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Fuchsian groups

Given an orientable, closed surface X of genus g ≥ 2 The

equivalence:
(X ,M(X ), complex atlas) (M(X ) = 〈x , y〉, p(x , y) = 0, the field
of meromorphic functions on X )

X ≡ H
∆ , with ∆ a (cocompact) Fuchsian group

∆ discrete subgroup of PSL(2,R)

(X ,M(X ), complex curve) (M(X ) = C[x , y ]/p(x , y), the field of
rational functions on X )
The curve X given by the polynomial p(x , y) and the meromorphic
function x : X → Ĉ.
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Some classic results on automorphisms of curves of genus g ≥ 2:

I There is a unique curve having an automorphism of order 4g + 2:
Wiman’s curve of type I y 2 = (x2g+1 − 1), with autom. gr. G = C4g+2,

I Except for g = 3, there is a unique curve having an automorphism of
order 4g : Wiman’s curve of type II y 2 = x(x2g − 1), and autom. gr.
G = C4g o2g−1 C2,

In genus two the group is G2 = GL(2, 3). The exception in genus 3
is Picards’s curve y3 = (x4 − 1), and gr. G = C12

I The largest number,of automorphisms, of type ag + b, of a curve in all
genera is 8g + 8. For genera g ≡ 0, 1, 2 mod 4 there is a unique curve:
Accola-Maclachlan’s curve y 2 = x(x2g+2 − 1), and gr.
G = (C2g+2 × C2)o C2.

For genera g ≡ 3 mod 4 there is one more curve: Kulkarni curve
y2g+2 = x(x − 1)g−1(x + 1)g+2, and gr.
G =

〈
x , y : x2g+2 = y4 = (xy)2 = 1; y2xy2 = xg+2 = 1

〉
Wiman 1895, Accola 1968, Maclachlan 1969, Kulkarni 1991, 1997
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Kulkarni showed that, if the Riemann surfaces in a family (of RS of genus g)
have more than 4g − 4 automorphisms, then the Teichmüller dimension of the
family is 0 or 1.

A finite group G acting on a surface Xg of genus g , g ≥ 2, is a large group of
automorphisms of Xg if |G |  4g − 4.

Some not that classic results:
Consider families with infinite many genera: g = p + 1, p prime large enough.

I g ≡ 2mod3, there are two surfaces 12(g − 1) automorphisms, gr.
G = (Cp o C6)× C2,

I g ≡ 2mod3, there are four surfaces 10(g − 1) automorphisms, gr.
G = Cp o C10,

I g ≡ 2mod8, there are two surfaces 8(g − 1) automorphisms, gr.
G = (Cp o C8)

I All genera: an equisymmetric family of dimension one whose surfaces
have 4(g + 1) automorphisms, gr. G = Dg+1 × C2

I All even genera: an equisymmetric family of dimension two whose
surfaces have 4(g − 1) automorphisms, gr. G = D2g−2

Belolipetsky-Jones 2005, Costa-I 2018, Reyes-Carocca 2020
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Question: What can we say on families of infinite many genera g of Riemann
surfaces admitting large groups of automorphisms of order ag + b, with a and
b integers? (In particular, g = p + 1, p prime, b = −a)

Accola,1995, showed that for primes p ≥ 89 the only possible orders (at least
8g + 8) are 12(g − 1), 10(g − 1), 8(g + 3) and, of course, 8(g + 1).

Wiman’s curves of type II provide examples of surfaces in all genera having 8g
automorphisms.

Conder-Kulkarni, 1992, provided several families of infinite many genera with
Riemann surfaces admitting large groups of automorphisms of order
ag + b 6= λ(g − 1).

Belolipetsky-Jones, 2005, showed the existence of the families of infinite many
genera with Riemann surfaces admitting large groups of automorphisms of
order λ(g − 1), with λ ≥ 7, the genus g = p + 1, where p is a prime p ≥ 17.
They are the only possible surfaces of the corresponding genus admitting at
least 7(g − 1) automorphisms.

