The Lattice Structure of the Potential Signature Space

A. Wootton (joint work with J. W. Anderson)

Department of Mathematics
University of Portland,
Portland, Oregon 97203
wootton@up.edu

April 13, 2018
Overview

1. Introduction
2. Naive Statements of Goals and Results
3. Determining Group Actions
4. Potential and Actual Signatures
5. Consequences
The underlying question behind much of my work is the following:

Question

Can we describe the possible finite conformal group actions on compact Riemann surfaces of genus 2 and higher?
The underlying question behind much of my work is the following:

Question

Can we describe the possible finite conformal group actions on compact Riemann surfaces of genus 2 and higher?

- Classical approaches to this problem are:
The underlying question behind much of my work is the following:

Question

Can we describe the possible finite conformal group actions on compact Riemann surfaces of genus 2 and higher?

- Classical approaches to this problem are:
 - Brute force classification for “small” genera (Condor, Breuer, Broughton)
The underlying question behind much of my work is the following:

Question

Can we describe the possible finite conformal group actions on compact Riemann surfaces of genus 2 and higher?

- Classical approaches to this problem are:
 - Brute force classification for “small” genera (Condor, Breuer, Broughton)
 - Classification for certain special families of groups (Harvey, Maclachlan, Kulkarni)
The underlying question behind much of my work is the following:

Question

Can we describe the possible finite conformal group actions on compact Riemann surfaces of genus 2 and higher?

Classical approaches to this problem are:

- Brute force classification for “small” genera (Condor, Breuer, Broughton)
- Classification for certain special families of groups (Harvey, Maclachlan, Kulkarni)

Not too much else is known as this is a hard problem!!!
Introduction

The underlying question behind much of my work is the following:

Question

Can we describe the possible finite conformal group actions on compact Riemann surfaces of genus 2 and higher?

- Classical approaches to this problem are:
 - Brute force classification for “small” genera (Condor, Breuer, Broughton)
 - Classification for certain special families of groups (Harvey, Maclachlan, Kulkarni)
- Not too much else is known as this is a hard problem!!!
How do genera compare?

Previous work has yielded interesting and often bewildering results:

- There are families of surfaces (e.g. Hurwitz curves, Accola-Maclachlan surfaces) that frequently appear. Others appear rarely.
How do genera compare?

Previous work has yielded interesting and often bewildering results:

- There are families of surfaces (e.g. Hurwitz curves, Accola-Maclachlan surfaces) that frequently appear. Others appear rarely.
- The number of distinct actions varies wildly between genera:
How do genera compare?

Previous work has yielded interesting and often bewildering results:

- There are families of surfaces (e.g. Hurwitz curves, Accola-Maclachlan surfaces) that frequently appear. Others appear rarely.

- The number of distinct actions varies wildly between genera:

<table>
<thead>
<tr>
<th>Genus</th>
<th># Actions</th>
<th>Genus</th>
<th># Actions</th>
<th>Genus</th>
<th># Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>21</td>
<td>3</td>
<td>49</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>5</td>
<td>93</td>
<td>6</td>
<td>87</td>
<td>7</td>
<td>148</td>
</tr>
<tr>
<td>8</td>
<td>108</td>
<td>9</td>
<td>268</td>
<td>10</td>
<td>226</td>
</tr>
<tr>
<td>11</td>
<td>232</td>
<td>12</td>
<td>201</td>
<td>13</td>
<td>453</td>
</tr>
</tbody>
</table>
How do genera compare?

Previous work has yielded interesting and often bewildering results:

- There are families of surfaces (e.g. Hurwitz curves, Accola-Maclachlan surfaces) that frequently appear. Others appear rarely.
- The number of distinct actions varies wildly between genera:

<table>
<thead>
<tr>
<th>Genus</th>
<th># Actions</th>
<th>Genus</th>
<th># Actions</th>
<th>Genus</th>
<th># Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>21</td>
<td>3</td>
<td>49</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>5</td>
<td>93</td>
<td>6</td>
<td>87</td>
<td>7</td>
<td>148</td>
</tr>
<tr>
<td>8</td>
<td>108</td>
<td>9</td>
<td>268</td>
<td>10</td>
<td>226</td>
</tr>
<tr>
<td>11</td>
<td>232</td>
<td>12</td>
<td>201</td>
<td>13</td>
<td>453</td>
</tr>
</tbody>
</table>

Goal

Explore the relationships between group actions in varying genera. What does this tell us about the more general problem of group action classification?
How do genera compare?

