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Introduction

The underlying question behind much of my work is the following:

Question

Can we describe the possible finite conformal group actions on compact
Riemann surfaces of genus 2 and higher?

Classical approaches to this problem are:

I Brute force classification for “small” genera (Condor, Breuer,
Broughton)

I Classification for certain special families of groups (Harvey, Maclachlan,
Kulkarni)

Not too much else is known as this is a hard problem!!!
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How do genera compare?

Previous work has yielded interesting and often bewildering results:

There are families of surfaces (e.g. Hurwitz curves,
Accola-Maclachlan surfaces) that frequently appear. Others appear
rarely.

The number of distinct actions varies wildly between genera:

Genus # Actions Genus # Actions Genus # Actions
2 21 3 49 4 64
5 93 6 87 7 148
8 108 9 268 10 226

11 232 12 201 13 453

Goal

Explore the relationships between group actions in varying genera. What
does this tell us about the more general problem of group action
classification?

A. Wootton (University of Portland) Lattice Structure April 13, 2018 4 / 18



How do genera compare?

Previous work has yielded interesting and often bewildering results:

There are families of surfaces (e.g. Hurwitz curves,
Accola-Maclachlan surfaces) that frequently appear. Others appear
rarely.

The number of distinct actions varies wildly between genera:

Genus # Actions Genus # Actions Genus # Actions
2 21 3 49 4 64
5 93 6 87 7 148
8 108 9 268 10 226

11 232 12 201 13 453

Goal

Explore the relationships between group actions in varying genera. What
does this tell us about the more general problem of group action
classification?

A. Wootton (University of Portland) Lattice Structure April 13, 2018 4 / 18



How do genera compare?

Previous work has yielded interesting and often bewildering results:

There are families of surfaces (e.g. Hurwitz curves,
Accola-Maclachlan surfaces) that frequently appear. Others appear
rarely.

The number of distinct actions varies wildly between genera:

Genus # Actions Genus # Actions Genus # Actions
2 21 3 49 4 64
5 93 6 87 7 148
8 108 9 268 10 226

11 232 12 201 13 453

Goal

Explore the relationships between group actions in varying genera. What
does this tell us about the more general problem of group action
classification?

A. Wootton (University of Portland) Lattice Structure April 13, 2018 4 / 18



How do genera compare?

Previous work has yielded interesting and often bewildering results:

There are families of surfaces (e.g. Hurwitz curves,
Accola-Maclachlan surfaces) that frequently appear. Others appear
rarely.

The number of distinct actions varies wildly between genera:

Genus # Actions Genus # Actions Genus # Actions
2 21 3 49 4 64
5 93 6 87 7 148
8 108 9 268 10 226

11 232 12 201 13 453

Goal

Explore the relationships between group actions in varying genera. What
does this tell us about the more general problem of group action
classification?

A. Wootton (University of Portland) Lattice Structure April 13, 2018 4 / 18



How do genera compare?

Previous work has yielded interesting and often bewildering results:

There are families of surfaces (e.g. Hurwitz curves,
Accola-Maclachlan surfaces) that frequently appear. Others appear
rarely.

The number of distinct actions varies wildly between genera:

Genus # Actions Genus # Actions Genus # Actions
2 21 3 49 4 64
5 93 6 87 7 148
8 108 9 268 10 226

11 232 12 201 13 453

Goal

Explore the relationships between group actions in varying genera. What
does this tell us about the more general problem of group action
classification?

A. Wootton (University of Portland) Lattice Structure April 13, 2018 4 / 18



What makes group classification difficult?

To prove the existence of a group action on a surface X of genus σ, there
are two sets of conditions that need verifying:

1 Arithmetic conditions (e.g. the Riemann-Hurwitz formula)

2 Group theoretic conditions (e.g. existence of generating vectors)

Much of the difficulty comes in the second step. Naively speaking, as
genus increases, there are more potential groups, and these groups have
increasingly complicated structures.
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Our approach to the problem

In light of these difficulties, we have taken the following approach:

1 Consider the arithmetic conditions first (the “easy” step). Specifically:

I What do the arithmetic conditions tell us in a specific genus σ?
I How do these compare between different genera?

