Unfaithful Maps.

Thomas Tucker
Colgate University, Hamilton, New York, 13346

Where do finite group actions on surfaces come from?

The answer is

Where do finite group actions on surfaces come from?

The answer is

1) Topology (Regular covering spaces)

Where do finite group actions on surfaces come from?

The answer is

1) Topology (Regular covering spaces)
2) Geometry (Riemann surfaces and conformal automorphisms)

Where do finite group actions on surfaces come from?

The answer is

1) Topology (Regular covering spaces)
2) Geometry (Riemann surfaces and conformal automorphisms)
3) Permutation groups (combinatorial maps)

Where do finite group actions on surfaces come from?

The answer is

1) Topology (Regular covering spaces)
2) Geometry (Riemann surfaces and conformal automorphisms)
3) Permutation groups (combinatorial maps)

All involve group theory.

Where do finite group actions on surfaces come from?

The answer is

1) Topology (Regular covering spaces)
2) Geometry (Riemann surfaces and conformal automorphisms)
3) Permutation groups (combinatorial maps)

All involve group theory.
But generally (3) is more algebra (but we will see).
Lurking in background is mapping class group, moduli space for complex structures etc

Where do finite group actions on surfaces come from?

The answer is

1) Topology (Regular covering spaces)
2) Geometry (Riemann surfaces and conformal automorphisms)
3) Permutation groups (combinatorial maps)

All involve group theory.
But generally (3) is more algebra (but we will see).
Lurking in background is mapping class group, moduli space for complex structures etc
but for finite group actions, not necessary.

Where do finite group actions on surfaces come from?

The answer is

1) Topology (Regular covering spaces)
2) Geometry (Riemann surfaces and conformal automorphisms)
3) Permutation groups (combinatorial maps)

All involve group theory.
But generally (3) is more algebra (but we will see).
Lurking in background is mapping class group, moduli space for complex structures etc
but for finite group actions, not necessary.
For us, two group actions are equivalent if they are conjugate by a homeomorphism of the surface.

Geometry and topology: Going down

Given a finite group G acting on a closed surface S, there are two choices:
Going down

Geometry and topology: Going down

Given a finite group G acting on a closed surface S, there are two choices:
Going down
Go to the orbifold S / G (identifying orbits under G to single points)

Geometry and topology: Going down

Given a finite group G acting on a closed surface S, there are two choices:
Going down
Go to the orbifold S / G (identifying orbits under G to single points) and add in extra information about the group: assigning elements of group to branch points and boundary components.

Geometry and topology: Going down

Given a finite group G acting on a closed surface S, there are two choices:
Going down
Go to the orbifold S / G (identifying orbits under G to single points) and add in extra information about the group: assigning elements of group to branch points and boundary components.
This can be done with embedded voltage graphs à la Gross and Tucker.

Geometry and topology: Going down

Given a finite group G acting on a closed surface S, there are two choices:
Going down
Go to the orbifold S / G (identifying orbits under G to single points) and add in extra information about the group: assigning elements of group to branch points and boundary components.
This can be done with embedded voltage graphs à la Gross and Tucker.
Or with the fundamental theory of regular covering spaces with representation of the fundamental group $\pi_{1}(S / G)$ in A.

Geometry and topology: Going down

Given a finite group G acting on a closed surface S, there are two choices:
Going down
Go to the orbifold S / G (identifying orbits under G to single points) and add in extra information about the group: assigning elements of group to branch points and boundary components.
This can be done with embedded voltage graphs à la Gross and Tucker.
Or with the fundamental theory of regular covering spaces with representation of the fundamental group $\pi_{1}(S / G)$ in A.
It is one way to describe the type of group action.

Geometry and topology: Going down

Given a finite group G acting on a closed surface S, there are two choices:
Going down
Go to the orbifold S / G (identifying orbits under G to single points) and add in extra information about the group: assigning elements of group to branch points and boundary components.
This can be done with embedded voltage graphs à la Gross and Tucker.
Or with the fundamental theory of regular covering spaces with representation of the fundamental group $\pi_{1}(S / G)$ in A.
It is one way to describe the type of group action.
Leads to Riemann-Hurwitz equation relating $\chi(S)$ to $\chi(S / G)$ with branching information, which dominates the study of which surfaces a given group can act on (e.g $|G| \leq 84(\gamma(S)-1)$).