Previous work has yielded interesting and often bewildering results:

- There are families of surfaces (e.g. Hurwitz curves, Accola-Maclachlan surfaces) that frequently appear. Others appear rarely.
- The number of distinct actions varies wildly between genera:

<table>
<thead>
<tr>
<th>Genus</th>
<th># Actions</th>
<th>Genus</th>
<th># Actions</th>
<th>Genus</th>
<th># Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>21</td>
<td>3</td>
<td>49</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>5</td>
<td>93</td>
<td>6</td>
<td>87</td>
<td>7</td>
<td>148</td>
</tr>
<tr>
<td>8</td>
<td>108</td>
<td>9</td>
<td>268</td>
<td>10</td>
<td>226</td>
</tr>
<tr>
<td>11</td>
<td>232</td>
<td>12</td>
<td>201</td>
<td>13</td>
<td>453</td>
</tr>
</tbody>
</table>

Goal

Explore the relationships between group actions in varying genera. What does this tell us about the more general problem of group action classification?
What makes group classification difficult?

To prove the existence of a group action on a surface X of genus σ, there are two sets of conditions that need verifying:

1. Arithmetic conditions (e.g. the Riemann-Hurwitz formula)
What makes group classification difficult?

To prove the existence of a group action on a surface X of genus σ, there are two sets of conditions that need verifying:

1. Arithmetic conditions (e.g. the Riemann-Hurwitz formula)
2. Group theoretic conditions (e.g. existence of generating vectors)
What makes group classification difficult?

To prove the existence of a group action on a surface X of genus σ, there are two sets of conditions that need verifying:

1. Arithmetic conditions (e.g. the Riemann-Hurwitz formula)
2. Group theoretic conditions (e.g. existence of generating vectors)

Much of the difficulty comes in the second step. Naively speaking, as genus increases, there are more potential groups, and these groups have increasingly complicated structures.
What makes group classification difficult?

To prove the existence of a group action on a surface X of genus σ, there are two sets of conditions that need verifying:

1. Arithmetic conditions (e.g. the Riemann-Hurwitz formula)
2. Group theoretic conditions (e.g. existence of generating vectors)

Much of the difficulty comes in the second step. Naively speaking, as genus increases, there are more potential groups, and these groups have increasingly complicated structures.
Our approach to the problem

In light of these difficulties, we have taken the following approach:

1. Consider the arithmetic conditions first (the “easy” step). Specifically:
 - What do the arithmetic conditions tell us in a specific genus σ?
 - How do these compare between different genera?
2. Consider group theoretic conditions second (the “difficult” step)
 - What happens in a particular genus when we impose this additional condition?
 - How do these compare between different genera?

• The focus of our initial research is this first step.
Our approach to the problem

In light of these difficulties, we have taken the following approach:

1. Consider the arithmetic conditions first (the “easy” step). Specifically:
 - What do the arithmetic conditions tell us in a specific genus σ?

2. Consider group theoretic conditions second (the “difficult” step)
 - What happens in a particular genus when we impose this additional condition?
 - How do these compare between different genera?

• The focus of our initial research is this first step.
Our approach to the problem

In light of these difficulties, we have taken the following approach:

1. Consider the arithmetic conditions first (the “easy” step). Specifically:
 - What do the arithmetic conditions tell us in a specific genus σ?
 - How do these compare between different genera?
In light of these difficulties, we have taken the following approach:

1. Consider the arithmetic conditions first (the “easy” step). Specifically:
 - What do the arithmetic conditions tell us in a specific genus σ?
 - How do these compare between different genera?

2. Consider group theoretic conditions second (the “difficult” step)
In light of these difficulties, we have taken the following approach:

1. Consider the arithmetic conditions first (the “easy” step). Specifically:
 - What do the arithmetic conditions tell us in a specific genus σ?
 - How do these compare between different genera?

2. Consider group theoretic conditions second (the “difficult” step)
 - What happens in a particular genus when we impose this additional condition?
In light of these difficulties, we have taken the following approach:

1. Consider the arithmetic conditions first (the “easy” step). Specifically:
 - What do the arithmetic conditions tell us in a specific genus σ?
 - How do these compare between different genera?

2. Consider group theoretic conditions second (the “difficult” step)
 - What happens in a particular genus when we impose this additional condition?
 - How do these compare between different genera?
In light of these difficulties, we have taken the following approach:

1. Consider the arithmetic conditions first (the “easy” step). Specifically:
 - What do the arithmetic conditions tell us in a specific genus σ?
 - How do these compare between different genera?

2. Consider group theoretic conditions second (the “difficult” step)
 - What happens in a particular genus when we impose this additional condition?
 - How do these compare between different genera?

• The focus of our initial research is this first step.
In light of these difficulties, we have taken the following approach:

1. Consider the arithmetic conditions first (the “easy” step). Specifically:
 - What do the arithmetic conditions tell us in a specific genus σ?
 - How do these compare between different genera?

