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Problem

Let X be an algebraic curve defined over a field K . Denote its Jacobian by

J := Jac K (X )

Let Aut(X ) be the automorphism group over K̄ and End K (Jac C) the endomorphism
ring of the Jacobian Jac K (X ).

Problem: Determine the relation between Aut(X ) and End (Jac C).



Curves and their Jacobians
Given a curve C/k , ΣC(k) denotes the set of points on C with k -coordinates. The
group of k -rational divisors Div C(k) is defined as

Div C(k) =
⊕

p∈ΣC(k)

Z · p,

i.e. Div C(k) is the free abelian group with base ΣC(k). Hence a divisor D of C is a
formal sum

D =
∑

p∈ΣC(k)

zp P

where zp ∈ Z and zp = 0 for all but finitely many prime divisors p. The degree of D is
defined as

deg(D) :=
∑

p∈ΣC(k)

zp.

The map D 7→ deg(D) is a homomorphism from Div C(k) to Z. Its kernel is the
subgroup Div C(k)0 of divisors of degree 0.

Example
Let f ∈ k(C)∗ be a meromorphic function on C. For p ∈ ΣC(k) we have defined the
normalized valuation wp. The divisor of f is defined as

(f ) =
∑

ΣC(k)

wp · p.

It is not difficult to verify that (f ) is a divisor, and that its degree is 0. Moreover
(f · g) = (f ) + (g) for functions f , g, and (f−1) = −(f ). The completeness of C implies
that (f ) = 0 if and only if f ∈ k∗, and so (f ) determines f up to scalars 6= 0.



Thus, the set of principal divisors PDiv C(k) consisting of all divisors (f ) with f ∈ k(C)

is a subgroup of Div 0
C(k).

Definition.
The group of divisor classes of C is defined by

Pic C(k) := Div C(k)/PDiv C(k)

and is called the divisor class group of C. The group of divisor classes of degree 0 of
C is defined by

Pic 0
C(k) := Div 0

C(k)/PDiv C(k)

and is called the Picard group (of degree 0) of C.



The Picard Functor:

Let L be a finite algebraic extension of k and CL the curve obtained from C by constant
field extension. Then places of k(C) can be extended to places of L(CL). By the
conorm map we get an injection of Div C(k) to Div CL (L). The well known formulas for
the extensions of places yield that

conormL/k (Div 0
C(k)) ⊂ Div 0

CL
(L)

and that principal divisors are mapped to principal divisors. Hence we get a
homomorphism

conormL/k : Pic 0
C(k)→ Pic 0

CL
(L)

and therefore a functor
Pic 0 : L 7→ Pic 0

CL
(L)

from the category of algebraic extension fields of k to the category of abelian groups.
Coming ”from above” we have a Galois theoretical description of this functor. Clearly,

Div CL (L) = Div C{ k̄ (k̄)GL

and the same is true for functions. With a little bit of more work one sees that an
analogue result is true for PDiv CL (L) and for Pic 0

CL
(L); see (Frey and Shaska, 2018)

for details.



Theorem
For any curve Ck and any finite extension L/k the functor

L 7→ Pic 0
CL

(L)

is the same as the functor
L 7→ Pic 0

Ck̄
(k̄)GL .

In particular, we have
Pic 0
Ck̄

(k̄) =
⋃

k⊂L⊂k̄

Pic 0
CL

(L),

where inclusions are obtained via conorm maps.

Remark
For a finite extension L/k we also have the norm map of places of CL to places of Ck
induces a homomorphism from Pic 0

CL
(L) to Pic 0

C(k). In general, this map will be
neither injective nor surjective.

It is one of the most important facts for the theory of curves that the functor Pic 0 can
be represented: There is a variety JC defined over k such that for all extension fields L
of k we have a functorial equality

JC(L) = Pic 0
CL

(L).

JC is the Jacobian variety of C. This variety will be discussed soon.



Abelian varieties
Group schemes: A projective (affine) group scheme G defined over k is a projective
(affine) scheme over k endowed with
i) addition, i.e., a morphism

m : G × G→ G

ii) inverse, i.e., a morphism
i : G→ G

iii) the identity, i. e., a k -rational point 0 ∈ G(k),

such that it satisfies group laws. The group law is uniquely determined by the choice of
the identity element. A morphism of group schemes that is compatible with the addition
law is a homomorphism.
Let L/k be a field extension. G(L) denotes the set of L-rational points of G and it is
also a group. A homomorphism between groups schemes induces a homomorphism
between the group of rational points. If G is an absolutely irreducible projective variety,
then the group law m is commutative.

Definition.
An Abelian variety defined over k is an absolutely irreducible projective variety
defined over k which is a group scheme.

Fact: A morphism of Abelian varieties A to B is a homomorphism if and only if it maps
the identity element of A to the identity element of B.
An abelian variety A/k is called simple if it has no proper non-zero Abelian subvariety
over k , it is called absolutely simple (or geometrically simple) if it is simple over the
algebraic closure of k .



Complex tori and abelian varieties
Abelian varieties are connected, projective algebraic group schemes. Their analytic
counterparts are the connected compact Lie groups.
Let d be a positive integer and Cd the complex Lie group (i.e., with vector addition as
group composition). The group Cd is not compact, but we can find quotients which are
compact. Choose a lattice Λ ⊂ Cd which is a Z-submodule of rank 2d . The quotient
Cd/Λ is a complex, connected Lie group which is called a complex d-dimensional
torus. Every connected, compact Lie group of dimension d is isomorphic to a torus
Cd/Λ.
A hermitian form H on Cd × Cd is a form that can be decomposed as

H(x , y) = E(ix , y) + i E(x , y),

where E is a skew symmetric real form on Cd satisfying E(ix , iy) = E(x , y). E is called
the imaginary part Img(H) of H.
The torus Cd/Λ can be embedded into a projective space if and only if there exists a
positive Hermitian form H on Cd with E = Img(H) such that restricted to Λ× Λ has
values in Z. Let Hg be the Siegel upper half plane

Hd = {τ ∈ Matd (C) | τT = τ, Img(τ) > 0}.

