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1 Introduction and Notation

1.1 Introduction

• Surfaces of the same genus σ are called equisym-
metric, or are said to have the same symmetry

type, if the two surfaces’ conformal automorphism

groups determine conjugate finite subgroups of

the mapping class group of genus σ. See [4]

• The subset of the moduli space corresponding to
surfaces equisymmetric with a given surface forms

a locally closed subvariety of the moduli space,

called an equisymmetric stratum.

• The conjugacy classes of the mapping class group
determine strata but it is possible to have finite,

distinct H ⊂ G determine the same strata.



• The equisymmetric strata are smooth, irreducible
locally closed, projective varieties, are finite in

number, have easily computed dimensions, and

do form a stratification of the moduli space.

• The stratification can be used to derive informa-
tion about the cohomology of the mapping class

group, and form in some sense form a ”stratifica-

tion by singularity” of the moduli space and hence

capture some of the geometric information of the

moduli space.

• The strata are in 1-1 correspondence with certain
well-determined conjugacy classes of finite sub-

groups of the mapping class group or alternatively

topological equivalence classes of orientation pre-

serving actions of a finite group G on a surface

S.



• Given a equisymmetric stratum S then S − S =S
j
Sj is a disjoint union of equisymmetric strata

of lower dimension consisting of curves with more

symmetry than just G-symmetry. We denote by

S → Sj the relation Sj ⊂ S.



1.2 Problems

1. Some problems arise:

(a) Enumerate the strata for low genus, and the

related problem.

(b) Determine the conjugacy classes of finite sub-

groups of the mapping class group.

2. To understand the moduli space as a geometric

object answers to the following questions would

be helpful.

(a) What do the strata look like? A genus calcu-

lation would be nice for 1-dimensional strata.

(b) For low genus determine the adjunction rela-

tions S → Sj.



3. There is a long history to this problem. The ini-
tial results are over 100 years old but very rapid
progress had been made in the last few years be-
cause of the availability of an extensive library of
Small Groups Library in GAP and MAGMA. Here
is a sample of papers some of which have exten-
sive bibliographies.

• Breuer. Characters and Automorphism, Groups
of Compact Riemann Surfaces, London Math
Soc. Lect. Notes, 280. CUP, 2000.

• Broughton, Classifying Finite Group Actions
on Surfaces of Low Genus, JPPA 69 (1990)
and

• , The Equisymmetric Stratification of
the Moduli Space and the Krull Dimension of
Mapping Class Groups, Topology and it Ap-
plications, (1990)

• G. A. Jones. Counting Subgroups of Non-
Euclidean Crystallographic Groups. Math. Scand
(1999)



• Magaard, Shpectorov, Völklein,The locus of
curves with prescribed automorphism group,

preprint 2002, Magaard home page.

• , A GAP Package for Braid Or-

bit Computation and Applications, Experimen-

tal Mathematics, 2003

• Wooton, Counting Belyi Surfaces with many
Automorphisms, Applications of Computer Al-

gebra (ACA-2004)



2 Collaborators

Much of this work was done with undergraduates at

the Rose-Hulman NSF-REU http://www.tilings.org (see

next page)

• M. Haney, McLKeough, B. Smith - Divisible tilings

• R. Vinroot, R. Dirks, Sloughter, - Classification
in low genus

• I Averill, J. Gregoire - Quadrilateral Classification

• Kathryn Zuhr, - Moduli for quadrilaterals
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Overview

A tiling of a Riemann surface is a covering by polygons, without gaps or overlaps, of a two-dimensional surface.
The two tilings pictured above are the icosahedral (2,3,5)-tiling of the sphere and the (3,3,3)-tiling of the torus. (An
(l,m,n)-triangle has degree angles of 180o/l, 180o/m and 180o/n.) If the torus tiling is cut up and flattened out the
tiling can be replicated to completely cover the plane with a regular pattern of equilateral triangles, i.e.,
(3,3,3)-triangles. Thus the tiling of the torus exhibits the characteristics of ordinary Euclidean geometry. Obviously,
the icosahedral tiling exhibits spherical characteristics, indeed the angle sum of any of its triangles is 180o/2 +180o/3
+180o/5 = 186o .

Now if the surface has genus higher than 2, say as in the picture at the left then
the geometry will be hyperbolic. What that means is that if we cut apart the
surface, flatten it and try to join together replicates to tile a plane, we will end
up with a tiling of the hyperbolic plane. Thus the edges of the tiling will
follow the the curved lines of hyperbolic geometry and the angle sum of the
geometry will satisfy:

180o/l + 180o/m + 180o/n  < 180o.