2. Consider group theoretic conditions second (the “difficult” step)
 - What happens in a particular genus when we impose this additional condition?
 - How do these compare between different genera?

- The focus of our initial research is this first step.
Suppose that a finite group G acts on a surface X of genus σ.

Definition

We say that G has signature $(h; m_1, \ldots, m_r)$, $m_1 \leq m_2 \leq \cdots \leq m_r$ if the following are true:

1. The quotient space X/G has genus h.
2. The quotient map $\pi: X \to X/G$ is branched over r points with branching orders m_1, \ldots, m_r.
Suppose that a finite group G acts on a surface X of genus σ.

Definition

We say that G has signature $(h; m_1, \ldots, m_r)$, $m_1 \leq m_2 \leq \cdots \leq m_r$ if the following are true:

1. The quotient space X/G has genus h.

Determining Group Actions

Signatures
Suppose that a finite group G acts on a surface X of genus σ.

Definition

We say that G has signature $(h; m_1, \ldots, m_r)$, $m_1 \leq m_2 \leq \cdots \leq m_r$ if the following are true:

1. The quotient space X/G has genus h.
2. The quotient map $\pi: X \to X/G$ is branched over r points with branching orders m_1, \ldots, m_r.
Suppose that a finite group G acts on a surface X of genus σ.

Definition

We say that G has signature $(h; m_1, \ldots, m_r)$, $m_1 \leq m_2 \leq \cdots \leq m_r$ if the following are true:

1. The quotient space X/G has genus h.
2. The quotient map $\pi : X \to X/G$ is branched over r points with branching orders m_1, \ldots, m_r.

A. Wootton (University of Portland)

Lattice Structure

April 13, 2018 7 / 18
Suppose that G is a finite group and $S = (h; m_1, \ldots, m_r)$ is a signature.

Definition

We say the vector $V = (a_1, b_1, a_2, b_2, \ldots, a_h, b_h, g_1, \ldots, g_r)$ of elements of G is an S-generating vector for G if the following hold:
Suppose that G is a finite group and $S = (h; m_1, \ldots, m_r)$ is a signature.

Definition

We say the vector $V = (a_1, b_1, a_2, b_2, \ldots, a_h, b_h, g_1, \ldots, g_r)$ of elements of G is an S-generating vector for G if the following hold:

1. $O(g_i) = m_i$ (where O denotes order).
Suppose that G is a finite group and $S = (h; m_1, \ldots, m_r)$ is a signature.

Definition

We say the vector $V = (a_1, b_1, a_2, b_2, \ldots, a_h, b_h, g_1, \ldots, g_r)$ of elements of G is an S-generating vector for G if the following hold:

1. $O(g_i) = m_i$ (where O denotes order).
2. $G = \langle a_1, b_1, a_2, b_2, \ldots, a_h, b_h, g_1, \ldots, g_r \rangle$.

A. Wootton (University of Portland)
Suppose that G is a finite group and $S = (h; m_1, \ldots, m_r)$ is a signature.

Definition

We say the vector $\mathbf{V} = (a_1, b_1, a_2, b_2, \ldots, a_h, b_h, g_1, \ldots, g_r)$ of elements of G is an S-generating vector for G if the following hold:

1. $O(g_i) = m_i$ (where O denotes order).
2. $G = \langle a_1, b_1, a_2, b_2, \ldots, a_h, b_h, g_1, \ldots, g_r \rangle$.
3. $\prod_{i=1}^{h} [a_i, b_i] \prod_{j=1}^{r} g_j = e$, the identity in G where $[a_i, b_i] = a_i b_i a_i^{-1} b_i^{-1}$.
Suppose that G is a finite group and $S = (h; m_1, \ldots, m_r)$ is a signature.

Definition

We say the vector $V = (a_1, b_1, a_2, b_2, \ldots, a_h, b_h, g_1, \ldots, g_r)$ of elements of G is an S-generating vector for G if the following hold:

1. $O(g_i) = m_i$ (where O denotes order).
2. $G = \langle a_1, b_1, a_2, b_2, \ldots, a_h, b_h, g_1, \ldots, g_r \rangle$.
3. $\prod_{i=1}^h [a_i, b_i] \prod_{j=1}^r g_j = e$, the identity in G where $[a_i, b_i] = a_i b_i a_i^{-1} b_i^{-1}$.
The following are the two conditions necessary for the existence of a group action on a surface of genus σ:

Theorem

A group G acts on a surface X of genus σ with signature $S = (h; m_1, \ldots, m_r)$ if and only if the following hold:

