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Pairs of Fuchsian Groups, Why?

consider finite index pairs Γ ⊆ ∆ of finite area Fuchsian
groups, FG-pairs for short
goal: classify FG-pairs up to various types of equivalence
first consider three motivations
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Motivation 1 - extension of actions

Motivation 1 - extending actions -1

suppose X is a closed surface with group of
automorphisms H
when is H the full automorphism group
suppose X admits an overgroup G ⊇ H of automorphisms
there are Fuchsian groups Γ ≤ ∆ and Π E ∆ with X w H/Π

and Γ and ∆ uniformize the action of H and G respectively
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Motivation 1 - extension of actions

Motivation 1 - extending actions - 2

uniformization of H-action determined by η : Γ→ H
select ∆ from the classification (if it exists, moduli problem)
H-action on X extends to G ' ∆/Π if there is an extension
η : ∆→ G
whether η extends can be determined by knowing the
inclusion map Γ→ ∆ in algebraic form
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Motivation 1 - extension of actions

Motivation 1 - finitely maximal - 1

Γ is finitely maximal if there is no overgroup of finite index
action can extend only in case Γ is not finitely maximal
Greenberg and later Singerman worked out a finite list of
Fuchsian groups that are never finitely maximal
action extension is now just an algebraic problem, no
moduli constraints
this case by worked out by Bujalance, Conder and Cirre
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Motivation 2 - divisible tilings

Motivation 2 - divisible tilings 1

suppose P is a convex hyperbolic polygon whose angles
have the form π/n for n ∈ {2,3,4, . . . ,∞}
called a kaleidoscopic polygon, see slide after next
P generates a tiling by repeated reflection in sides
reflections in sides of polygon generate a crystallographic
group
define Γ to be the subgroup of orientation preserving
transformations



Introduction/Motivation Background/Notation Classification Results/Future Work/References

Motivation 2 - divisible tilings

Motivation 2 - divisible tilings 2

suppose Q ⊂ P is a kaleidoscopic polygon whose tiling
refines first tiling, namely P is tiled by repeated reflections
of Q
let ∆ be the Fuchsian group determined by Q
then Γ ⊂ ∆ is a FG-pair where the index is the number of
Q-polygons tiling a P-polygon
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Motivation 2 - divisible tilings

Motivation 2 - divisible tilings 3

P = large polygon, angles = (π/5, π/5, π/5, π/5)

Q = small polygon, angles = (π/2, π/4, π/5)
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Motivation 2 - divisible tilings

Motivation 2 - divisible tilings 4

P = large polygon, angles = (π/3, π/4, π/5, π/20)

Q = small polygon, angles = (π/2, π/3, π/20)
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Motivation 2 - divisible tilings

Motivation 2 - divisible tilings 5

in the last frame observe that there are “freely moveable”
vertices
we get an entire family of polygon pairs Q ⊂ P where P
has angles (π/3, π/4d , π/5d , π/20d), Q has angles
(π/2, π/3, π/20d), and d ≥ 1 is an integer parameter
the limiting polygon as d →∞ has cusps on the boundary
of H
the entire family is determined by the limiting cusp case
the algebraic structure of ∆/Γ is independent of the order
at the free vertices.
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Motivation 3 - stratification of moduli spaces

Motivation 3 - stratification of moduli space

moduli space Mσ is the space of conformal equivalence
classes of surfaces of genus σ
Mσ may be stratified into a finite disjoint union of locally
closed smooth subvarieties, consisting of surfaces of
similar symmetry type, called equisymmetric strata
all surfaces in a given stratum have automorphism group
isomorphic to a fixed group H (all conjugate in the mapping
class group)
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Motivation 3 - stratification of moduli spaces

Motivation 3 - stratification of moduli space 3

if Σ is a stratum its closure is a union of strata of lower
dimension(adjunction) corresponding to overgroups G ⊇ H
G ⊇ H determines an FG-pair Γ ⊂ ∆

classification of the FG-pairs helps determine the
equisymmetric structure of Mσ (adjunction relation)
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Fuchsian Groups

Fuchsian Groups - presentation

Γ has a presentation

generators : {αi , βi , γj , δk ,1 ≤ i ≤ σ, 1 ≤ j ≤ s,1 ≤ k ≤ p}

relations :
σ∏

i=1

[αi , βi ]
s∏

j=1

γj

p∏
k=1

δk = γm1
1 = · · · = γms

s = 1

the signature of Γ is

S(Γ) = (σ : m1, . . . ,ms,ms+1, . . . ,ms+p)

with ms+j =∞, j = 1, . . . ,p
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Fuchsian Groups

Fuchsian Groups - invariants

important invariants of a Fuchsian group
the genus of Γ: σ(Γ) = σ is the genus of S = H/Γ

area of a fundamental region: A(Γ) = 2πµ(Γ) where:

µ(Γ) = 2(σ − 1) +

s+p∑
j=1

(1− 1
mj

).