One question left: Orders 6(g − 1) and 5(g − 1)?
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Fuchsian Groups

∆ (cocompact) discrete subgroup of PSL(2,R)

A (compact) Riemann Surface (Orbifold) of genus g ≥ 2
X = H

∆
∆ has presentation:
generators: x1, ..., xr , a1, b1, ..., ah, bh

relations: xmi
i , i = 1 : r , x1...xra1b1a

−1
1 b−1

1 ...ahbha
−1
h b−1

h
xi : generator of the maximal cyclic subgroups of ∆
X = H

∆ : orbifold with r cone points and underlying surface of
genus g
Algebraic structure of ∆ and geometric structure of X are
determined by the signature s(∆) = (h;m1, . . . ,mr )
∆ is the orbifold-fundamental group of X .
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Area of ∆: area of a fundamental region P

µ(∆) = 2π(2h − 2 +
∑r

1 (1− 1
mi

))

X hyperbolic equivalent to P/〈pairing〉
Poincaré’s Th: ∆ = 〈pairing〉
But from now on µ(∆) = (2h − 2 +

∑r
1 (1− 1

mi
)), reduced area.

Riemann-Hurwitz Formula: If Λ is a subgroup of finite index, N,
of a Fuchsian group ∆, then N = mu(Λ)

µ(∆)

RUT: Any Riemann surface of genus g ≥ 2 is uniformized by a
surface Fuchsian group
Γg = 〈a1, b1, ..., ag , bg ; a1b1a

−1
1 b−1

1 ...agbga
−1
g b−1

g 〉
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Groups of Automorphisms

G finite group of automorphisms of Xg = H/Γg , Γg a surface
Fuchsian group iif there exist
∆ Fuchsian group and epimorphism θ : ∆→ G with Ker(θ) = Γg

θ is the monodromy of the regular covering f : H/Γg → H/∆
H

↙
X/ = H/Γg ↓

↘
X/G = H/∆

∆: lifting to H of G

A morphism f : X = H/Λ→ Y = H/∆, X ,Y compact Riemann
orbifolds, group inclusion i : Λ→ ∆
Covering f determined by monodromy θ : ∆→ ΣN ,
Λ = θ−1(Stb(1))
(symbol ↔ Λ-coset↔ sheet for f ↔ copy of fund. polygon for ∆)
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Teichmüller and Moduli Spaces

∆ abstract Fuchsian group s(∆) = (h; m1, . . . ,mr )
T∆ = {σ : ∆→ PSL(2,R) | σinjective, σ(∆) discrete }/PSL(2,R)

Teichmüller space T∆ has a complex structure of dim 3h − 3 + r , diffeomorphic
to a ball of dim 6h − 6 + 2r .

Γg = π1(X ), surface X of genus g , the Teichmüller space is Tg := TΓg

The mapping class group M+
g = Out(Γg ) = Diff +(X )

Diff0(X

The moduli space Mg = Tg/M+
( g)

Mapping class group M+(∆) = Out(∆) = Diff +(H/∆)
Diff0(H/∆)

∆ = π1(H/∆) as orbifold
M+(∆) acts properly discontinuously on T∆

M∆ = T∆/M+(∆)
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Surfaces with Non-Trivial Automorphisms

If Λ subgroup of ∆ (i : Λ→ ∆) ⇒ i∗ : T∆ → TΛ embedding
Γg ≤ ∆ T∆ ⊂ Tg

G finite group T G
g = {[σ] ∈ Tg | g [σ] = [σ]∀g ∈ G} 6= ∅

T G
g : surfaces with G as a group of automorphisms.

Marked surface σ(X ) ∈ Tg and β ∈ M+
g ,

H/∆g = X
σ→ σ(X )

↓ ↓ biconformal

β∗(X )
σ→ σβ(X )

β[σ] = [σ] ⇔ γ ∈ PSL(2,R), σ(Γg ) = γ−1σβ(Γg )γ
γ induces an automorphism of the RS [σ(X )], StbMg [σ] = Aut([σ(X )])
Action: θ : ∆→ Aut(Xg ) = G , ker(θ) = Γg

Harvey 1971: T G
g =

⋃
Im(i∗), for normal inclusions i : Γg → ∆ such that

G ∼= ∆/Γg .

For g ≥ 3 the branch locus of the (orbifold-) universal covering Tg →Mg

consists of the RS with non-trivial automorphisms
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Aut(Xg ) = G conjugate Aut(Yg ) iff w ∈ Aut(G), h ∈ Diff +(X )
ε, ε′ : G → Diff +(X ), ε′(g) = hεw(g)h−1

Two (surface) monodromies θ1, θ2 : ∆→ G topologically equiv. actions of G iff
θ1, θ2 equiv under Out(∆)× Aut(G),
(G , θ), determines the symmetry of X
Xg , Yg equisymmetric if Aut(Xg ) conjugate to Aut(Yg )
(Aut(Xg ): full automorphism group)

Broughton (1990): Equisymmetric Stratification
MG ,θ

g = {X ∈Mg | symmetry type of X is G}.
MG ,θ

g = {X ∈Mg | symmetry type of X contains G}.
MG ,θ

g connected, closed alg. var. of Mg with interior MG ,θ
g .