1. The Riemann Hurwitz formula holds:
 \[\sigma - 1 = |G| (h - 1) + 2 \sum_{i=1}^{r} (1 - 1/m_i), \]

2. G admits an S-generating vector.
The following are the two conditions necessary for the existence of a group action on a surface of genus σ:

Theorem

A group G acts on a surface X of genus σ with signature $S = (h; m_1, \ldots, m_r)$ if and only if the following hold:

1. The Riemann Hurwitz formula holds:

 $$\sigma - 1 = |G|(h - 1) + \frac{|G|}{2} \sum_{i=1}^{r} \left(1 - \frac{1}{m_i}\right).$$
The following are the two conditions necessary for the existence of a group action on a surface of genus σ:

Theorem

A group G acts on a surface X of genus σ with signature $S = (h; m_1, \ldots, m_r)$ if and only if the following hold:

1. The Riemann Hurwitz formula holds:

 $$\sigma - 1 = |G|(h - 1) + \frac{|G|}{2} \sum_{i=1}^{r} \left(1 - \frac{1}{m_i}\right).$$

2. G admits an S-generating vector.
The following are the two conditions necessary for the existence of a group action on a surface of genus σ:

Theorem

A group G acts on a surface X of genus σ with signature $S = (h; m_1, \ldots, m_r)$ if and only if the following hold:

1. The Riemann Hurwitz formula holds:

 $$\sigma - 1 = |G|(h - 1) + \frac{|G|}{2} \sum_{i=1}^{r} \left(1 - \frac{1}{m_i}\right).$$

2. G admits an S-generating vector.
Potential Signatures

We can now formally define the objects that satisfy the arithmetic conditions for the existence of a group action:

Definition

P_σ is the set of tuples, for which, given any such tuple $(h; m_1, \ldots, m_r)$ there exists an integer $N > 0$ such that:

1. Each $m_i | N$
2. $\sigma^{-1} = N (h - 1) + \sum_{i=1}^{r} (1 - 1/m_i)$

We call these potential signatures.

It is trivial to show that P_σ is finite for every σ.

A. Wootton (University of Portland)
We can now formally define the objects that satisfy the arithmetic conditions for the existence of a group action:

Definition

\(\mathcal{P}_\sigma \) is the set of tuples, for which, given any such tuple \((h; m_1, \ldots, m_r)\) there exists an integer \(N > 0\) such that:

1. Each \(m_i \mid N\)
Potential Signatures

We can now formally define the objects that satisfy the arithmetic conditions for the existence of a group action:

Definition

\mathcal{P}_σ is the set of tuples, for which, given any such tuple $(h; m_1, \ldots, m_r)$ there exists an integer $N > 0$ such that:

1. Each $m_i | N$

2. \[
\sigma - 1 = N(h - 1) + \frac{N}{2} \sum_{i=1}^{r} \left(1 - \frac{1}{m_i}\right).
\]
Potential Signatures

We can now formally define the objects that satisfy the arithmetic conditions for the existence of a group action:

Definition

\mathcal{P}_σ is the set of tuples, for which, given any such tuple $(h; m_1, \ldots, m_r)$ there exists an integer $N > 0$ such that:

1. Each $m_i | N$
2.

$$\sigma - 1 = N(h - 1) + \frac{N}{2} \sum_{i=1}^{r} \left(1 - \frac{1}{m_i}\right).$$

We call these *potential* signatures.
We can now formally define the objects that satisfy the arithmetic conditions for the existence of a group action:

Definition

\(\mathcal{P}_\sigma \) is the set of tuples, for which, given any such tuple \((h; m_1, \ldots, m_r)\) there exists an integer \(N > 0\) such that:

1. Each \(m_i | N\)

2. \[
\sigma - 1 = N(h - 1) + \frac{N}{2} \sum_{i=1}^{r} \left(1 - \frac{1}{m_i}\right).
\]

We call these *potential* signatures.

- It is trivial to show that \(\mathcal{P}_\sigma \) is finite for every \(\sigma \).
We can now formally define the objects that satisfy the arithmetic conditions for the existence of a group action:

Definition

\(\mathcal{P}_\sigma \) is the set of tuples, for which, given any such tuple \((h; m_1, \ldots, m_r)\) there exists an integer \(N > 0 \) such that:

1. Each \(m_i | N \)
2. \[\sigma - 1 = N(h - 1) + \frac{N}{2} \sum_{i=1}^{r} \left(1 - \frac{1}{m_i}\right). \]

We call these *potential* signatures.

