Johnson morphisms: definitions and related open questions

Rachel Davis
University of Wisconsin-Madison

AMS Spring Eastern Sectional Meeting Tufts University, Medford, MA

Automorphisms of Riemann Surfaces, Subgroups of Mapping Class Groups, and Related Topics

S. Allen Broughton, Jen Paulhus, Aaron Wootton

March 21, 2020

Let X be a complex curve of genus g with n punctures (i.e. a Riemann surface) defined over a number field K.

Fix ℓ a prime. Write H for the Tate module $T_{\ell} \operatorname{Jac}(X)$. This is a rank $2 g$ \mathbb{Z}_{ℓ}-module with an action of the absolute Galois group G_{K}.

Definition

The mapping class group, $\mathcal{M}_{g, 1}$ of X, is the group of isotopy classes of homeomorphisms, of X inducing the identity on the boundary.

- The mapping class group can be embedded in the automorphism group of a free group on $r=2 g$ generators by work of Dehn and Nielsen.
- The Johnson homomorphism has been used to investigate the mapping class group in $\operatorname{Aut}\left(F_{r}\right)$. (Birman, Kitano, Morishita, Perron, Putman, ...)
- Let Γ be the pro- ℓ completion of the étale fundamental group of $X_{\bar{K}}$.
- Let $F=F_{r}$ be the free pro- ℓ group on $r=2 g$ generators.
- Let $\left\{\Gamma_{k}\right\}$ denote the lower central series of Γ, defined by $\Gamma_{k}={\overline{[\Gamma, ~}]_{k-1}}$ is the closure of the subgroup generated by commutators of elements of Γ with elements of Γ_{k-1}.
- Then, $H=F^{\mathrm{ab}}$. Let $[f]:=f(\bmod [\Gamma, \Gamma])$.
- Let $T=T(H)$ be the tensor algebra on H,

$$
T:=m \geq 0 H^{\otimes m}
$$

which can be identified with the \mathbb{Z}_{ℓ}-algebra

$$
\mathbb{Z}_{\ell}\left\langle\left\langle X_{1}, \ldots X_{r}\right\rangle\right\rangle
$$

of non-commutative power series, where $X_{j}=\left[x_{j}\right](1 \leq j \leq r)$.

- Let $T_{n}:=\prod_{m \geq n} H^{\otimes m}$ be the two-sided-ideal of T consisting of power series of degree $\geq n$.
- $\mathrm{A} \mathbb{Z}_{\ell}$-algebra automorphism ϕ of T is called filtration-preserving if $\phi\left(T_{n}\right)=T_{n}$ for all $n \geq 0$.
- Denote by Aut ${ }^{\text {fil }}(T)$ the group of filtration-preserving \mathbb{Z}_{ℓ} automorphisms of T.
- Note that the homomorphism

$$
\operatorname{Aut}^{\mathrm{fil}}(T) \rightarrow \mathrm{GL}(H)
$$

splits.

- The splitting $\mathrm{\imath}: \mathrm{GL}(H) \rightarrow \operatorname{Aut}^{\mathrm{fil}}(T)$ is given by

$$
\mathbf{l}([\phi])\left(t_{m}\right)=\left([\phi]^{\otimes m}\left(t_{m}\right)\right)
$$

for $t_{m} \in H^{\otimes m}$.

Definition

The group

$$
\operatorname{IA}(T):=\operatorname{Ker}\left(\operatorname{Aut}^{\text {fil }}(T) \rightarrow \operatorname{GL}(H)\right)
$$

is called the Torelli subgroup.
Also,

$$
\mathscr{I}_{g, 1}:=\operatorname{Ker}\left(\mathscr{M}_{g, 1} \rightarrow \mathrm{GL}(H)\right)
$$

is called the Torelli group of X.

Lemma

- Aut ${ }^{f i l}(T) \simeq \operatorname{IA}(T) \rtimes \mathrm{GL}(H)$ given by $\phi \mapsto\left(\phi \circ[\phi]^{-1},[\phi]\right)$.
- There is a bijection $\operatorname{IA}(T) \simeq \operatorname{Hom}\left(H, T_{2}\right)$ given by $\left.\phi \mapsto \phi\right|_{H}-\mathrm{id}_{H}$.

Let $\mathbb{Z}_{\ell}[[\Gamma]]$ be the complete group algebra of Γ over \mathbb{Z}_{ℓ}.

Definition

The Magnus expansion $\theta: F \hookrightarrow T^{\times}$defined by $\theta\left(x_{j}\right)=1+X_{j}$ is extended to a \mathbb{Z}_{ℓ}-algebra isomorphism $\hat{\theta}: \mathbb{Z}_{\ell}[[\Gamma]] \simeq T$.