Geometry and topology: Going up

The other choice is
Going up

Geometry and topology: Going up

The other choice is
Going up
Go to the universal covering space of S which is \mathbb{R}^{2} (or 2-sphere if S is sphere or projective plane)

Geometry and topology: Going up

The other choice is
Going up
Go to the universal covering space of S which is \mathbb{R}^{2} (or 2-sphere if S is sphere or projective plane)
All elements of G lift and give a group \tilde{G} action on \mathbb{R}^{2} which is properly discontinuous (discrete).

Geometry and topology: Going up

The other choice is
Going up
Go to the universal covering space of S which is \mathbb{R}^{2} (or 2-sphere if S is sphere or projective plane)
All elements of G lift and give a group \tilde{G} action on \mathbb{R}^{2} which is properly discontinuous (discrete).
The action of \tilde{G} is equivalent to a group of isometries of a geometry on \mathbb{R}^{2}, hyperbolic except when S is torus or klein bottle when you get Euclidean geometry)

Geometry and topology: Going up

The other choice is
Going up
Go to the universal covering space of S which is \mathbb{R}^{2} (or 2-sphere if S is sphere or projective plane)
All elements of G lift and give a group \tilde{G} action on \mathbb{R}^{2} which is properly discontinuous (discrete).
The action of \tilde{G} is equivalent to a group of isometries of a geometry on \mathbb{R}^{2}, hyperbolic except when S is torus or klein bottle when you get Euclidean geometry)
This can be proved by realizing the orbifold S / G by a fundamental polygon in the hyperbolic plane.
This allows us to think of S as a Riemann surface with a complex structure preserved by G and give us the type of the surface, this time by the fundamental polygon.

Permutation groups and maps

We begin this time with map M, namely a dissection of S into vertices, edges, and faces (whose interiors are homeomorphic to the open disk), which is preserved by the action of G.

Permutation groups and maps

We begin this time with map M, namely a dissection of S into vertices, edges, and faces (whose interiors are homeomorphic to the open disk), which is preserved by the action of G.
For example, a triangulation of S as a simplicial complex is a map with all faces triangles.
View map as a vertex-edge-face incidence system, encoded by monodromy (gluing instructions) for flags

Permutation groups and maps

We begin this time with map M, namely a dissection of S into vertices, edges, and faces (whose interiors are homeomorphic to the open disk), which is preserved by the action of G.
For example, a triangulation of S as a simplicial complex is a map with all faces triangles.
View map as a vertex-edge-face incidence system, encoded by monodromy (gluing instructions) for flags
namely a, b, c right triangles formed by adding edges to map: leg a from vertex to edge midpoint, leg b face center to edge midpoint, and hypotenuse c between vertex and face center.

Permutation groups and maps

We begin this time with map M, namely a dissection of S into vertices, edges, and faces (whose interiors are homeomorphic to the open disk), which is preserved by the action of G.
For example, a triangulation of S as a simplicial complex is a map with all faces triangles.
View map as a vertex-edge-face incidence system, encoded by monodromy (gluing instructions) for flags namely a, b, c right triangles formed by adding edges to map: leg a from vertex to edge midpoint, leg b face center to edge midpoint, and hypotenuse c between vertex and face center.
how to glue flags together along sides a, b, c is given by three involutary permutations x, y, z on set of flags satisfying $(x y)^{2}=1$.

Permutation groups and maps

We begin this time with map M, namely a dissection of S into vertices, edges, and faces (whose interiors are homeomorphic to the open disk), which is preserved by the action of G.
For example, a triangulation of S as a simplicial complex is a map with all faces triangles.
View map as a vertex-edge-face incidence system, encoded by monodromy (gluing instructions) for flags
namely a, b, c right triangles formed by adding edges to map: leg a from vertex to edge midpoint, leg b face center to edge midpoint, and hypotenuse c between vertex and face center.
how to glue flags together along sides a, b, c is given by three involutary permutations x, y, z on set of flags satisfying $(x y)^{2}=1$. Thus map is simply a transitive (since S connected) permutation group $\operatorname{Mon}(M)$ with a marked generating set x, y, z of involutions with $(x y)^{2}=1$, where vertices, edges, and faces are cosets of $\langle x, z\rangle,\langle x, y\rangle,\langle y, z\rangle$.