- It is trivial to show that \(\mathcal{P}_\sigma \) is finite for every \(\sigma \).
Example: Potential Signatures in Genus 2

<table>
<thead>
<tr>
<th>(P_2 =)</th>
<th>(0; 2, 2, 2, 2, 2)</th>
<th>(0; 2, 2, 2, 2, 2)</th>
<th>(0; 2, 2, 2, 3)</th>
<th>(0; 2, 2, 2, 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0; 2, 2, 3, 3)</td>
<td>(0; 2, 2, 4, 4)</td>
<td>(0; 2, 3, 8)</td>
<td>(0; 2, 4, 6)</td>
</tr>
<tr>
<td></td>
<td>(0; 2, 4, 8)</td>
<td>(0; 2, 5, 10)</td>
<td>(0; 2, 6, 6)</td>
<td>(0; 2, 8, 8)</td>
</tr>
<tr>
<td></td>
<td>(0; 3, 3, 3, 3)</td>
<td>(0; 3, 3, 4)</td>
<td>(0; 3, 4, 4)</td>
<td>(0; 3, 6, 6)</td>
</tr>
<tr>
<td></td>
<td>(0; 4, 4, 4)</td>
<td>(0; 5, 5, 5)</td>
<td>(1; 2, 2)</td>
<td>(2; –)</td>
</tr>
<tr>
<td></td>
<td>(1; 3)</td>
<td>(0; 3, 3, 6)</td>
<td>(0; 3, 3, 5)</td>
<td>(0; 2, 3, 18)</td>
</tr>
<tr>
<td></td>
<td>(0; 2, 5, 5)</td>
<td>(0; 2, 3, 12)</td>
<td>(0; 3, 3, 9)</td>
<td>(0; 2, 3, 10)</td>
</tr>
<tr>
<td></td>
<td>(0; 2, 3, 9)</td>
<td>(0; 2, 4, 5)</td>
<td>(0; 2, 3, 7)</td>
<td>(0; 2, 2, 2, 6)</td>
</tr>
<tr>
<td></td>
<td>(1; 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Actual Signatures

Definition

\(\mathcal{A}_\sigma \) is the set of signatures for which there exists an action of some finite group \(G \) on a surface of genus \(\sigma \) with that signature. We call these *actual* signatures.

\[\mathcal{A}_\sigma \subseteq \mathcal{P}_\sigma \text{ for every } \sigma. \]
Actual Signatures

Definition

\(\mathcal{A}_\sigma \) is the set of signatures for which there exists an action of some finite group \(G \) on a surface of genus \(\sigma \) with that signature. We call these actual signatures.

Example

\[
\mathcal{A}_2 = \left\{ (0; 2, 2, 2, 2, 2), (0; 2, 2, 2, 2, 2), (0; 2, 2, 2, 3), (0; 2, 2, 2, 4), (0; 2, 2, 3, 3), (0; 2, 2, 4, 4), (0; 2, 3, 8), (0; 2, 4, 6), (0; 2, 4, 8), (0; 2, 5, 10), (0; 2, 6, 6), (0; 2, 8, 8), (0; 3, 3, 3, 3), (0; 3, 3, 4), (0; 3, 4, 4), (0; 3, 6, 6), (0; 4, 4, 4), (0; 5, 5, 5), (1; 2, 2), (2; -) \right\}
\]
Actual Signatures

Definition

\(\mathcal{A}_\sigma \) is the set of signatures for which there exists an action of some finite group \(G \) on a surface of genus \(\sigma \) with that signature. We call these *actual signatures*.

Example

\[
\mathcal{A}_2 = \begin{cases}
(0; 2, 2, 2, 2, 2) & (0; 2, 2, 2, 2, 2) & (0; 2, 2, 2, 3) & (0; 2, 2, 2, 4) \\
(0; 2, 2, 3, 3) & (0; 2, 2, 4, 4) & (0; 2, 3, 8) & (0; 2, 4, 6) \\
(0; 2, 4, 8) & (0; 2, 5, 10) & (0; 2, 6, 6) & (0; 2, 8, 8) \\
(0; 3, 3, 3, 3) & (0; 3, 3, 4) & (0; 3, 4, 4) & (0; 3, 6, 6) \\
(0; 4, 4, 4) & (0; 5, 5, 5) & (1; 2, 2) & (2; -)
\end{cases}
\]

- Note: \(\mathcal{A}_\sigma \subseteq \mathcal{P}_\sigma \) for every \(\sigma \).
Actual Signatures

Definition

A_σ is the set of signatures for which there exists an action of some finite group G on a surface of genus σ with that signature. We call these *actual signatures*.