Then, the extended pro- ℓ Johnson homomorphism is defined by

$$
\hat{\tau}: \operatorname{Aut}(\Gamma) \rightarrow \operatorname{Aut}^{\text {fil }}, \hat{\tau}(\phi):=\hat{\theta} \circ \hat{\phi} \circ \hat{\theta}^{-1} .
$$

If we let $(\tau(\phi),[\phi])$ be the corresponding pair in $\operatorname{IA}(T) \rtimes \mathrm{GL}(H)$, then $\tau: \operatorname{Aut}(\Gamma) \rightarrow \mathrm{IA}(T)$.

Composing τ with $\operatorname{Aut}_{k}(\Gamma) \rightarrow \operatorname{Hom}\left(H, T_{2}\right) \rightarrow \operatorname{Hom}\left(H, H^{\otimes m}\right)$ yields the $m^{\text {th }}$ pro- ℓ Johnson map

$$
\tau_{m}: \operatorname{Aut}(F) \rightarrow \operatorname{Hom}\left(H, H^{\otimes m}\right) .
$$

Let q be the symplectic element of $\wedge^{2} H$.

Let $f:\left[\Lambda^{3} H\right] \rightarrow H \otimes\left[\left(\wedge^{2} H\right) / q\right]$ defined by

$$
a \wedge b \wedge c \mapsto a \otimes(b \wedge c)+b \otimes(c \wedge a)+c \otimes(a \wedge b)
$$

Theorem (Johnson)

Let $g \geq 2$. The image of τ_{2} on $\mathscr{I}_{g, 1}$ lies in the image of f.

- When restricted to the Torelli subgroup, $\tau_{2}: \mathscr{I}_{g, 1} \rightarrow \wedge^{3} \mathrm{H}$ is a homomorphism.
- This homomorphism extends to a homomorphism $\bar{\tau}_{2}: \mathcal{M}_{g, 1} \rightarrow\left(\frac{1}{2} \wedge^{3} H\right) \rtimes \operatorname{Sp}_{2 g}\left(\mathbb{Z}_{\ell}\right)$.
- The map $\bar{\tau}_{2}$ also corresponds to a crossed homomorphism $\varphi \in H^{1}\left(\mathcal{M}_{g, 1}, \frac{1}{2} \wedge^{3} H\right)$.

The mapping class group of a closed genus g Riemann surface is generated by Dehn twists around simple closed curves.

Dehn twist around ℓ which acts trivially on α and nontrivially on β.

The action of $D\left(x_{i}\right)$ on Γ is the following: $D\left(x_{i}\right)\left(y_{i}\right)=y_{i} x_{i}$ and $D\left(x_{i}\right)\left(z_{j}\right)=z_{j}$ for $z_{j} \neq y_{i}$.

Example (Perron)

Let $g=2$ and $C_{1}=x_{2} y_{2}^{-1} x_{2}^{-1} y_{2} \in \Gamma$. Then,

$$
\begin{gathered}
D\left(C_{1}\right)\left(x_{1}\right)=x_{1} y_{1}^{-1} x_{2} y_{2} x_{2}^{-1}, \\
D\left(C_{1}\right)\left(x_{2}\right)=C_{1} x_{2}, \\
D\left(C_{1}\right)\left(y_{1}\right)=C_{1} y_{1} C_{1}^{-1}, \text { and } \\
D\left(C_{1}\right)\left(y_{2}\right)=y_{2} .
\end{gathered}
$$

Fox calculus Let Γ be a free group generated by z_{1}, \ldots, z_{n}. Let $\varepsilon: \mathbb{Z}[\Gamma] \rightarrow \mathbb{Z}$ denote the evaluation map defined by

$$
\varepsilon\left(\sum_{i} n_{i} g_{i}\right)=\sum_{i} n_{i} .
$$

Definition

We define partial derivatives $\frac{\partial}{\partial z_{i}}: \mathbb{Z}[\Gamma] \rightarrow \mathbb{Z}[\Gamma]$ by

$$
\frac{\partial z_{j}}{\partial z_{i}}=\delta_{i j}, \quad \frac{\partial(u+v)}{\partial z_{i}}=\frac{\partial u}{\partial z_{i}}+\frac{\partial v}{\partial z_{i}}, \quad \frac{\partial(u v)}{\partial z_{i}}=\varepsilon(v) \frac{\partial u}{\partial z_{i}}+u \frac{\partial v}{\partial z_{i}} .
$$

As a consequence, we have $\frac{\partial u^{-1}}{\partial z_{i}}=-u^{-1} \frac{\partial u}{\partial z_{i}}$.

