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Where do finite group actions on surfaces come from?

The answer is

1) Topology (Regular covering spaces)
2) Geometry (Riemann surfaces and conformal automorphisms)
3) Permutation groups (combinatorial maps)

All involve group theory.
But generally (3) is more algebra (but we will see).

Lurking in background is mapping class group, moduli space for
complex structures etc
but for finite group actions, not necessary.
For us, two group actions are equivalent if they are conjugate by a
homeomorphism of the surface.
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Geometry and topology: Going down

Given a finite group G acting on a closed surface S , there are two
choices:
Going down

Go to the orbifold S/G (identifying orbits under G to single points)
and add in extra information about the group: assigning elements
of group to branch points and boundary components.
This can be done with embedded voltage graphs à la Gross and
Tucker.
Or with the fundamental theory of regular covering spaces with
representation of the fundamental group π1(S/G ) in A.

It is one way to describe the type of group action.
Leads to Riemann-Hurwitz equation relating χ(S) to χ(S/G ) with
branching information, which dominates the study of which
surfaces a given group can act on (e.g |G | ≤ 84(γ(S)− 1)).
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Geometry and topology: Going up

The other choice is
Going up

Go to the universal covering space of S which is R2 (or 2-sphere if
S is sphere or projective plane)
All elements of G lift and give a group G̃ action on R2 which is
properly discontinuous (discrete).

The action of G̃ is equivalent to a group of isometries of a
geometry on R2, hyperbolic except when S is torus or klein bottle
when you get Euclidean geometry)
This can be proved by realizing the orbifold S/G by a fundamental
polygon in the hyperbolic plane.

This allows us to think of S as a Riemann surface with a complex
structure preserved by G and give us the type of the surface, this
time by the fundamental polygon.
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Permutation groups and maps

We begin this time with map M, namely a dissection of S into
vertices, edges, and faces (whose interiors are homeomorphic to
the open disk), which is preserved by the action of G .

For example, a triangulation of S as a simplicial complex is a map
with all faces triangles.

View map as a vertex-edge-face incidence system, encoded by
monodromy (gluing instructions) for flags
namely a, b, c right triangles formed by adding edges to map: leg a
from vertex to edge midpoint, leg b face center to edge midpoint,
and hypotenuse c between vertex and face center.
how to glue flags together along sides a, b, c is given by three
involutary permutations x , y , z on set of flags satisfying (xy)2 = 1.
Thus map is simply a transitive (since S connected) permutation
group Mon(M) with a marked generating set x , y , z of involutions
with (xy)2 = 1, where vertices, edges, and faces are cosets of
〈x , z〉, 〈x , y〉, 〈y , z〉.
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Automorphisms of maps

So given our group G acting on S , we want to realize it as Aut(M)
for some map on S

We can do this by putting a map on the orbifold S/G (anyway you
want, except all branch points must be vertices) and lift to S via
regular covering S → S/G .

Aut(M) is just permutations of the flag set that respects the
monodromy (gluing) which just means centralizer of Mon(M) in
the full symmetric group of permutations of the flags (you get
same thing if you glue first and then do automorphism, or
automorphism first and then glue).

Note that if an automorphism fixes a flag, then it must also fix the
orbit of that flag under Mon(M), which is all flags. Thus Aut(M)
acts semi-regularly (freely) on the set of flags.
Thus finite group actions on closed surfaces same as study of
centralizers of transitive permutation groups with marked
generating set of three involutions...
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Dual and Petrie dual: the x , y , z marking

Suppose one changes the marked generating set amongst
themselves (note xy is also an involution and can be used as x or
y):

Duality M∗(interchange faces and vertices): interchange x , y so
now its y , x , z
Petrie duality MP (give each edge a twist); use x , xy , z
vertices 〈x , z〉 and edges 〈x , xy〉 = 〈x , y〉 the same, but faces now
left-right Petrie cycle 〈xy , z〉.

And can compose ∗ and P: 6 possibilities in all since
〈x , y〉 = C2 × C2 has 6 choices for the ordered pair playing the role
of x , y .
Note that Aut(M∗) and Aut(MP) are isomorphic to Aut(M), since
the permutation group Mon(M) does not change, only the marked
generating set changes by choices in 〈x , y〉.
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Back story: distinguishing

An action of a group G on a set X has distinguishing number k , if
k is the least number such that there is a k-coloring of X where
any g preserving the coloring fixes all points.