Example

$$
A_2 = \left\{ \begin{array}{cccc}
(0; 2, 2, 2, 2, 2) & (0; 2, 2, 2, 2, 2) & (0; 2, 2, 2, 3) & (0; 2, 2, 2, 4) \\
(0; 2, 2, 3, 3) & (0; 2, 2, 4, 4) & (0; 2, 3, 8) & (0; 2, 4, 6) \\
(0; 2, 4, 8) & (0; 2, 5, 10) & (0; 2, 6, 6) & (0; 2, 8, 8) \\
(0; 3, 3, 3, 3) & (0; 3, 3, 4) & (0; 3, 4, 4) & (0; 3, 6, 6) \\
(0; 4, 4, 4) & (0; 5, 5, 5) & (1; 2, 2) & (2; -) \\
\end{array} \right\}
$$

- Note: $A_\sigma \subseteq P_\sigma$ for every σ.
Formalizing our Goals

Goal

Can we describe the relationship between the potential signature spaces \mathcal{P}_σ as we vary σ? What does it tell us about the actual signature spaces \mathcal{A}_σ as we vary σ?
Formalizing our Goals

Goal

Can we describe the relationship between the potential signature spaces \mathcal{P}_σ as we vary σ? What does it tell us about the actual signature spaces \mathcal{A}_σ as we vary σ?
Our First Main Result

Theorem

The set \(\{ P_\sigma \}_{\sigma \geq 2} \) forms a lattice with ordering determined by the divisibility of \(\sigma - 1 \). Specifically,

- (The meet) If \(\gcd((\sigma - 1), (\sigma' - 1)) = \Sigma - 1 \), then \(P_\sigma \cap P_{\sigma'} = P_\Sigma \).
- (The join) If \(\text{lcm}((\sigma - 1), (\sigma' - 1)) = \Sigma - 1 \), then \(P_\sigma \cup P_{\sigma'} = P_\Sigma \).
Figure: A Partial Representation of the Potential Signature Space
First Consequence: Omnipersistent Potential Signatures

Only a small number of signatures could appear in every possible genus:

Theorem

The omnipersistent potential signatures are:

\[\mathcal{P}_2 = \left\{ \begin{array}{cccc}
(0; 2, 2, 2, 2, 2) & (0; 2, 2, 2, 2, 2) & (0; 2, 2, 2, 3) & (0; 2, 2, 2, 4) \\
(0; 2, 2, 3, 3) & (0; 2, 2, 4, 4) & (0; 2, 3, 8) & (0; 2, 4, 6) \\
(0; 2, 4, 8) & (0; 2, 5, 10) & (0; 2, 6, 6) & (0; 2, 8, 8) \\
(0; 3, 3, 3, 3) & (0; 3, 3, 4) & (0; 3, 4, 4) & (0; 3, 6, 6) \\
(0; 4, 4, 4) & (0; 5, 5, 5) & (1; 2, 2) & (2; -) \\
(1; 3) & (0; 3, 3, 6) & (0; 3, 3, 5) & (0; 2, 3, 18) \\
(0; 2, 5, 5) & (0; 2, 3, 12) & (0; 3, 3, 9) & (0; 2, 3, 10) \\
(0; 2, 3, 9) & (0; 2, 4, 5) & (0; 2, 3, 7) & (0; 2, 2, 2, 6) \\
(1; 2) &
\end{array} \right\} \]
First Consequence: Omnipersistent Potential Signatures

Only a small number of signatures *could* appear in every possible genus:

Theorem

The omnipersistent potential signatures are:

\[
P_2 = \begin{cases}
(0; 2, 2, 2, 2, 2) & (0; 2, 2, 2, 2, 2) & (0; 2, 2, 2, 3) & (0; 2, 2, 2, 4) \\
(0; 2, 2, 3, 3) & (0; 2, 2, 4, 4) & (0; 2, 3, 8) & (0; 2, 4, 6) \\
(0; 2, 4, 8) & (0; 2, 5, 10) & (0; 2, 6, 6) & (0; 2, 8, 8) \\
(0; 3, 3, 3, 3) & (0; 3, 3, 4) & (0; 3, 4, 4) & (0; 3, 6, 6) \\
(0; 4, 4, 4) & (0; 5, 5, 5) & (1; 2, 2) & (2; −) \\
(1; 3) & (0; 3, 3, 6) & (0; 3, 3, 5) & (0; 2, 3, 18) \\
(0; 2, 5, 5) & (0; 2, 3, 12) & (0; 3, 3, 9) & (0; 2, 3, 10) \\
(0; 2, 3, 9) & (0; 2, 4, 5) & (0; 2, 3, 7) & (0; 2, 2, 2, 6) \\
(1; 2) & & &
\end{cases}
\]

- This partially explains why we so regularly see certain signatures in many genera e.g. (0; 2, 3, 7) keeps showing up!
First Consequence: Omnipersistent Potential Signatures

Only a small number of signatures *could* appear in every possible genus:

Theorem

The omnipersistent potential signatures are:

\[P_2 = \begin{cases}
(0,2,2,2,2,2) & (0,2,2,2,2,2) & (0,2,2,3,3) & (0,2,2,4,8) \\
(0,2,2,3,3) & (0,2,2,4,4) & (0,2,3,8) & (0,2,4,6) \\
(0,2,4,8) & (0,2,5,10) & (0,2,6,6) & (0,2,8,8) \\
(0,3,3,3,3) & (0,3,3,4) & (0,3,4,4) & (0,3,6,6) \\
(0,4,4,4) & (0,5,5,5) & (1,2,2) & (2;\,\,\,-) \\
(1;\,\,\,3) & (0,3,3,6) & (0,3,3,5) & (0,2,3,18) \\
(0,2,5,5) & (0,2,3,12) & (0,3,3,9) & (0,2,3,10) \\
(0,2,3,9) & (0,2,4,5) & (0,2,3,7) & (0,2,2,2,6) \\
(1;\,\,\,2) & & & \\
\end{cases} \]

- This partially explains why we so regularly see certain signatures in many genera e.g. \((0,2,3,7) \) keeps showing up!
Second Consequence: Numbers of Potential Signatures Grow with Divisibility

We have the following easy consequence given by the lattice structure:

Theorem

\[\mathcal{P}_\sigma \subseteq \mathcal{P}_{\sigma'} \text{ if and only if } (\sigma - 1) | (\sigma' - 1). \]

One direction is given by the lattice theorem. For the other direction, simple application of the Riemann-Hurwitz formula shows that if \((\sigma - 1) \nmid (\sigma' - 1)\), then \((0, 2, 2g + 1, 4g + 2) \in \mathcal{P}_\sigma\) but \((0, 2, 2g + 1, 4g + 2) \not\in \mathcal{P}_{\sigma'}\).

This partially explains the growth rates in the number of group actions in different genera – when \(\sigma - 1\) has lots of divisors \(\mathcal{P}_\sigma\) is large!
Second Consequence: Numbers of Potential Signatures Grow with Divisibility

We have the following easy consequence given by the lattice structure:

Theorem

\[\mathcal{P}_\sigma \subseteq \mathcal{P}_{\sigma'} \text{ if and only if } (\sigma - 1) | (\sigma' - 1). \]

Proof.

One direction is given by the lattice theorem.

This partially explains the growth rates in the number of group actions in different genera – when \(\sigma - 1 \) has lots of divisors \(\mathcal{P}_\sigma \) is large!
We have the following easy consequence given by the lattice structure:

Theorem
\[P_\sigma \subseteq P_{\sigma'} \text{ if and only if } (\sigma - 1)|(\sigma' - 1). \]

Proof.
One direction is given by the lattice theorem.
For the other direction, simple application of the Riemann-Hurwitz formula shows that if \((\sigma - 1) \nmid (\sigma' - 1)\), then \((0, 2, 2g + 1, 4g + 2) \in P_\sigma\) but \((0, 2, 2g + 1, 4g + 2) \notin P_{\sigma'}\).
Second Consequence: Numbers of Potential Signatures Grow with Divisibility

We have the following easy consequence given by the lattice structure:

Theorem

\[\mathcal{P}_\sigma \subseteq \mathcal{P}_{\sigma'} \text{ if and only if } (\sigma - 1)|(\sigma' - 1). \]

Proof.

One direction is given by the lattice theorem. For the other direction, simple application of the Riemann-Hurwitz formula shows that if \((\sigma - 1) \nmid (\sigma' - 1)\), then \((0, 2, 2g + 1, 4g + 2) \in \mathcal{P}_\sigma\) but \((0, 2, 2g + 1, 4g + 2) \notin \mathcal{P}_{\sigma'}\).

- This partially explains the growth rates in the number of group actions in different genera – when \(\sigma - 1\) has lots of divisors \(\mathcal{P}_\sigma\) is large!
Second Consequence: Numbers of Potential Signatures Grow with Divisibility

We have the following easy consequence given by the lattice structure:

Theorem

\[\mathcal{P}_\sigma \subseteq \mathcal{P}_{\sigma'} \text{ if and only if } (\sigma - 1) \mid (\sigma' - 1). \]

Proof.

One direction is given by the lattice theorem. For the other direction, simple application of the Riemann-Hurwitz formula shows that if \((\sigma - 1) \nmid (\sigma' - 1)\), then \((0, 2, 2g + 1, 4g + 2) \in \mathcal{P}_\sigma\) but \((0, 2, 2g + 1, 4g + 2) \notin \mathcal{P}_{\sigma'}\).