MG ,θ
g empty iff G 6= Aut(Xg ) for any Riemann surface in MG ,θ

g .

Singerman’s list of non-maximal signatures. A signature s is called finitely
maximal if for any Fuchsian group ∆ with s(∆) = s and a group ∆′ containing
∆ we have dimT∆′ <dimT∆
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6(g − 1) Automorphisms

Let g > 8 such that g − 1 is prime. There exists a compact Riemann surface of
genus g with a group of automorphisms of order 6(g − 1) if and only if
g ≡ 2 mod 3. Moreover, in this case:

(1) the Riemann surfaces form a closed one-dimensional equisymmetric
family F̄g of Riemann surfaces S with a group of automorphisms G
isomorphic to Cg−1 o6 C6 = 〈a, c : ag−1 = c6 = 1, cac−1 = am〉,
where m is a primitive 6-th root of unity in the field of g − 1 elements,
and G acts with signature (0; 2, 2, 3, 3),

(2) F̄g contains two Riemann surfaces X1 and X2 with a group of
automorphisms G ′ of order 12(g − 1) isomorphic to (Cg−1 o6 C6)× C2,
acting with signature (0; 2, 6, 6), and

(3) if S ∈ Fg , where Fg the interior of F̄g , then G is the full automorphism
group of S , and

(4) if g > 14 then the subset F̄g \ Fg of F̄g is {X1,X2}, with full
automorphism group G ′.
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5(g − 1) Automorphisms

Let g > 8 such that g − 1 is prime. There exists a compact Riemann surface S
of genus g with a group of automorphisms G of order 5(g − 1) if and only if
g ≡ 2 mod 5. Moreover, in this case:

(1) the group G is isomorphic to

Cg−1 o5 C5 = 〈a, b : ag−1 = b5 = 1, bab−1 = ar 〉,

where r is a primitive 5-th root of unity in the field of g − 1 elements,
and G acts with signature (0; 5, 5, 5),

(2) the action of G extends to an action of a group G ′ isomorphic to

Cg−1 o10 C10 = 〈a, c : ag−1 = c10 = 1, cac−1 = a−r 〉,

with r as before, and G ′ acts with signature (0; 2, 5, 10),

(3) there are exactly four pairwise non-isomorphic such Riemann surfaces S ,

(4) the full automorphism group of S is G ′, and
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Remarks

1. For g > 8, the two surfaces X1, X2 above are the two surfaces with
12(g − 1) automorphisms obtained by Belolipetsky-Jones (2005).

2. For g = 14, there are three other surfaces in F̄14 with automorphism group
PSl(2, 13). These surfaces were obtained by Macbeath (1968), also
Belolipetsky-Jones (2005).

3. The four surfaces admitting 5(g − 1) automorphisms are in fact the four
surfaces obtained by Belolipetsky-Jones (2005) with exactly 10(g − 1)
automorphisms.

4. For genera g > 8 such that g − 1 is prime. There exists a compact Riemann
surface S of genus g with a group of automorphisms of order 3(g − 1) if and
only if g ≡ 2 mod 3. Furthermore, in this case the Riemann surface belongs to
the family F̄g above. As a consequence, there are no compact Riemann
surfaces of genus g with full automorphism group of order 3(g − 1).
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6(g − 1) Automorphisms
S , a compact Riemann surface of genus g > 8, where p = g − 1 is prime, and
G a group of automorphism of order 6q.
1. By the Riemann–Hurwitz formula the possible signatures of the action of G
on S are σ1 = (0; 2, 2, 3, 3), σ2 = (0; 2, 2, 2, 6) and σ3 = (0; 3, 6, 6) for each
genus and, in addition, the signature (0; 2, 7, 42) for g = 8; but there is not
surface epimorphism θ∆(0; 2, 7, 42)→ C42.
2. By Sylow’s Theorems, G = Cp × D3,D3p,C6p,Cp o2 C6,Cp o3 C6,Cp o6 C6.
But there are no surface epimorphisms from Fuchsian groups with signatures
σ1 = (0; 2, 2, 3, 3), σ2, σ3 onto Cp × D3,D3p,C6p, nor Cp o2 C6. There are no
surface epimorphisms from a Fuchsian group ∆(0; 2, 2, 2, 6) onto Cp o3 C6 or
Cp o6 C6.
3. There is no surface epimorphism θ : ∆(0; 2, 2, 3, 3)→ Cp o3 C6. But there
are surface epimorphisms θ∆(0; 2, 2, 3, 3)→ Cp o6 C6 = 〈a, b, s : aq = b3 =
s2 = 1, [s, b] = 1, bab−1 = ar , sas = a−1〉, and r a primitive third root of unity
in Fq.
A surface epimorphism θ3 : ∆(0; 2, 2, 3, 3)→ Cq o6 C6 is equivalent to one of
the form:
θ3,m(x1) = s, θ3,m(x2) = as, θ3,m(x3) = a1+(1+r)mb2, θ3,m(x4) = amb, 1 6 m 6 q
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4 Iterating a suitable number of times the braid Φ2
3,4, each epimorphism θ3,m is