2 Consider group theoretic conditions second (the “difficult” step)

I What happens in a particular genus when we impose this additional
condition?

I How do these compare between different genera?

• The focus of our initial research is this first step.
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Determining Group Actions
Signatures

Suppose that a finite group G acts on a surface X of genus σ.

Definition

We say that G has signature (h;m1, . . . ,mr ), m1 ≤ m2 ≤ · · · ≤ mr if the
following are true:

1 The quotient space X/G has genus h.

2 The quotient map π : X → X/G is branched over r points with
branching orders m1, . . . ,mr .
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Determining Group Actions
Generating Vectors

Suppose that G is a finite group and S = (h;m1, . . . ,mr ) is a signature.

Definition

We say the vector V = (a1, b1, a2, b2, . . . , ah, bh, g1, . . . , gr ) of elements of
G is an S-generating vector for G if the following hold:

1 O(gi ) = mi (where O denotes order).

2 G = 〈a1, b1, a2, b2, . . . , ah, bh, g1, . . . , gr 〉.
3 Πh

i=1[ai , bi ]Π
r
j=1gj = e, the identity in G where [ai , bi ] = aibia

−1
i b−1

i .
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Determining Group Actions
Existence of Actions

The following are the two conditions necessary for the existence of a group
action on a surface of genus σ:

Theorem

A group G acts on a surface X of genus σ with signature
S = (h;m1, . . . ,mr ) if and only if the following hold:

1 The Riemann Hurwitz formula holds:

σ − 1 = |G |(h − 1) +
|G |
2

r∑
i=1

(
1− 1

mi

)
.

2 G admits an S-generating vector.
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Potential Signatures

We can now formally define the objects that satisfy the arithmetic
conditions for the existence of a group action:

Definition

Pσ is the set of tuples, for which, given any such tuple (h;m1, . . . ,mr )
there exists an integer N > 0 such that:

1 Each mi |N
2

σ − 1 = N(h − 1) +
N

2

r∑
i=1

(
1− 1

mi

)
.

We call these potential signatures.

• It is trivial to show that Pσ is finite for every σ.
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Example: Potential Signatures in Genus 2

Example

P2 =



(0; 2, 2, 2, 2, 2) (0; 2, 2, 2, 2, 2, 2) (0; 2, 2, 2, 3) (0; 2, 2, 2, 4)
(0; 2, 2, 3, 3) (0; 2, 2, 4, 4) (0; 2, 3, 8) (0; 2, 4, 6)

(0; 2, 4, 8) (0; 2, 5, 10) (0; 2, 6, 6) (0; 2, 8, 8)
(0; 3, 3, 3, 3) (0; 3, 3, 4) (0; 3, 4, 4) (0; 3, 6, 6)

(0; 4, 4, 4) (0; 5, 5, 5) (1; 2, 2) (2;−)
(1; 3) (0; 3, 3, 6) (0; 3, 3, 5) (0; 2, 3, 18)

(0; 2, 5, 5) (0; 2, 3, 12) (0; 3, 3, 9) (0; 2, 3, 10)
(0; 2, 3, 9) (0; 2, 4, 5) (0; 2, 3, 7) (0; 2, 2, 2, 6)

(1; 2)
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Actual Signatures

Definition

Aσ is the set of signatures for which there exists an action of some finite
group G on a surface of genus σ with that signature. We call these actual
signatures.