Automorphisms of maps

So given our group G acting on S, we want to realize it as $\operatorname{Aut}(M)$ for some map on S

Automorphisms of maps

So given our group G acting on S, we want to realize it as $\operatorname{Aut}(M)$ for some map on S
We can do this by putting a map on the orbifold S / G (anyway you want, except all branch points must be vertices) and lift to S via regular covering $S \rightarrow S / G$.

Automorphisms of maps

So given our group G acting on S, we want to realize it as $\operatorname{Aut}(M)$ for some map on S
We can do this by putting a map on the orbifold S / G (anyway you want, except all branch points must be vertices) and lift to S via regular covering $S \rightarrow S / G$.

Aut (M) is just permutations of the flag set that respects the monodromy (gluing)

Automorphisms of maps

So given our group G acting on S, we want to realize it as $\operatorname{Aut}(M)$ for some map on S
We can do this by putting a map on the orbifold S / G (anyway you want, except all branch points must be vertices) and lift to S via regular covering $S \rightarrow S / G$.

Aut (M) is just permutations of the flag set that respects the monodromy (gluing) which just means centralizer of $\operatorname{Mon}(M)$ in the full symmetric group of permutations of the flags (you get same thing if you glue first and then do automorphism, or automorphism first and then glue).

Automorphisms of maps

So given our group G acting on S, we want to realize it as $\operatorname{Aut}(M)$ for some map on S
We can do this by putting a map on the orbifold S / G (anyway you want, except all branch points must be vertices) and lift to S via regular covering $S \rightarrow S / G$.

Aut (M) is just permutations of the flag set that respects the monodromy (gluing) which just means centralizer of $\operatorname{Mon}(M)$ in the full symmetric group of permutations of the flags (you get same thing if you glue first and then do automorphism, or automorphism first and then glue).
Note that if an automorphism fixes a flag, then it must also fix the orbit of that flag under $\operatorname{Mon}(M)$, which is all flags. Thus $\operatorname{Aut}(M)$ acts semi-regularly (freely) on the set of flags.

Automorphisms of maps

So given our group G acting on S, we want to realize it as $\operatorname{Aut}(M)$ for some map on S
We can do this by putting a map on the orbifold S / G (anyway you want, except all branch points must be vertices) and lift to S via regular covering $S \rightarrow S / G$.
Aut (M) is just permutations of the flag set that respects the monodromy (gluing) which just means centralizer of $\operatorname{Mon}(M)$ in the full symmetric group of permutations of the flags (you get same thing if you glue first and then do automorphism, or automorphism first and then glue).
Note that if an automorphism fixes a flag, then it must also fix the orbit of that flag under $\operatorname{Mon}(M)$, which is all flags. Thus $\operatorname{Aut}(M)$ acts semi-regularly (freely) on the set of flags.
Thus finite group actions on closed surfaces same as study of centralizers of transitive permutation groups with marked generating set of three involutions...

Dual and Petrie dual: the x, y, z marking

Suppose one changes the marked generating set amongst themselves (note $x y$ is also an involution and can be used as x or y):

Dual and Petrie dual: the x, y, z marking

Suppose one changes the marked generating set amongst themselves (note $x y$ is also an involution and can be used as x or y):

Duality M^{*} (interchange faces and vertices): interchange x, y so now its y, x, z

Dual and Petrie dual: the x, y, z marking

Suppose one changes the marked generating set amongst themselves (note $x y$ is also an involution and can be used as x or y):

Duality M^{*} (interchange faces and vertices): interchange x, y so now its y, x, z
Petrie duality M^{P} (give each edge a twist); use $x, x y, z$

Dual and Petrie dual: the x, y, z marking

Suppose one changes the marked generating set amongst themselves (note $x y$ is also an involution and can be used as x or y):

Duality M^{*} (interchange faces and vertices): interchange x, y so now its y, x, z
Petrie duality M^{P} (give each edge a twist); use $x, x y, z$ vertices $\langle x, z\rangle$ and edges $\langle x, x y\rangle=\langle x, y\rangle$ the same, but faces now left-right Petrie cycle $\langle x y, z\rangle$.