Here is an example of an unwrapped tiled surface giving a tiling of the
hyperbolic plane by (4,3,3) triangles (for more examples go to the images page). Now it is more than a coincidence
that there are no pictures of hyperbolic surface in this web site. That is because it is quite difficult to draw them, and
since it is impossible to have a geometrically true 3D realization of these surfaces (the same is true of the torus). Of
course to it will be one of the goals of the program to obtain reasonable renditions of many such surfaces. For the
time being we need to content ourselves with the unwrapped versions of the tilings as tilings of the hyperbolic plane
and some recipe for abstractly constructing such a surface and understanding its geometry. The icosahedral tiling
yields the answer. The 120 triangles in the icosahedral tilings are all congruent to each other by means of a rotation
or reflection of the sphere that preserves the tiling. The same is true of higher genus surfaces with highly symmetric
tilings, i.e., there will be a "tiling group" of the surface that will move any tile congruently onto another. The groups
can be almost any finite group, and therefore we use the methods of computational group theory, especially using 
computer algebra systems like Magma (Maple and Matlab are used for more geometric aspects). That now explains
all the terms in the title.

The Rose-Hulman Tilings, Hyperbolic Geometry and Computational Group Theory website serves as a resource to
the REU participants and others who have contributed, and as a dissemination site for their work, available to anyone
who is interested. This site includes

a list of contributors, 
project descriptions and progress reports,
technical reports, publications, background notes, and related papers



3 Notation and Facts

3.1 Notation

• Let H be the hyperbolic plane,

• S = H/Π is compact closed surface of genus σ,

Π w π1(S),

• Mσ be the mapping class group of S, Tσ the Te-
ichmüller space of curves of genus σ andMσ =

Tσ/Mσ the moduli space of curve of genus σ,

• G a group acting on conformally on S,

• η : Γ 7−→ G a surface-kernel epimorphism with

kernel Π, uniformizing the G-action.



• The quotient T = S/G = H/Γ is surface of

genus τ, Γ has t periods n1, . . . , nt correspond-

ing to branch points P1, . . . Pt on T, We record

the n1, . . . , nt in non-decreasing order. The sig-

nature of Γ is denoted B = (τ : n1, . . . , nt).

• A presentation of Γ = ΓB is given by

hαi, βi, γj, 1 ≤ i ≤ τ, 1 ≤ j ≤ r :
ρY

i=1

[αi, βi]
rY

j=1

γj = γ
m1
1 = · · · = γmr

r = 1i,

• Let ai, bi, cj be the images of the generators αi, βi, γj
under the map η.

The (2τ + t)-tuple (a1, b1, . . . aτ , bτ , c1, . . . ct) forms

a generating set for G satisfying

τY
i=1

[ai, bi]
tY

j=1

cj = 1, o(cj) = nj.

call such tuple a generating (τ : n1, . . . , nt) -

vector and denote it by η.



• The Riemann Hurwitz equation is also satisfied:

(2σ − 2)
|G|

= (2τ − 2 + t)−
tX

j=1

1

nj
.

• Let X(B) = X(τ : n1, . . . , nt) denote the set of

all generating (τ : n1, . . . , nt) - vectors.

3.2 Facts

• Given a triple (G,B, η), a stratum in the moduli

space is determined.

• The complex dimension of the stratum determined
by (G,B, η) is 3τ + t− 3.

• LetMB denote the mapping class group of T pre-

serving the branch set {P1, . . . Pt} and the orders.



It may be viewed as an automorphism group of

ΓB. The group Aut(G) ×MB acts on X(B) by

(ω, φ) · η = ω◦ η ◦ φ−1.

• The finite conjugacy classes of the mapping com-
ing from some G-action of type (τ : n1, . . . , nt)

are in 1-1 correspondence to the Aut(G) ×MB

orbits of X(B).

• If G0 ⊂ G is a subgroup pair then two triples

(G0, B0, η0), (G,B, η) are determined. There is
an inclusion map S → S0 which is bijective if and
only if dimS =dimS0. This only depends on the
signature.



4 Steps of a classification program

1. Determine the G’s and the B’s. This has been

done up to genus 48 in Thomas Breuer’s book

[2].

2. Determine a list the Aut(G)- classes of generating

vectors.

3. Determines theMB orbits on the generating vec-

tors in #2. The Braid package discussed in [7]

works well for signatures of the form (0 : n1, . . . , nt)

since the MB orbits are given by the braid group

action preserving the order. The action of a typ-

ical generator is given by

(c1, . . . ct) −→ (c1, . . . , cj+1, c
−1
j+1cjcj+1, . . . , ct).

4. In the case where τ > 0 the MB action would

be a bit trickier to implement though generators

for the mapping class group are known [1], and

translation to an action of MB can be done.



5. These steps determine the conjugacy classes of fi-

nite subgroups of the mapping class group. There

is an additional step to eliminate redundant ac-

tions for strata whose dimension is 3 or less. As

noted It is possible that for a given triple (G,B, η)

there is a group G0 ⊂ G and triple (G0, B0, η0)
such that S = S0.This can only happens if ΓB0 ⊂
ΓB, Π is normal in both, and 3τ 0 + t0 − 3 =

3τ + t− 3.

