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Let X be a complex curve of genus g with n punctures (i.e. a
Riemann surface) defined over a number field K .

Fix ` a prime. Write H for the Tate module T`Jac(X ). This is a rank 2g
Z`-module with an action of the absolute Galois group GK .
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Definition
The mapping class group, Mg,1 of X , is the group of isotopy classes
of homeomorphisms, of X inducing the identity on the boundary.

The mapping class group can be embedded in the
automorphism group of a free group on r = 2g generators by
work of Dehn and Nielsen.

The Johnson homomorphism has been used to investigate the
mapping class group in Aut(Fr ). (Birman, Kitano, Morishita,
Perron, Putman, . . .)
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Let Γ be the pro-` completion of the étale fundamental group of
XK .

Let F = Fr be the free pro-` group on r = 2g generators.

Let {Γk} denote the lower central series of Γ, defined by
Γk = [Γ,Γ]k−1 is the closure of the subgroup generated by
commutators of elements of Γ with elements of Γk−1.

Then, H = F ab. Let [f ] := f (mod [Γ,Γ]).
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Let T = T (H) be the tensor algebra on H,

T := m≥0H⊗m,

which can be identified with the Z`-algebra

Z`〈〈X1, . . .Xr 〉〉

of non-commutative power series, where Xj =
[
xj
]

(1≤ j ≤ r ).

Let Tn := ∏
m≥n

H⊗m be the two-sided-ideal of T consisting of

power series of degree ≥ n.

A Z`-algebra automorphism φ of T is called filtration-preserving if
φ(Tn) = Tn for all n ≥ 0.

Denote by Autfil(T ) the group of filtration-preserving Z`

automorphisms of T .
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Note that the homomorphism

Autfil(T )→ GL(H)

splits.
The splitting ι : GL(H)→ Autfil(T ) is given by

ι([φ])(tm) = ([φ]⊗m(tm))

for tm ∈ H⊗m.

Definition
The group

IA(T ) := Ker(Autfil(T )→ GL(H))

is called the Torelli subgroup.

Also,
Ig,1 := Ker(Mg,1→ GL(H))

is called the Torelli group of X .
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Lemma
Autfil(T )' IA(T )oGL(H) given by φ 7→ (φ◦ [φ]−1, [φ]).
There is a bijection IA(T )' Hom(H,T2) given by φ 7→ φ |H −idH .

Let Z`[[Γ]] be the complete group algebra of Γ over Z`.

Definition
The Magnus expansion θ : F ↪→ T× defined by θ(xj) = 1 + Xj is
extended to a Z`-algebra isomorphism θ̂ : Z`[[Γ]]' T .
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Then, the extended pro-` Johnson homomorphism is defined by

τ̂ : Aut(Γ)→ Autfil, τ̂(φ) := θ̂◦ φ̂◦ θ̂
−1.

If we let (τ(φ), [φ]) be the corresponding pair in IA(T )oGL(H), then
τ : Aut(Γ)→ IA(T ).

Composing τ with Autk (Γ)→ Hom(H,T2)→ Hom(H,H⊗m) yields the
mth pro-` Johnson map

τm : Aut(F )→ Hom(H,H⊗m).
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Let q be the symplectic element of ∧2H.

Let f : [Λ3H]→ H⊗ [(∧2H)/q] defined by

a∧b∧c 7→ a⊗ (b∧c) + b⊗ (c∧a) + c⊗ (a∧b).

Theorem (Johnson)
Let g ≥ 2. The image of τ2 on Ig,1 lies in the image of f .
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When restricted to the Torelli subgroup, τ2 : Ig,1→∧3H is a
homomorphism.

This homomorphism extends to a homomorphism
τ2 : Mg,1→

(1
2 ∧

3 H
)
oSp2g(Z`).

The map τ2 also corresponds to a crossed homomorphism
ϕ ∈ H1(Mg,1,

1
2 ∧

3 H).
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The mapping class group of a closed genus g Riemann surface is
generated by Dehn twists around simple closed curves.

Dehn twist around ` which acts trivially on α and nontrivially on β.

The action of D(xi) on Γ is the following:
D(xi)(yi) = yixi and D(xi)(zj) = zj for zj 6= yi .
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Example (Perron)

Let g = 2 and C1 = x2y−1
2 x−1

2 y2 ∈ Γ.
Then,

D(C1)(x1) = x1y−1
1 x2y2x−1

2 ,

D(C1)(x2) = C1x2,

D(C1)(y1) = C1y1C−1
1 , and

D(C1)(y2) = y2.
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Fox calculus Let Γ be a free group generated by z1, . . . ,zn. Let
ε : Z[Γ]→ Z denote the evaluation map defined by

ε

(
∑
i

nigi

)
= ∑

i
ni .

Definition
We define partial derivatives ∂

∂zi
: Z[Γ]→ Z[Γ] by

∂zj

∂zi
= δij ,

∂(u + v)

∂zi
=

∂u
∂zi

+
∂v
∂zi

,
∂(uv)

∂zi
= ε(v)

∂u
∂zi

+ u
∂v
∂zi

.

As a consequence, we have ∂u−1

∂zi
=−u−1 ∂u

∂zi
.
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Example
∂(ab)

∂a = 1, ∂(ab)
∂b = a, ∂(ba)

∂a = b, ∂(ba)
∂b = 1.