Big example (Albertson and Collins 1996) is where X is the vertex
set of a graph Γ and G = Aut(Γ). Tons of papers.
Generally, the generic case is D(Γ) ≤ 2.I’ve worked a lot on maps
where D(M) ≤ 2 as long as there are more than 10 vertices.

Recently, people (Pil̀sniak, Imrich Kalinowski, Lehner) have looked
at action of Aut(Γ on edges instead, denoted D ′(Γ) or
ED(Γ).Easier generally.Started work a few months ago with
Monika Pilsniak on ED(M) for maps M. Immediately encountered
problems multiple edges and loops arise naturally and the action of
Aut(M) on edges can be unfaithful.
Found out later Jozef Širàň and Cai Heng Li have a paper from
2005 “Regular maps that do not act faithfully on vertices, edges,
or faces”
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Unfaithful maps

Although the action of Aut(M) on flags is semi-regular, the action
on vertices, or on edges, or on faces can be unfaithful. Call a map
vertex (resp, edge, face) unfaithful if there is a non-identity
element of Aut(M) that fixes all vertices (resp, edges, faces).

If there is a nonidentity element that simultaneously fixes all
vertices, edges and faces, call M cheating.

Longitude Example Let M be the map in the sphere with one
edge, two vertices (North and South poles), one face.
Then Aut(M) = C2 × C2, but clearly edge unfaithful and face
unfaithful since only one of each. Moreover reflection across edge
fixes everything, including the two vertices!

Equator Example Take loop in the sphere, one vertex on equator.
Aut(M) = C2 × C2 and reflection in NS longitude fixes both faces
and the only vertex and only edge (note “fix” means leaves
invariant) Note that MP is projective plane with one face, so all
automorphisms fix everything.
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Variations

Adding Loops to Longitude Subdivide the NS longitude as many
times as you want and add circles of latitude: reflection across
longitude still fixes all vertices, edges, and faces.

Could also
contract some of the edges along the longitude. Could also end
longitude before it reaches North or South Poles. All are cheating.
Equator in torus with loops instead of equator on sphere, do a
latitude on torus and add longitude loops (at least one) Again
cheating.
Parallel Edges Can also take the equator with n vertices and add
parallel edges wherever you want. Reflection in equator will
interchange parallel edges in pairs with one fixed edge
This is not cheating.
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Vertex unfaithful:Three or more vertices

Theorem If M is vertex unfaithful with more than two vertices,
then

1) underlying simple graph Γ (given just by vertex adjacency
without multiple edges or loops) is a path or cycle
2) any automorphism fixing all vertices is a reflection
3) Aut(M) is a subgroup of C2 × C2 if Γ is a path and a subgroup
of C2 × Dn if Γ is a cycle.
4) If M also edge unfaithful, then there are no multiple edges (but
there can be loops)
Proof if any vertex v is adjacent in to more than 2 vertices, when
one fixes v and its neighbors, one fixes a flag so auto is the identity.
Thus, Γ has all vertices simple valence 1 or 2.
Corollary If M is vertex (or face or edge) unfaithful, then M is
degenerate (M or M∗ has multiple edges or loops).
Note that MP may be degenerate when M is not: for tetrahedron
MP has three faces so MP∗ has 3 vertices and 6 edges.
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Vertex Unfaithful: One or two vertices

For one vertex, always vertex unfaithful.

Antipodal Example Take an even number of loops at v in cyclic
order a, b, c , d ....a−, b−, c−, d − ... Map has one face and half turn
about v leaves each edge invariant. Cheating.
Contracted Longitude Contract all the longitude edges to a
single point; reflection in longitude still leaves each latitude cycle
invariant. Cheating.
For two vertices, we already have Longitude (possible with loops
and multiple edges) and Equator with two vertices. Two Vertex
Antipodal Take antipodal map and split v into two vertices joined
by an edge. Half turn around midpoint is edge unfaithful but not
vertex unfaithful.
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Relations and more

Abbreviate VU, EU, FU for vertex, edge, face unfaithful. M is
simulaneously vertex-edge unfaithful if there is an automorphism
fixing all vertices and all edges. Abbreviate this VEU. Similarly, we
have VFU, EFU. And of course VEFU is cheating C.
Theorem Even if M has three or more vertices, then:

1) VEU with FU does not imply C (Equator)
2) VU does not imply EU or FU (Multiple edge equator)
3) FU does not imply EU or VU (dual of (2))
4) VFU implies C
More: “kernel” for VU, FU: subgroup of Dn For EU subgroup of
C2 × C2

And genus and orientability...
And the algebra! We’ve only been thinking of pictures
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