Teichmüller dimension d(Γ) of Γ: the dimension of the
Teichmüller space of Fuchsian groups with signature S(Γ)
given by

d(Γ) = 3(σ − 1) + s + p.
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Fuchsian Group Pairs

Fuchsian Group Pairs - codimension

for finite index FG-pair Γ ⊆ ∆ we call the quantity
d(Γ,∆) = d(Γ)− d(∆) the Teichmüller codimension of
(Γ,∆)

in Motivation 1: Singerman’s list is the list of codimension 0
pairs.
in Motivation 2: the tiling of an m-gon by an n-gon
determines a codimension m − n pair
Motivation 3: If Σ2 lies in the closure of Σ1 then a
codimension dim(Σ1)− dim(Σ2) pair is determined
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Fuchsian Group Pairs

Fuchsian Group Pairs - monodromy

the pair Γ ⊆ ∆ of index n determines a permutation
representation q : ∆→ Σn where n is the index of Γ in ∆

the representation may be captured geometrically from the
monodromy of the branched covering S → T S = H/Γ,
T = H/∆

a generating set for ∆ determines a sequence

{q(αi),q(βi),q(γj),q(δk ),1 ≤ i ≤ σ, 1 ≤ j ≤ s,1 ≤ k ≤ p}

of elements of Σn satisfying certain properties
the sequence above is called a monodromy vector
monodromy vector structure determined entirely by the
signatures of Γ and ∆

M(∆, Γ) = q(∆) is called the monodromy group of the pair
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Overview

Overview

classify by codimension
constrained and tight pairs
finiteness of classification in each codimension
numerical projections
primitive pairs , M(∆, Γ) is a primitive permutation group
Towers of Fuchsian groups
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Steps of Classification

Steps of Classification - 1

determine all signature pairs for a fixed codimension
can be done by computer search resulting in
finitely many exceptional cases
finitely many families
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Steps of Classification

Overview

classify by codimension
for each codimension the dimension d(Γ) and hence σ(Γ)
is bounded
only classify primitive pairs , i.e., M(∆, Γ) is a primitive
permutation group
classify by algebraic and then by conformal equivalence
each algebraic equivalence class determines a moduli
space of conformally inequivalent pairs
each moduli space “looks like” the moduli space of the
containing Fuchsian group (finite cover)
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Steps of Classification

Steps of Classification - 2

for each candidate signature pair, compute all the
compatible monodromy vectors up to algebraic
equivalence
use computer calculation and classification of primitive
permutation groups (use Magma or GAP)
using the Riemann existence theorem, each monodromy
vector determines an FG-pair
in turn a moduli space of pairs is determined.
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Steps of Classification

Steps of Classification - 3

for each monodromy vector a branched cover S → T may
be constructed
the inclusion Γ→ ∆, written in terms of a canonical
generating set, may be constructed from the branched
cover
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Preliminary Results

General results

for each codimension there is a finite classification as
follows
finitely many exceptional pairs without punctures
finitely many families, each parameterized by integers
each family is derived form a single pair with punctures
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Preliminary Results

By codimension

Codimension 0 - Singerman’s list - inclusions have been
calculated - Bujalance, Conder and Cirre
Codimension 1 - all cases coming from polygonal pairs
determined by previous efforts of author and students
-inclusions not yet calculated
codimension 2 - most signature pairs calculated, this case
appears to be computable
higher codimension cases may become very
computationally intensive
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Future Work

Future Work

finish extendibility algorithm, i.e., automatic computation of
algebraic form of inclusion Γ→ ∆ in algebraic form from
the monodromy vector
completely work out structure of moduli space (adjunction
relation) for low genus, say genus 3 and 4
Teichmüller curves in Teichmüller space - dimension 1
strata and the zero dimensional strata lying on them
(triangle groups in quadrilateral groups and one other
case)
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