And can compose $*$ and $P: 6$ possibilities in all since $\langle x, y\rangle=C_{2} \times C_{2}$ has 6 choices for the ordered pair playing the role of x, y.

Dual and Petrie dual: the x, y, z marking

Suppose one changes the marked generating set amongst themselves (note $x y$ is also an involution and can be used as x or y):

Duality M^{*} (interchange faces and vertices): interchange x, y so now its y, x, z
Petrie duality M^{P} (give each edge a twist); use $x, x y, z$ vertices $\langle x, z\rangle$ and edges $\langle x, x y\rangle=\langle x, y\rangle$ the same, but faces now left-right Petrie cycle $\langle x y, z\rangle$.

And can compose $*$ and $P: 6$ possibilities in all since $\langle x, y\rangle=C_{2} \times C_{2}$ has 6 choices for the ordered pair playing the role of x, y.
Note that $\operatorname{Aut}\left(M^{*}\right)$ and $\operatorname{Aut}\left(M^{P}\right)$ are isomorphic to $\operatorname{Aut}(M)$, since the permutation group $\operatorname{Mon}(M)$ does not change, only the marked generating set changes by choices in $\langle x, y\rangle$.

Back story: distinguishing

An action of a group G on a set X has distinguishing number k, if k is the least number such that there is a k-coloring of X where any g preserving the coloring fixes all points.

Back story: distinguishing

An action of a group G on a set X has distinguishing number k, if k is the least number such that there is a k-coloring of X where any g preserving the coloring fixes all points. Big example (Albertson and Collins 1996) is where X is the vertex set of a graph Γ and $G=\operatorname{Aut}(\Gamma)$.

Back story: distinguishing

An action of a group G on a set X has distinguishing number k, if k is the least number such that there is a k-coloring of X where any g preserving the coloring fixes all points. Big example (Albertson and Collins 1996) is where X is the vertex set of a graph Γ and $G=\operatorname{Aut}(\Gamma)$. Tons of papers.

Back story: distinguishing

An action of a group G on a set X has distinguishing number k, if k is the least number such that there is a k-coloring of X where any g preserving the coloring fixes all points. Big example (Albertson and Collins 1996) is where X is the vertex set of a graph Γ and $G=\operatorname{Aut}(\Gamma)$. Tons of papers.
Generally, the generic case is $D(\Gamma) \leq 2$.

Back story: distinguishing

An action of a group G on a set X has distinguishing number k, if k is the least number such that there is a k-coloring of X where any g preserving the coloring fixes all points. Big example (Albertson and Collins 1996) is where X is the vertex set of a graph Γ and $G=\operatorname{Aut}(\Gamma)$. Tons of papers.
Generally, the generic case is $D(\Gamma) \leq 2$. I've worked a lot on maps where $D(M) \leq 2$ as long as there are more than 10 vertices.

Back story: distinguishing

An action of a group G on a set X has distinguishing number k, if k is the least number such that there is a k-coloring of X where any g preserving the coloring fixes all points.
Big example (Albertson and Collins 1996) is where X is the vertex set of a graph Γ and $G=\operatorname{Aut}(\Gamma)$. Tons of papers.
Generally, the generic case is $D(\Gamma) \leq 2$. I've worked a lot on maps where $D(M) \leq 2$ as long as there are more than 10 vertices.

Recently, people (Pils̀niak, Imrich Kalinowski, Lehner) have looked at action of $\operatorname{Aut}\left(\Gamma\right.$ on edges instead, denoted $D^{\prime}(\Gamma)$ or $E D(\Gamma)$.

Back story: distinguishing

An action of a group G on a set X has distinguishing number k, if k is the least number such that there is a k-coloring of X where any g preserving the coloring fixes all points.
Big example (Albertson and Collins 1996) is where X is the vertex set of a graph Γ and $G=\operatorname{Aut}(\Gamma)$. Tons of papers.
Generally, the generic case is $D(\Gamma) \leq 2$. I've worked a lot on maps where $D(M) \leq 2$ as long as there are more than 10 vertices.