Example

$$
\frac{\partial(a b)}{\partial a}=1, \frac{\partial(a b)}{\partial b}=a, \frac{\partial(b a)}{\partial a}=b, \frac{\partial(b a)}{\partial b}=1 .
$$

Example

$\frac{\partial\left(x_{1} y_{1} x_{1}^{-1}\right)}{\partial y_{1}}=x_{1}$ and $\frac{\partial\left(x_{1} y_{1} x_{1}^{-1}\right)}{\partial x_{1}}=1-x_{1} y_{1} x_{1}^{-1}$.

Definition

The Fox matrix of $f \in \mathcal{M}_{g, 1}$ is the $2 g \times 2 g$ matrix with coefficients in $\mathbb{Z}[\Gamma]$ defined by

$$
B(f)=\left(\begin{array}{ccc}
\frac{\frac{\partial f\left(z_{1}\right)}{\partial z_{1}}}{\frac{\partial z_{1}}{}} & \cdots & \frac{\overline{\partial f\left(z_{2 g}\right)}}{\partial z_{1}} \\
\frac{\left.\partial z_{2}\right)}{\partial z} & \cdots & \frac{\frac{\partial f\left(z_{2 g}\right)}{\partial z_{2}}}{\vdots} \\
& \vdots \\
\frac{\partial f\left(z_{1}\right)}{\partial z_{2 g}} & \cdots & \frac{\overline{\partial f\left(z_{2 g}\right)}}{\partial z_{2 g}}
\end{array}\right)
$$

where $\overline{()}$ is the anti-isomorphism $\overline{\sum_{i} n_{i} g_{i}}=\sum_{i} n_{i} g_{i}^{-1}$.

To each $\alpha \in \mathbb{Z}[\Gamma]$, associate a formal series in $F\left(u_{1}, \ldots, u_{g}, v_{1}, \ldots v_{g}\right)$ where u_{i} (respectively v_{i}) corresponds to $x_{i}-1$ (resp. $y_{i}-1$).

Doing this, we can associate

$$
B(f)=B_{0}(f)+\cdots B_{k}(f)+\cdots
$$

where $B_{k}(f)$ is a $2 g \times 2 g$ matrix with entries in I_{k}, the abelian group generated by $\left\{w_{j_{k}} w_{j_{k-1}} \cdots w_{j_{1}} ; 1 \leq j_{i} \leq 2 g\right\}$ where $w_{i}=u_{i}$ if $1 \leq i \leq g$ and $w_{i}=v_{i-g}$ if $g<i \leq 2 g$.

The entry $a_{i j}^{(k)}$ of $B_{k}(f)$ is given by

$$
a_{i j}^{(k)}=\sum_{1 \leq j_{k}, \cdots, j_{1} \leq 2 g} \frac{\partial^{k}}{\partial z_{j_{k}} \cdots \partial z_{j_{1}}}\left(\frac{\overline{\partial f\left(z_{j}\right)}}{\partial z_{i}}\right)(1) w_{j_{k}} \cdots w_{j_{1}} .
$$

For $f \in \mathcal{M}_{g, 1}$, set

$$
A_{k}(f)=B_{k}(f) \times B_{0}(f)^{-1} \in \mathcal{M}_{2 g}\left(I_{k}\right)
$$

Then,

$$
A_{k}: \mathcal{M}_{g, 1} \rightarrow \mathcal{M}_{2 g}\left(I_{k}\right) \simeq I_{k} \otimes H \otimes H \simeq\left(\otimes^{k} H\right) \otimes H \otimes H
$$

Let $\widetilde{A_{1}}$ be the map obtained by composing A_{1} with the projection map $\pi: \otimes^{3} H \rightarrow \wedge^{3} H$. Then $\widetilde{A_{1}}$ is a crossed homomorphism.

Corollary (Johnson)

Restrict $\widetilde{A_{1}}$ to the Torelli group, $\mathscr{I}_{g, 1}$. Then, it is equal to $-6 \tau_{2}$, where τ_{2} is the second Johnson homomorphism.

Example (Perron)

Let $g=2$ and $C_{1}=x_{2} y_{2}^{-1} x_{2}^{-1} y_{1} \in \Gamma$. Then, $D\left(C_{1}\right)\left(x_{1}\right)=x_{1} y_{1}^{-1} x_{2} y_{2} x_{2}^{-1}, D\left(C_{1}\right)\left(x_{2}\right)=C_{1} x_{2}, D\left(C_{1}\right)\left(y_{1}\right)=C_{1} y_{1} C_{1}^{-1}$, $D\left(C_{1}\right)\left(y_{2}\right)=y_{2}$. Then,