Example
∂(x1y1x−1

1 )
∂y1

= x1 and ∂(x1y1x−1
1 )

∂x1
= 1−x1y1x−1

1 .
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Definition
The Fox matrix of f ∈Mg,1 is the 2g×2g matrix with coefficients in
Z[Γ] defined by

B(f ) =


∂f (z1)

∂z1
. . .

∂f (z2g)
∂z1

∂f (z1)
∂z2

. . .
∂f (z2g)

∂z2
...

...
∂f (z1)
∂z2g

. . .
∂f (z2g)

∂z2g


where () is the anti-isomorphism ∑i nigi = ∑i nig−1

i .

To each α ∈ Z[Γ], associate a formal series in F (u1, . . . ,ug ,v1, . . .vg)
where ui (respectively vi ) corresponds to xi −1 (resp. yi −1).
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Doing this, we can associate

B(f ) = B0(f ) + · · ·Bk (f ) + · · ·

where Bk (f ) is a 2g×2g matrix with entries in Ik , the abelian group
generated by

{
wjk wjk−1 · · ·wj1 ;1≤ ji ≤ 2g

}
where wi = ui if 1≤ i ≤ g

and wi = vi−g if g < i ≤ 2g.

The entry a(k)
ij of Bk (f ) is given by

a(k)
ij = ∑

1≤jk ,··· ,j1≤2g

∂k

∂zjk · · ·∂zj1

(
∂f (zj)

∂zi

)
(1)wjk · · ·wj1 .
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For f ∈Mg,1, set

Ak (f ) = Bk (f )×B0(f )−1 ∈M2g(Ik ).

Then,

Ak : Mg,1→M2g(Ik )' Ik ⊗H⊗H ' (⊗kH)⊗H⊗H.

Let Ã1 be the map obtained by composing A1 with the projection map
π :⊗3H→∧3H. Then Ã1 is a crossed homomorphism.

Corollary (Johnson)

Restrict Ã1 to the Torelli group, Ig,1. Then, it is equal to −6τ2, where
τ2 is the second Johnson homomorphism.
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Example (Perron)

Let g = 2 and C1 = x2y−1
2 x−1

2 y1 ∈ Γ. Then,
D(C1)(x1) = x1y−1

1 x2y2x−1
2 , D(C1)(x2) = C1x2, D(C1)(y1) = C1y1C−1

1 ,
D(C1)(y2) = y2. Then,

A1(D(C1)) =


0 0 0 0
b2 −b1 0 0

a1−b1 b2 b2 0
−a1 + b1−a2 a2−b2 −b1 0

 .

M0 =


a1⊗b1 a1⊗b2 a1⊗−a1 a1⊗−a2
a2⊗b1 a2⊗b2 a2⊗−a1 a2⊗−a2
b1⊗b1 b1⊗b2 b1⊗−a1 b1⊗−a2
b2⊗b1 b2⊗b2 b2⊗−a1 b2⊗−a2
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Example (Perron)
Then,

Ã1(D(C1)) = b2∧a2∧b1−b1∧a2∧b2 + b2∧b1∧−a1

−a1∧b2∧b1−a2∧b2∧b1−b1∧b2∧−a1

= 3(a1 + a2)∧b1∧b2.

Morita extended the Johnson homomorphism τ2 to a crossed
homomorphism ϕ. Let

Ã10 = Ã1 oB0 : Mg,1→ (3∧3 H)oSp(2g,Z`).

Theorem (Morita)

Ã10 and ϕ |Mg,1
define the same class in H1(Mg,1,

1
2 ∧

3 H).
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Choose a point P ∈ X (K ). The Abel-Jacobi map is a map

X → Jac(X ),

given by Q 7→ [Q−P]. Let [X ] = [Q−P] and let [X−] = i∗ [X ] where i
is the involution of Jac(X ) mapping each point to its inverse. The
Ceresa cycle is defined as Z = [X ]− [X−] ∈ CH1(Jac(X )).

For a hyperelliptic curve, the Ceresa cycle is algebraically equivalent
to zero since the action of the hyperelliptic involution agrees with
negation on the Jacobian. All curves of genus 2 are hyperelliptic.
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Hain and Matsumoto relate the Ceresa cycle to the images of Galois
representations by studying its image, the Ceresa class,
ν(X ) ∈ H1(GK ,L), where L is the quotient of ∧3H by H ∧q where q is
the symplectic form.

Theorem (Hain-Matsumoto, 2005)

Let g ≥ 3. Let m(X ) ∈ H1(GK ,L) be the pullback of Ã10 ∈ H1(Mg,1,L)
along the homomorphism

ρ
(`)
X : GK →Mg,1

Then,
ν(X ) = m(X ).
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Theorem (Ceresa, 1983)
On a generic Jacobian variety Jac(X ) of dimesion g ≥ 3, the Ceresa
cycle is not algebraically trivial.

Open questions: Are there non-hyperelliptic curves (necessarily
g ≥ 3) such that ν(X ) = 0? What are examples?
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Theorem (Bisogno-Li-Litt-Srinivasan)
Let X be the unique genus 7 Hurwitz curve (non-hyperelliptic).

1 + 7xy + 21x2y2 + 35x3y3 + 28x4y4 + 2x7 + 2y7 = 0

(affine plane model given by Brock). Then ν(X ) is torsion.

Theorem (Corey-Ellenberg-Li)
Let X be a smooth, projective curve over C((t)) with semistable
reduction at the special fiber. Then the Ceresa class ν(X ) is torsion.
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Questions?
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