Recently, people (Pils̀niak, Imrich Kalinowski, Lehner) have looked at action of $\operatorname{Aut}\left(\Gamma\right.$ on edges instead, denoted $D^{\prime}(\Gamma)$ or $E D(\Gamma)$.Easier generally.

Back story: distinguishing

An action of a group G on a set X has distinguishing number k, if k is the least number such that there is a k-coloring of X where any g preserving the coloring fixes all points.
Big example (Albertson and Collins 1996) is where X is the vertex set of a graph Γ and $G=\operatorname{Aut}(\Gamma)$. Tons of papers.
Generally, the generic case is $D(\Gamma) \leq 2$. I've worked a lot on maps where $D(M) \leq 2$ as long as there are more than 10 vertices.

Recently, people (Pils̀niak, Imrich Kalinowski, Lehner) have looked at action of $\operatorname{Aut}\left(\Gamma\right.$ on edges instead, denoted $D^{\prime}(\Gamma)$ or $E D(\Gamma)$.Easier generally.Started work a few months ago with Monika Pilsniak on $E D(M)$ for maps M. Immediately encountered problems multiple edges and loops arise naturally and the action of Aut (M) on edges can be unfaithful.
Found out later Jozef Širàň and Cai Heng Li have a paper from 2005 "Regular maps that do not act faithfully on vertices, edges, or faces"

Unfaithful maps

Although the action of $\operatorname{Aut}(M)$ on flags is semi-regular, the action on vertices, or on edges, or on faces can be unfaithful. Call a map vertex (resp, edge, face) unfaithful if there is a non-identity element of $\operatorname{Aut}(M)$ that fixes all vertices (resp, edges, faces).

Unfaithful maps

Although the action of $\operatorname{Aut}(M)$ on flags is semi-regular, the action on vertices, or on edges, or on faces can be unfaithful. Call a map vertex (resp, edge, face) unfaithful if there is a non-identity element of $\operatorname{Aut}(M)$ that fixes all vertices (resp, edges, faces). If there is a nonidentity element that simultaneously fixes all vertices, edges and faces, call M cheating.

Longitude Example Let M be the map in the sphere with one edge, two vertices (North and South poles), one face.

Unfaithful maps

Although the action of $\operatorname{Aut}(M)$ on flags is semi-regular, the action on vertices, or on edges, or on faces can be unfaithful. Call a map vertex (resp, edge, face) unfaithful if there is a non-identity element of $\operatorname{Aut}(M)$ that fixes all vertices (resp, edges, faces). If there is a nonidentity element that simultaneously fixes all vertices, edges and faces, call M cheating.

Longitude Example Let M be the map in the sphere with one edge, two vertices (North and South poles), one face.
Then $\operatorname{Aut}(M)=C_{2} \times C_{2}$, but clearly edge unfaithful and face unfaithful since only one of each. Moreover reflection across edge fixes everything, including the two vertices!
Equator Example Take loop in the sphere, one vertex on equator. $\operatorname{Aut}(M)=C_{2} \times C_{2}$ and reflection in NS longitude fixes both faces and the only vertex and only edge (note "fix" means leaves invariant)

Unfaithful maps

Although the action of $\operatorname{Aut}(M)$ on flags is semi-regular, the action on vertices, or on edges, or on faces can be unfaithful. Call a map vertex (resp, edge, face) unfaithful if there is a non-identity element of $\operatorname{Aut}(M)$ that fixes all vertices (resp, edges, faces). If there is a nonidentity element that simultaneously fixes all vertices, edges and faces, call M cheating.

Longitude Example Let M be the map in the sphere with one edge, two vertices (North and South poles), one face.
Then $\operatorname{Aut}(M)=C_{2} \times C_{2}$, but clearly edge unfaithful and face unfaithful since only one of each. Moreover reflection across edge fixes everything, including the two vertices!
Equator Example Take loop in the sphere, one vertex on equator. $\operatorname{Aut}(M)=C_{2} \times C_{2}$ and reflection in NS longitude fixes both faces and the only vertex and only edge (note "fix" means leaves invariant) Note that M^{P} is projective plane with one face, so all automorphisms fix everything.

Variations

Adding Loops to Longitude Subdivide the NS longitude as many times as you want and add circles of latitude: reflection across longitude still fixes all vertices, edges, and faces.