6. Greenberg, and later Singerman determined the

cases in which there was a possible ΓB0 ⊂ ΓB.

3τ + t− 3 0 1 2 3
Families of cases 7 2
Exceptional cases 7 1 1 1

Families of cases are one in which depend on a

parameter e.g., Γ(0:d,d,d) ⊂ Γ(0:2,3,2d) with in-

dex 6. An example of an exceptional case is

Γ(0:4,4,5) ⊂ Γ(0:2,4,5). For a given genus the vari-

able in the families of cases are finite in number.

A nice description of the cases is given in [8].



7. We may handle a case such as Γ(0:4,4,5) ⊂ Γ(0:2,4,5)
by noting that if (γ1, γ2, γ3) is a generating triple

for Γ(0:2,4,5) then (γ2, γ
2
3γ2γ

−2
3 , γ−13 γ2γ3γ

−1
2 γ3)

may be taken as a generating triple for Γ(0:4,4,5).

8. Then the action (G, (0 : 2, 4, 5), (c1, c2, c3)) de-

termines a generating vector (c2, c
2
3c2c

−2
3 , c−13 c2c3c

−1
2 c3)

of a triple

(H, (0 : 4, 4, 5), (c2, c
2
3c2c

−2
3 , c−13 c2c3c

−1
2 c3) which

may be compared to a given

(G0, (0 : 4, 4, 5), (c01, c
0
2, c

0
3)).

9. Often there is a unique candidate for (G0, B0, η0),
so there is nothing to calculate. A contrary ex-

ample is given by the two inequivalent actions

(Z7, (0 : 7, 7, 7), (x, x2, x4)) and
(Z7, (0 : 7, 7, 7), (x, x, x5)) in genus 3. One em-
beds in the unique D7 action and the other in the

unique PSL2(7) action .



5 Results

• Complete lists for genus 2 and 3 have been cal-
culated piecemeal in the past in [3] and a series

of papers starting in [6].

• Recently, in [8] genus 2 and 3 results have been
recomputed, using GAP . The surfaces with ”large

automorphism groups” up to genus 10 have been

calculated in the same paper. Similar calculations

have been done in [9].

• The complete classification of 0-dimensional strata
up to genus 25 has been calculated. The num-

ber of actions and the number of strata in the

following table.



genus
actions

strata
2

11
3

3
25

8
4

28
12

5
31

11
6

33
18

7
37

20
8

36
18

9
75

33
10

79
37

11
58

22
12

60
40

13
73

42
14

44
29

15
88

53
16

80
50

17
123

59
18

63
43

19
124

73
20

59
37

21
158

75
22

111
67

23
44

28
24

101
75

25
182

113
total

1723
966
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6 Curves over R

• Here we are interested in surfaces with reflections
and so a non-empty real form.

• The fixed point subsets of all complex conjuga-
tions define a tiling on the surfaces

• Surfaces with triangular tilings up to genus 25 and
quadrilaterals tilings up to 13 have been classified.

• Pairs of inclusions Γ(0:a,b,c) ⊂ Γ(0:k,l,m,n) defined

by inclusions of triangles into quadrilateral have

been classified. There are 34 families of pairs and

27 exceptional pairs. See the next two pages for

examples of families and exceptional pairs.

• Most of the complex strata contain a real curve
(at least in the 0 and 1-dimensional cases).



• A connected complex stratum will yield multiple

real strata for example S4, (0 : 2, 2, 2, 3) in genus

3 has 9 separate components.
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Table 6.6, part 5

Case F25: K = 9,
(2, 3, 12d) ⊂ (2, 4d, 6d, 3d)

Case F26: K = 9,
(2, 3, 15d) ⊂ (2, 3d, 15d, 5d)

Case F27: K = 9,
(2, 6d, 3) ⊂ (2, d, 6d, 3d)

Case F28: K = 10,
(3, 14d, 2) ⊂ (3, 2d, 14d, 7d)

Case F29: K = 10,
(3, 2, 20d) ⊂ (3, 4d, 20d, 5d)

Case F30: K = 10,
(3, 2, 30d) ⊂ (3, 10d, 15d, 6d)
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Table 6.7, part 2

Case C7: K = 10,
(3, 3, 4) ⊂ (3, 4, 3, 4)

Case C8: K = 11,
(2, 4, 5) ⊂ (2, 2, 4, 5)

Case C9: K = 12,
(2, 8, 3) ⊂ (2, 2, 4, 4)

Case C10: K = 12,
(6, 4, 2) ⊂ (3, 3, 6, 6)

Case C11: K = 12,
(4, 2, 6) ⊂ (4, 4, 4, 4)

Case C12: K = 12,
(5, 2, 5) ⊂ (5, 5, 5, 5)
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