Example

A2 =


(0; 2, 2, 2, 2, 2) (0; 2, 2, 2, 2, 2, 2) (0; 2, 2, 2, 3) (0; 2, 2, 2, 4)
(0; 2, 2, 3, 3) (0; 2, 2, 4, 4) (0; 2, 3, 8) (0; 2, 4, 6)
(0; 2, 4, 8) (0; 2, 5, 10) (0; 2, 6, 6) (0; 2, 8, 8)

(0; 3, 3, 3, 3) (0; 3, 3, 4) (0; 3, 4, 4) (0; 3, 6, 6)
(0; 4, 4, 4) (0; 5, 5, 5) (1; 2, 2) (2;−)


• Note: Aσ ⊆ Pσ for every σ.
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Actual Signatures

Definition

Aσ is the set of signatures for which there exists an action of some finite
group G on a surface of genus σ with that signature. We call these actual
signatures.

Example

A2 =


(0; 2, 2, 2, 2, 2) (0; 2, 2, 2, 2, 2, 2) (0; 2, 2, 2, 3) (0; 2, 2, 2, 4)
(0; 2, 2, 3, 3) (0; 2, 2, 4, 4) (0; 2, 3, 8) (0; 2, 4, 6)
(0; 2, 4, 8) (0; 2, 5, 10) (0; 2, 6, 6) (0; 2, 8, 8)

(0; 3, 3, 3, 3) (0; 3, 3, 4) (0; 3, 4, 4) (0; 3, 6, 6)
(0; 4, 4, 4) (0; 5, 5, 5) (1; 2, 2) (2;−)
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Formalizing our Goals

Goal

Can we describe the relationship between the potential signature spaces
Pσ as we vary σ? What does it tell us about the actual signature spaces
Aσ as we vary σ?
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Our First Main Result

Theorem

The set {Pσ}σ≥2 forms a lattice with ordering determined by the
divisibility of σ − 1. Specifically,

(The meet) If gcd((σ − 1), (σ′ − 1)) = Σ− 1, then Pσ ∩ Pσ′ = PΣ.

(The join) If lcm((σ − 1), (σ′ − 1)) = Σ− 1, then Pσ ∪ Pσ′ = PΣ.
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A Picture Paints a Thousand Words
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Figure: A Partial Representation of the Potential Signature Space
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First Consequence: Omnipersistent Potential Signatures

Only a small number of signatures could appear in every possible genus:

Theorem

The omnipersistent potential signatures are:

P2 =



(0; 2, 2, 2, 2, 2) (0; 2, 2, 2, 2, 2, 2) (0; 2, 2, 2, 3) (0; 2, 2, 2, 4)
(0; 2, 2, 3, 3) (0; 2, 2, 4, 4) (0; 2, 3, 8) (0; 2, 4, 6)
(0; 2, 4, 8) (0; 2, 5, 10) (0; 2, 6, 6) (0; 2, 8, 8)

(0; 3, 3, 3, 3) (0; 3, 3, 4) (0; 3, 4, 4) (0; 3, 6, 6)
(0; 4, 4, 4) (0; 5, 5, 5) (1; 2, 2) (2;−)

(1; 3) (0; 3, 3, 6) (0; 3, 3, 5) (0; 2, 3, 18)
(0; 2, 5, 5) (0; 2, 3, 12) (0; 3, 3, 9) (0; 2, 3, 10)
(0; 2, 3, 9) (0; 2, 4, 5) (0; 2, 3, 7) (0; 2, 2, 2, 6)

(1; 2)



• This partially explains why we so regularly see certain signatures in many
genera e.g. (0; 2, 3, 7) keeps showing up!