Variations

Adding Loops to Longitude Subdivide the NS longitude as many times as you want and add circles of latitude: reflection across longitude still fixes all vertices, edges, and faces. Could also contract some of the edges along the longitude.

Variations

Adding Loops to Longitude Subdivide the NS longitude as many times as you want and add circles of latitude: reflection across longitude still fixes all vertices, edges, and faces. Could also contract some of the edges along the longitude. Could also end longitude before it reaches North or South Poles.

Variations

Adding Loops to Longitude Subdivide the NS longitude as many times as you want and add circles of latitude: reflection across longitude still fixes all vertices, edges, and faces. Could also contract some of the edges along the longitude. Could also end longitude before it reaches North or South Poles. All are cheating. Equator in torus with loops instead of equator on sphere, do a latitude on torus and add longitude loops (at least one)

Variations

Adding Loops to Longitude Subdivide the NS longitude as many times as you want and add circles of latitude: reflection across longitude still fixes all vertices, edges, and faces. Could also contract some of the edges along the longitude. Could also end longitude before it reaches North or South Poles. All are cheating. Equator in torus with loops instead of equator on sphere, do a latitude on torus and add longitude loops (at least one) Again cheating.
Parallel Edges Can also take the equator with n vertices and add parallel edges wherever you want. Reflection in equator will interchange parallel edges in pairs with one fixed edge

Variations

Adding Loops to Longitude Subdivide the NS longitude as many times as you want and add circles of latitude: reflection across longitude still fixes all vertices, edges, and faces. Could also contract some of the edges along the longitude. Could also end longitude before it reaches North or South Poles. All are cheating. Equator in torus with loops instead of equator on sphere, do a latitude on torus and add longitude loops (at least one) Again cheating.
Parallel Edges Can also take the equator with n vertices and add parallel edges wherever you want. Reflection in equator will interchange parallel edges in pairs with one fixed edge This is not cheating.

Vertex unfaithful:Three or more vertices

Theorem If M is vertex unfaithful with more than two vertices, then

Vertex unfaithful:Three or more vertices

Theorem If M is vertex unfaithful with more than two vertices, then

1) underlying simple graph Γ (given just by vertex adjacency without multiple edges or loops) is a path or cycle

Vertex unfaithful:Three or more vertices

Theorem If M is vertex unfaithful with more than two vertices, then

1) underlying simple graph Γ (given just by vertex adjacency without multiple edges or loops) is a path or cycle 2) any automorphism fixing all vertices is a reflection

Vertex unfaithful:Three or more vertices

Theorem If M is vertex unfaithful with more than two vertices, then

1) underlying simple graph Γ (given just by vertex adjacency without multiple edges or loops) is a path or cycle 2) any automorphism fixing all vertices is a reflection
2) $\operatorname{Aut}(M)$ is a subgroup of $C_{2} \times C_{2}$ if Γ is a path and a subgroup of $C_{2} \times D_{n}$ if Γ is a cycle.

Vertex unfaithful:Three or more vertices

Theorem If M is vertex unfaithful with more than two vertices, then

1) underlying simple graph Γ (given just by vertex adjacency without multiple edges or loops) is a path or cycle 2) any automorphism fixing all vertices is a reflection
2) $\operatorname{Aut}(M)$ is a subgroup of $C_{2} \times C_{2}$ if Γ is a path and a subgroup of $C_{2} \times D_{n}$ if Γ is a cycle.
3) If M also edge unfaithful, then there are no multiple edges (but there can be loops)

Vertex unfaithful:Three or more vertices

Theorem If M is vertex unfaithful with more than two vertices, then

1) underlying simple graph Γ (given just by vertex adjacency without multiple edges or loops) is a path or cycle
2) any automorphism fixing all vertices is a reflection
3) $\operatorname{Aut}(M)$ is a subgroup of $C_{2} \times C_{2}$ if Γ is a path and a subgroup of $C_{2} \times D_{n}$ if Γ is a cycle.
4) If M also edge unfaithful, then there are no multiple edges (but there can be loops)
Proof if any vertex v is adjacent in to more than 2 vertices, when one fixes v and its neighbors, one fixes a flag so auto is the identity.