$$
A_{1}\left(D\left(C_{1}\right)\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
b_{2} & -b_{1} & 0 & 0 \\
a_{1}-b_{1} & b_{2} & b_{2} & 0 \\
-a_{1}+b_{1}-a_{2} & a_{2}-b_{2} & -b_{1} & 0
\end{array}\right) .
$$

$$
M_{0}=\left(\begin{array}{llll}
a_{1} \otimes b_{1} & a_{1} \otimes b_{2} & a_{1} \otimes-a_{1} & a_{1} \otimes-a_{2} \\
a_{2} \otimes b_{1} & a_{2} \otimes b_{2} & a_{2} \otimes-a_{1} & a_{2} \otimes-a_{2} \\
b_{1} \otimes b_{1} & b_{1} \otimes b_{2} & b_{1} \otimes-a_{1} & b_{1} \otimes-a_{2} \\
b_{2} \otimes b_{1} & b_{2} \otimes b_{2} & b_{2} \otimes-a_{1} & b_{2} \otimes-a_{2}
\end{array}\right)
$$

Example (Perron)

Then,

$$
\begin{gathered}
\widetilde{A_{1}}\left(D\left(C_{1}\right)\right)=b_{2} \wedge a_{2} \wedge b_{1}-b_{1} \wedge a_{2} \wedge b_{2}+b_{2} \wedge b_{1} \wedge-a_{1} \\
-a_{1} \wedge b_{2} \wedge b_{1}-a_{2} \wedge b_{2} \wedge b_{1}-b_{1} \wedge b_{2} \wedge-a_{1} \\
=3\left(a_{1}+a_{2}\right) \wedge b_{1} \wedge b_{2}
\end{gathered}
$$

Morita extended the Johnson homomorphism τ_{2} to a crossed homomorphism φ. Let

$$
\widetilde{A_{10}}=\widetilde{A_{1}} \rtimes B_{0}: \mathcal{M}_{g, 1} \rightarrow\left(3 \wedge^{3} H\right) \rtimes \operatorname{Sp}\left(2 g, \mathbb{Z}_{\ell}\right)
$$

Theorem (Morita)

$\widetilde{A_{10}}$ and $\left.\varphi\right|_{\mathscr{M}_{g, 1}}$ define the same class in $H^{1}\left(\mathcal{M}_{g, 1}, \frac{1}{2} \wedge^{3} H\right)$.

Choose a point $P \in X(K)$. The Abel-Jacobi map is a map

$$
X \rightarrow \operatorname{Jac}(X)
$$

given by $Q \mapsto[Q-P]$. Let $[X]=[Q-P]$ and let $\left[X^{-}\right]=i_{*}[X]$ where i is the involution of $\operatorname{Jac}(X)$ mapping each point to its inverse. The Ceresa cycle is defined as $Z=[X]-\left[X^{-}\right] \in \mathrm{CH}_{1}(\operatorname{Jac}(X))$.

For a hyperelliptic curve, the Ceresa cycle is algebraically equivalent to zero since the action of the hyperelliptic involution agrees with negation on the Jacobian. All curves of genus 2 are hyperelliptic.

Hain and Matsumoto relate the Ceresa cycle to the images of Galois representations by studying its image, the Ceresa class, $v(X) \in H^{1}\left(G_{K}, L\right)$, where L is the quotient of $\wedge^{3} H$ by $H \wedge q$ where q is the symplectic form.

Theorem (Hain-Matsumoto, 2005)

Let $g \geq 3$. Let $m(X) \in H^{1}\left(G_{K}, L\right)$ be the pullback of $\widetilde{A_{10}} \in H^{1}\left(\mathcal{M}_{g, 1}, L\right)$ along the homomorphism

$$
\rho_{X}^{(\ell)}: G_{K} \rightarrow \mathcal{M}_{g, 1}
$$

Then,

$$
v(X)=m(X)
$$

Theorem (Ceresa, 1983)

On a generic Jacobian variety $\operatorname{Jac}(X)$ of dimesion $g \geq 3$, the Ceresa cycle is not algebraically trivial.

Open questions: Are there non-hyperelliptic curves (necessarily $g \geq 3$) such that $v(X)=0$? What are examples?

Theorem (Bisogno-Li-Litt-Srinivasan)

Let X be the unique genus 7 Hurwitz curve (non-hyperelliptic).

$$
1+7 x y+21 x^{2} y^{2}+35 x^{3} y^{3}+28 x^{4} y^{4}+2 x^{7}+2 y^{7}=0
$$

(affine plane model given by Brock). Then $v(X)$ is torsion.

Theorem (Corey-Ellenberg-Li)

Let X be a smooth, projective curve over $\mathbb{C}((t))$ with semistable reduction at the special fiber. Then the Ceresa class $v(X)$ is torsion.

Questions?