equivalent to θ3,0

θ3,0(x1) = s, θ3,0(x2) = as, θ3,0(x3) = ab2 and θ3,0(x4) = b
Then F̄g is an equisymmetric family with non-empty interior. Otherwise by
Singerman (1972) the action with monodromy θ3,0 extends to an action with

monodromy θ̂ : ∆(0; 2, 2, 2, 3)→ G12p. But this action does not exist by
Belolipetsky-Jones (2005).

5 There are surface epimorphisms from ∆1(0; 3, 6, 6) onto both Cq o3 C6 and
Cq o6 C6. They are equivalent to one defined by

θ1,i (x1) = bi , θ1,i (x2) = a−r i

bi s, θ1,i (x3) = ai bs, i = 1, 2 onto Cq o3 C6, or to
the one defined by θ2(x1) = ab, θ2(x2) = bs, θ2(x3) = ar bs. onto Cq o6 C6.

6 By Singerman (1972) and Belolipetsky-Jones (2005) these monodromies
could extend only to monodromies Θ : ∆2(0; 2, 6, 6) = 〈y1, y2, y3 | y 2

1 =
y 6

2 y 6
3 y1y2y3 = 1〉 → (Cp o6 C6)× C2 = 〈a, b, s〉 × 〈z〉.
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The Belolipetsky-Jones Exceptional Surfaces X1,X2

7 According to Belolipetsky-Jones (2005), for primes p > 13, there are just two
surfaces X1,X2 of genus g = p + 1 admitting exactly 12p automorphisms. The
surfaces are determined by two non-equivalent actions of (Cp o6 C6)× C2 with
monodromies Θ1(y1) = as, Θ1(y2) = b2sz , Θ1(y3) = a−r bz , and

Θ2(y1) = as, Θ2(y2) = bsz , Θ2(y3) = a−r2

b2z respectively.

8 The monodromies θ1,i , θ2 DO extend.
Firstly, setting x ′1 = y 2

2 , x
′
2 = y3 and x ′3 = (y 2

2 y3)−1, the restrictions
Θ1|〈x′1,x′2,x′3〉,Θ2|〈x′1,x′2,x′3〉 : ∆1

∼= 〈x ′1, x ′2, x ′3〉 → Cp o3 C6 are precisely θ1,1 and
θ1,2 respectively.
Secondly, setting x ′′1 = y 2

3 , x
′′
2 = y2 and x ′′3 = (y 2

3 y2)−1, the restrictions
Θ1|〈x′′1 ,x

′′
2 ,x

′′
3 〉
,Θ2|〈x′′1 ,x

′′
2 ,x

′′
3 〉

: ∆1
∼= 〈x ′′1 , x ′′2 , x ′′3 〉 → Cq o6 C6 are equivalent to

θ2.
It follows that a Riemann surface S with the action θ2 of Cq o6 C6 with
signature (0; 3, 6, 6) is isomorphic to either X1 or X2.

9 Finally X1,X2 belong to F̄g since x̂1 = (y1y 2
2 y 2

3 )−1, x̂2 = y1, x̂3 = y 2
2 and

x̂4 = y 2
3 generate a subgroup of Γ2 isomorphic to ∆(0; 2, 2, 3, 3). Furthermore,

the restrictions Θ1|Γ̂ and Θ2|Γ̂ are monodromies equivalent to θ3,0.
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THE END
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