A. Wootton (University of Portland) Lattice Structure April 13, 2018 16 / 18



First Consequence: Omnipersistent Potential Signatures

Only a small number of signatures could appear in every possible genus:

Theorem

The omnipersistent potential signatures are:

P2 =



(0; 2, 2, 2, 2, 2) (0; 2, 2, 2, 2, 2, 2) (0; 2, 2, 2, 3) (0; 2, 2, 2, 4)
(0; 2, 2, 3, 3) (0; 2, 2, 4, 4) (0; 2, 3, 8) (0; 2, 4, 6)
(0; 2, 4, 8) (0; 2, 5, 10) (0; 2, 6, 6) (0; 2, 8, 8)

(0; 3, 3, 3, 3) (0; 3, 3, 4) (0; 3, 4, 4) (0; 3, 6, 6)
(0; 4, 4, 4) (0; 5, 5, 5) (1; 2, 2) (2;−)

(1; 3) (0; 3, 3, 6) (0; 3, 3, 5) (0; 2, 3, 18)
(0; 2, 5, 5) (0; 2, 3, 12) (0; 3, 3, 9) (0; 2, 3, 10)
(0; 2, 3, 9) (0; 2, 4, 5) (0; 2, 3, 7) (0; 2, 2, 2, 6)

(1; 2)


• This partially explains why we so regularly see certain signatures in many
genera e.g. (0; 2, 3, 7) keeps showing up!

A. Wootton (University of Portland) Lattice Structure April 13, 2018 16 / 18



First Consequence: Omnipersistent Potential Signatures

Only a small number of signatures could appear in every possible genus:

Theorem

The omnipersistent potential signatures are:

P2 =



(0; 2, 2, 2, 2, 2) (0; 2, 2, 2, 2, 2, 2) (0; 2, 2, 2, 3) (0; 2, 2, 2, 4)
(0; 2, 2, 3, 3) (0; 2, 2, 4, 4) (0; 2, 3, 8) (0; 2, 4, 6)
(0; 2, 4, 8) (0; 2, 5, 10) (0; 2, 6, 6) (0; 2, 8, 8)

(0; 3, 3, 3, 3) (0; 3, 3, 4) (0; 3, 4, 4) (0; 3, 6, 6)
(0; 4, 4, 4) (0; 5, 5, 5) (1; 2, 2) (2;−)

(1; 3) (0; 3, 3, 6) (0; 3, 3, 5) (0; 2, 3, 18)
(0; 2, 5, 5) (0; 2, 3, 12) (0; 3, 3, 9) (0; 2, 3, 10)
(0; 2, 3, 9) (0; 2, 4, 5) (0; 2, 3, 7) (0; 2, 2, 2, 6)

(1; 2)


• This partially explains why we so regularly see certain signatures in many
genera e.g. (0; 2, 3, 7) keeps showing up!

A. Wootton (University of Portland) Lattice Structure April 13, 2018 16 / 18



Second Consequence: Numbers of Potential Signatures
Grow with Divisibility

We have the following easy consequence given by the lattice structure:

Theorem

Pσ ⊆ Pσ′ if and only if (σ − 1)|(σ′ − 1).

Proof.

One direction is given by the lattice theorem.
For the other direction, simple application of the Riemann-Hurwitz formula
shows that if (σ − 1) - (σ′ − 1), then (0, 2, 2g + 1, 4g + 2) ∈ Pσ but
(0, 2, 2g + 1, 4g + 2) /∈ Pσ′ .

• This partially explains the growth rates in the number of group actions
in different genera – when σ − 1 has lots of divisors Pσ is large!
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Final Observation

We know all omnipersistent potential signatures. This motivates:

Question

Are there any omnipersistent actual signatures?

Theorem

The omnipersistent signatures are
{(2; 0), (1; 2, 2), (0; 2, 2, 2, 2, 2), (0; 2, 2, 2, 2, 2, 2)}.

Proof.

(x , e, x , e) is a (2;−)-generating vector for Cσ−1 = 〈x〉.
(x , e, y , y) is a (1; 2, 2) and (y , y , xy , xy , y , y) is a
(0; 2, 2, 2, 2, 2, 2)-generating vector for Dσ−1 = 〈x , y |xσ−1, y2, yxyx〉.
(xy , xy , y , yxσ−1, xσ−1) is a (0; 2, 2, 2, 2, 2)-generating vector for
D2(σ−1) = 〈x , y |x2(σ−1), y2, yxyx〉.
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