 = (0; 2, 2, 2, 6)$ and $\sigma_3 = (0; 3, 6, 6)$ for each genus and, in addition, the signature (0; 2, 7, 42) for g = 8; but there is not surface epimorphism $\theta \Delta(0; 2, 7, 42) \rightarrow C_{42}$.

2. By Sylow's Theorems, $G = C_p \times D_3$, D_{3p} , $C_{6p} \rtimes_2 C_6$, $C_p \rtimes_3 C_6$, $C_p \rtimes_6 C_6$. But there are no surface epimorphisms from Fuchsian groups with signatures $\sigma_1 = (0; 2, 2, 3, 3), \sigma_2, \sigma_3$ onto $C_p \times D_3, D_{3p}, C_{6p}$, nor $C_p \rtimes_2 C_6$. There are no surface epimorphisms from a Fuchsian group $\Delta(0; 2, 2, 2, 6)$ onto $C_p \rtimes_3 C_6$ or $C_p \rtimes_6 C_6$.

3. There is no surface epimorphism $\theta : \Delta(0; 2, 2, 3, 3) \to C_p \rtimes_3 C_6$. But there are surface epimorphisms $\theta \Delta(0; 2, 2, 3, 3) \to C_p \rtimes_6 C_6 = \langle a, b, s : a^q = b^3 = s^2 = 1, [s, b] = 1, bab^{-1} = a^r, sas = a^{-1} \rangle$, and r a primitive third root of unity in \mathbb{F}_q .

A surface epimorphism $\theta_3 : \Delta(0; 2, 2, 3, 3) \rightarrow C_q \rtimes_6 C_6$ is equivalent to one of the form:

$$\theta_{3,m}(x_1) = s, \ \theta_{3,m}(x_2) = as, \ \theta_{3,m}(x_3) = a^{1+(1+r)m}b^2, \ \theta_{3,m}(x_4) = a^mb, \ 1 \le m \le q$$

4 Iterating a suitable number of times the braid $\Phi_{3,4}^2$, each epimorphism $\theta_{3,m}$ is equivalent to $\theta_{3,0}$

 $\theta_{3,0}(x_1) = s, \ \theta_{3,0}(x_2) = as, \ \theta_{3,0}(x_3) = ab^2$ and $\theta_{3,0}(x_4) = b$ Then $\overline{\mathcal{F}}_g$ is an equisymmetric family with non-empty interior. Otherwise by Singerman (1972) the action with monodromy $\theta_{3,0}$ extends to an action with monodromy $\widehat{\theta} : \Delta(0; 2, 2, 2, 3) \rightarrow G_{12p}$. But this action does not exist by Belolipetsky-Jones (2005).

5 There are surface epimorphisms from $\Delta_1(0; 3, 6, 6)$ onto both $C_q \rtimes_3 C_6$ and $C_q \rtimes_6 C_6$. They are equivalent to one defined by $\theta_{1,i}(x_1) = b^i$, $\theta_{1,i}(x_2) = a^{-r^i}b^is$, $\theta_{1,i}(x_3) = a^ibs$, i = 1, 2 onto $C_q \rtimes_3 C_6$, or to the one defined by $\theta_2(x_1) = ab$, $\theta_2(x_2) = bs$, $\theta_2(x_3) = a^rbs$. onto $C_q \rtimes_6 C_6$. **6** By Singerman (1972) and Belolipetsky-Jones (2005) these monodromies could extend only to monodromies $\Theta : \Delta_2(0; 2, 6, 6) = \langle y_1, y_2, y_3 | y_1^2 = y_2^6 y_3^6 y_1 y_2 y_3 = 1 \rangle \rightarrow (C_p \rtimes_6 C_6) \times C_2 = \langle a, b, s \rangle \times \langle z \rangle$.

(ロ) (同) (E) (E) (E)

Results Sketch of the Proof

The Belolipetsky-Jones Exceptional Surfaces X_1, X_2

7 According to Belolipetsky-Jones (2005), for primes p > 13, there are just two surfaces X_1, X_2 of genus g = p + 1 admitting exactly 12p automorphisms. The surfaces are determined by two non-equivalent actions of $(C_p \rtimes_6 C_6) \times C_2$ with monodromies $\Theta_1(y_1) = as$, $\Theta_1(y_2) = b^2 sz$, $\Theta_1(y_3) = a^{-r} bz$, and $\Theta_2(y_1) = as$, $\Theta_2(y_2) = bsz$, $\Theta_2(y_3) = a^{-r^2}b^2 z$ respectively. 8 The monodromies $\theta_{1,i}, \theta_2$ DO extend. Firstly, setting $x'_1 = y_2^2, x'_2 = y_3$ and $x'_3 = (y_2^2 y_3)^{-1}$, the restrictions $\Theta_1|_{\langle x'_1, x'_2, x'_3 \rangle}, \Theta_2|_{\langle x'_1, x'_2, x'_3 \rangle} : \Delta_1 \cong \langle x'_1, x'_2, x'_3 \rangle \to C_p \rtimes_3 C_6$ are precisely $\theta_{1,1}$ and $\theta_{1,2}$ respectively. Secondly, setting $x''_1 = y_3^2, x''_2 = y_2$ and $x''_3 = (y_3^2 y_2)^{-1}$, the restrictions $\Theta_1|_{\langle x''_1, x''_2, x''_3 \rangle}, \Theta_2|_{\langle x''_1, x''_2, x''_3 \rangle} : \Delta_1 \cong \langle x''_1, x''_2, x''_3 \rangle \to C_q \rtimes_6 C_6$ are equivalent to θ_2 .

It follows that a Riemann surface S with the action θ_2 of $C_q \rtimes_6 C_6$ with signature (0; 3, 6, 6) is isomorphic to either X_1 or X_2 .

9 Finally X_1, X_2 belong to $\overline{\mathcal{F}}_g$ since $\hat{x}_1 = (y_1 y_2^2 y_3^2)^{-1}, \hat{x}_2 = y_1, \hat{x}_3 = y_2^2$ and $\hat{x}_4 = y_3^2$ generate a subgroup of Γ_2 isomorphic to $\Delta(0; 2, 2, 3, 3)$. Furthermore, the restrictions $\Theta_1|_{\hat{\Gamma}}$ and $\Theta_2|_{\hat{\Gamma}}$ are monodromies equivalent to $\theta_{3,0}$.

▶ ★@ ▶ ★ 臣 ▶ ★ 臣 ▶ 二 臣

Results Sketch of the Proof

THE END

Milagros Izquierdo joint work with S. Reyes-Carocca On Large Groups of Automorphisms of Riemann Surfaces