Vertex unfaithful:Three or more vertices

Theorem If M is vertex unfaithful with more than two vertices, then

1) underlying simple graph Γ (given just by vertex adjacency without multiple edges or loops) is a path or cycle
2) any automorphism fixing all vertices is a reflection
3) $\operatorname{Aut}(M)$ is a subgroup of $C_{2} \times C_{2}$ if Γ is a path and a subgroup of $C_{2} \times D_{n}$ if Γ is a cycle.
4) If M also edge unfaithful, then there are no multiple edges (but there can be loops)
Proof if any vertex v is adjacent in to more than 2 vertices, when one fixes v and its neighbors, one fixes a flag so auto is the identity. Thus, Γ has all vertices simple valence 1 or 2 .
Corollary If M is vertex (or face or edge) unfaithful, then M is degenerate (M or M^{*} has multiple edges or loops).

Vertex unfaithful:Three or more vertices

Theorem If M is vertex unfaithful with more than two vertices, then

1) underlying simple graph Γ (given just by vertex adjacency without multiple edges or loops) is a path or cycle
2) any automorphism fixing all vertices is a reflection
3) $\operatorname{Aut}(M)$ is a subgroup of $C_{2} \times C_{2}$ if Γ is a path and a subgroup of $C_{2} \times D_{n}$ if Γ is a cycle.
4) If M also edge unfaithful, then there are no multiple edges (but there can be loops)
Proof if any vertex v is adjacent in to more than 2 vertices, when one fixes v and its neighbors, one fixes a flag so auto is the identity. Thus, Γ has all vertices simple valence 1 or 2 .
Corollary If M is vertex (or face or edge) unfaithful, then M is degenerate (M or M^{*} has multiple edges or loops).
Note that M^{P} may be degenerate when M is not: for tetrahedron M^{P} has three faces so $M^{P *}$ has 3 vertices and 6 edges.

Vertex Unfaithful: One or two vertices

For one vertex, always vertex unfaithful.

Vertex Unfaithful: One or two vertices

For one vertex, always vertex unfaithful.
Antipodal Example Take an even number of loops at v in cyclic order $a, b, c, d \ldots . a^{-}, b^{-}, c^{-}, d-\ldots$ Map has one face and half turn about v leaves each edge invariant. Cheating.

Vertex Unfaithful: One or two vertices

For one vertex, always vertex unfaithful.
Antipodal Example Take an even number of loops at v in cyclic order $a, b, c, d \ldots . a^{-}, b^{-}, c^{-}, d-\ldots$ Map has one face and half turn about v leaves each edge invariant. Cheating.
Contracted Longitude Contract all the longitude edges to a single point; reflection in longitude still leaves each latitude cycle invariant. Cheating.
For two vertices, we already have Longitude (possible with loops and multiple edges) and Equator with two vertices. Two Vertex Antipodal Take antipodal map and split v into two vertices joined by an edge. Half turn around midpoint is edge unfaithful but not vertex unfaithful.

Vertex Unfaithful: One or two vertices

For one vertex, always vertex unfaithful.
Antipodal Example Take an even number of loops at v in cyclic order $a, b, c, d \ldots . a^{-}, b^{-}, c^{-}, d-\ldots$ Map has one face and half turn about v leaves each edge invariant. Cheating.
Contracted Longitude Contract all the longitude edges to a single point; reflection in longitude still leaves each latitude cycle invariant. Cheating.
For two vertices, we already have Longitude (possible with loops and multiple edges) and Equator with two vertices. Two Vertex Antipodal Take antipodal map and split v into two vertices joined by an edge. Half turn around midpoint is edge unfaithful but not vertex unfaithful.