- This partially explains the growth rates in the number of group actions in different genera – when \(\sigma - 1\) has lots of divisors \(\mathcal{P}_\sigma\) is large!
We know all omnipersistent potential signatures. This motivates:

Question

Are there any omnipersistent actual signatures?

Theorem

The omnipersistent signatures are \{ (2; 0), (1; 2^2), (0; 2^2, 2^2, 2^2) \}.

Proof.

\((x, e, x, e)\) is a \((2; -1)\)-generating vector for \(C_{\sigma - 1} = \langle x \rangle\).

\((x, e, y, y)\) is a \((1; 2^2)\) and \((y, y, xy, xy, y, y)\) is a \((0; 2^2, 2^2, 2^2, 2^2, 2^2)\)-generating vector for \(D_{\sigma - 1} = \langle x, y | x_{\sigma - 1}, y^2, yxyx \rangle\).

\((xy, xy, y, y)\) is a \((0; 2^2, 2^2, 2^2, 2^2, 2^2)\)-generating vector for \(D_2(\sigma - 1) = \langle x, y | x_{2(\sigma - 1)}, y^2, yxyx \rangle\).
Final Observation

We know all omnipersistent potential signatures. This motivates:

Question

Are there any omnipersistent actual signatures?

Theorem

The omnipersistent signatures are

\{(2; 0), (1; 2, 2), (0; 2, 2, 2, 2, 2), (0; 2, 2, 2, 2, 2, 2)\}.
Final Observation

We know all omnipersistent potential signatures. This motivates:

Question

Are there any omnipersistent actual signatures?

Theorem

The omnipersistent signatures are

\[\{(2; 0), (1; 2, 2), (0; 2, 2, 2, 2, 2), (0; 2, 2, 2, 2, 2, 2)\}.

Proof.

\((x, e, x, e)\) is a \((2; -)\)-generating vector for \(C_{\sigma - 1} = \langle x \rangle\).
We know all omnipersistent potential signatures. This motivates:

Question

Are there any omnipersistent actual signatures?

Theorem

The omnipersistent signatures are
{(2; 0), (1; 2, 2), (0; 2, 2, 2, 2, 2), (0; 2, 2, 2, 2, 2, 2)}.

Proof.

(x, e, x, e) is a (2; −)-generating vector for $C_{σ−1} = \langle x \rangle$.

(x, e, y, y) is a (1; 2, 2) and (y, y, xy, xy, y, y) is a
(0; 2, 2, 2, 2, 2, 2)-generating vector for $D_{σ−1} = \langle x, y | x^{σ−1}, y^2, yxyx \rangle$.

A. Wootton (University of Portland) Lattice Structure April 13, 2018 18 / 18
Final Observation

We know all omnipersistent potential signatures. This motivates:

Question

Are there any omnipersistent actual signatures?

Theorem

The omnipersistent signatures are
\{(2; 0), (1; 2, 2), (0; 2, 2, 2, 2, 2), (0; 2, 2, 2, 2, 2, 2)\}.

Proof.

\((x, e, x, e)\) is a \((2; -)\)-generating vector for \(C_{\sigma - 1} = \langle x \rangle\).

\((x, e, y, y)\) is a \((1; 2, 2)\) and \((y, y, xy, xy, y, y)\) is a
\((0; 2, 2, 2, 2, 2, 2)\)-generating vector for \(D_{\sigma - 1} = \langle x, y | x^{\sigma - 1}, y^2, yxy \rangle\).

\((xy, xy, y, yx^{\sigma - 1}, x^{\sigma - 1})\) is a \((0; 2, 2, 2, 2, 2)\)-generating vector for
\(D_{2(\sigma - 1)} = \langle x, y | x^{2(\sigma - 1)}, y^2, yxy \rangle\).
We know all omnipersistent potential signatures. This motivates:

Question

Are there any omnipersistent actual signatures?

Theorem

The omnipersistent signatures are

\{(2; 0), (1; 2, 2), (0; 2, 2, 2, 2, 2), (0; 2, 2, 2, 2, 2, 2)\}.

Proof.

\((x, e, x, e)\) is a \((2; -)\)-generating vector for \(C_{\sigma-1} = \langle x \rangle\).

\((x, e, y, y)\) is a \((1; 2, 2)\) and \((y, y, xy, xy, y, y)\) is a \((0; 2, 2, 2, 2, 2, 2)\)-generating vector for \(D_{\sigma-1} = \langle x, y | x^{\sigma-1}, y^2, yxy \rangle\).

\((xy, xy, y, yx^{\sigma-1}, x^{\sigma-1})\) is a \((0; 2, 2, 2, 2, 2)\)-generating vector for \(D_{2(\sigma-1)} = \langle x, y | x^{2(\sigma-1)}, y^2, yxy \rangle\).