Relations and more

Abbreviate VU, EU, FU for vertex, edge, face unfaithful. M is simulaneously vertex-edge unfaithful if there is an automorphism fixing all vertices and all edges. Abbreviate this VEU. Similarly, we have VFU, EFU. And of course VEFU is cheating C.
Theorem Even if M has three or more vertices, then:

Relations and more

Abbreviate VU, EU, FU for vertex, edge, face unfaithful. M is simulaneously vertex-edge unfaithful if there is an automorphism fixing all vertices and all edges. Abbreviate this VEU. Similarly, we have VFU, EFU. And of course VEFU is cheating C.
Theorem Even if M has three or more vertices, then:

1) VEU with FU does not imply C (Equator)

Relations and more

Abbreviate VU, EU, FU for vertex, edge, face unfaithful. M is simulaneously vertex-edge unfaithful if there is an automorphism fixing all vertices and all edges. Abbreviate this VEU. Similarly, we have VFU, EFU. And of course VEFU is cheating C.
Theorem Even if M has three or more vertices, then:

1) VEU with FU does not imply C (Equator)
2) VU does not imply EU or FU (Multiple edge equator)

Relations and more

Abbreviate VU, EU, FU for vertex, edge, face unfaithful. M is simulaneously vertex-edge unfaithful if there is an automorphism fixing all vertices and all edges. Abbreviate this VEU. Similarly, we have VFU, EFU. And of course VEFU is cheating C.
Theorem Even if M has three or more vertices, then:

1) VEU with FU does not imply C (Equator)
2) VU does not imply EU or FU (Multiple edge equator)
3) FU does not imply EU or VU (dual of (2))

Relations and more

Abbreviate VU, EU, FU for vertex, edge, face unfaithful. M is simulaneously vertex-edge unfaithful if there is an automorphism fixing all vertices and all edges. Abbreviate this VEU. Similarly, we have VFU, EFU. And of course VEFU is cheating C.
Theorem Even if M has three or more vertices, then:

1) VEU with FU does not imply C (Equator)
2) VU does not imply EU or FU (Multiple edge equator)
3) FU does not imply EU or VU (dual of (2))
4) VFU implies C

Relations and more

Abbreviate VU, EU, FU for vertex, edge, face unfaithful. M is simulaneously vertex-edge unfaithful if there is an automorphism fixing all vertices and all edges. Abbreviate this VEU. Similarly, we have VFU, EFU. And of course VEFU is cheating C.
Theorem Even if M has three or more vertices, then:

1) VEU with FU does not imply C (Equator)
2) VU does not imply EU or FU (Multiple edge equator)
3) FU does not imply EU or VU (dual of (2))
4) VFU implies C

More: "kernel" for VU, FU: subgroup of D_{n}

Relations and more

Abbreviate VU, EU, FU for vertex, edge, face unfaithful. M is simulaneously vertex-edge unfaithful if there is an automorphism fixing all vertices and all edges. Abbreviate this VEU. Similarly, we have VFU, EFU. And of course VEFU is cheating C.
Theorem Even if M has three or more vertices, then:

1) VEU with FU does not imply C (Equator)
2) VU does not imply EU or FU (Multiple edge equator)
3) FU does not imply EU or VU (dual of (2))
4) VFU implies C

More: "kernel" for VU, FU: subgroup of D_{n} For EU subgroup of $C_{2} \times C_{2}$

Relations and more

Abbreviate VU, EU, FU for vertex, edge, face unfaithful. M is simulaneously vertex-edge unfaithful if there is an automorphism fixing all vertices and all edges. Abbreviate this VEU. Similarly, we have VFU, EFU. And of course VEFU is cheating C.
Theorem Even if M has three or more vertices, then:

1) VEU with FU does not imply C (Equator)
2) VU does not imply EU or FU (Multiple edge equator)
3) FU does not imply EU or VU (dual of (2))
4) VFU implies C

More: "kernel" for VU, FU: subgroup of D_{n} For EU subgroup of $C_{2} \times C_{2}$
And genus and orientability...

Relations and more

Abbreviate VU, EU, FU for vertex, edge, face unfaithful. M is simulaneously vertex-edge unfaithful if there is an automorphism fixing all vertices and all edges. Abbreviate this VEU. Similarly, we have VFU, EFU. And of course VEFU is cheating C.
Theorem Even if M has three or more vertices, then:

1) VEU with FU does not imply C (Equator)
2) VU does not imply EU or FU (Multiple edge equator)
3) FU does not imply EU or VU (dual of (2))
4) VFU implies C

More: "kernel" for VU, FU: subgroup of D_{n} For EU subgroup of $C_{2} \times C_{2}$
And genus and orientability...
And the algebra! We've only been thinking of pictures