Then, we have the following.

Lemma
Let Cd/Λ be a complex torus attached to an abelian variety A. Then Λ is isomorphic to
Zd ⊕ Ω · Zd , where Ω ∈ Hd .



The matrix Ω is called the period matrix of A. The lattice Λ̂ given by

Λ̂ := {x ∈ Cd |E(x , y) ∈ Z, for all y ∈ Λ}

is called the dual lattice of Λ. If Λ̂ = Λ then E is called a principal polarization on A
and the pair (A,E) is called a principally polarized abelian variety; we may also say
that A admits a principal polarization.
For a principally polarized abelian variety (A,E) there exists a basis {µ1, . . . , µ2d} of Λ
such that

J :=
[
E(µi , µj )

]
1≤i,j≤2d =

[
0 Id
−Id 0

]
.

The symplectic group

Sp(2d ,Z) = {M ∈ GL(2d ,Z) | MJMT = J}

acts on Hd , via

Sp(2d ,Z)×Hd →Hd[
a b
c d

]
× τ → (aτ + b)(cτ + d)−1

where a, b, c, d , τ are d × d matrices. The moduli space of d-dimensional abelian
varieties is

Ag := Hd/Sp(2d ,Z).

The Jacobian of a projective irreducible nonsingular curve admits a canonical principal
polarization.



Automorphisms of Jacobian varieties

By functoriality it follows that automorphism of C induce automorphisms of JC , or, to be
more precise, of (CC , ι) where ι is the principal polarization of JC attached to C.

Theorem
Let C be an algebraic curve and A := Jac (C) with canonical principal polarization ι.
Then,

AutC ∼=

{
Aut(A, ι), if Cis hyperelliptic

Aut(A, ι)/{±1}, if Cis non-hyperelliptic

See (?Milne) for a proof.



Endomorphism of Abelian varieties

Let A, B be abelian varieties over a field k . We denote the Z-module of
homomorphisms A 7→ B by Hom(A,B) and the ring of endomorphisms A 7→ A by
End A.
In the context of Linear Algebra it can be more convenient to work with the Q-vector
spaces Hom0(A,B) := Hom(A,B)⊗Z Q, and End 0A := End A⊗Z Q. Determining
End A or End 0A is an interesting problem on its own; see (Oort, 1988).
For any abelian variety A defined over a a number field K , computing End K (A) is a
harder problem than computation of End K̄ (A); see (Frey and Shaska, 2018) for
details.

Lemma
If there exists an algorithm to compute End K (A) for any abelian variety of dimension
g ≥ 1 defined over a number field K , then there is an algorithm to compute End K̄ (A).

The ring of endomorphisms of generic Abelian varieties is ”as small as possible”. For
instance, if char(k) = 0 End (A) = Z in general. If k is a finite field, the Frobenius
endomorphism will generate a larger ring, but again, this will be all in the generic case.

Theorem (Zarhin)
Let C be a hyperelliptic curves with affine equation y2 = f (x), n = deg f , and f ∈ Q[x ].
If Gal (f ) is isomorphic to An or Sn then End Q (Jac C)∼=Z.

From this point of view it will be interesting to find Abelian varieties with larger
endomorphism rings. This leads to the theory of real and complex multiplication.
For instance, the endomorphism ring of the Jacobian of the Klein quartic contains an
order in a totally real field of degree 3 over Q.



Theorem ((Zarhin, 2017))
Let K be a field, char K 6= 2 and f (x) ∈ K [x ] an irreducible polynomial with deg f ≥ 5.
If one of the following conditions is satisfied:

I char K 6= 3 and Gal K (f )∼= An or Sn

I Gal K (f )∼= Mn (Mathiew group) for n = 11, 12, 22, 23, 24

then the curve C : y2 = f (x) has End J = Z. In particular, Jac C is absolutely simple.

Theorem ((Zarhin, 2017))
If f (x) is as above, char K = 0, and p an odd prime then the superelliptic curve

X : yp = f (x)

has Jac (X ) absolutely simple and End (Jac C)∼=Z[εp].

Can we construct families of curves with these properties?



Galois groups of polynomials

Theorem (Bialostocki-Sh)
Let f (x) ∈ Q[x ] be an irreducible polynomial of prime degree p > 5. Let r be the
number of complex roots of f (x). If r > 0 then Gal(f ) is Ap , Sp or one of the groups as
in the following Table 2.

Proof.
The proof is computational and follows from the tables of transitive subgroups of Sp. It
is easy to decide which ones of these groups are non-solvable and compute their cycle
types.

Remark
We used in Table 2 notations which we considered standard as Dn, M11, and L(p),
otherwise we used the GAP notation (p, i) which is the i-th group in the list of transitive
groups of degree p. These groups can be generated in GAP simple by typing
”TransitiveGroup(n,i);”. The group M23 is not realized as a Galois groups over Q.

Notice that no two groups of Table 2 have the same cycle structure. Hence the Galois
group can be determined uniquely by reduction mod p for all polynomials of prime
degree ≤ 29 with non-real roots.



p Solv. Sign. Nonsol. Sign.

7 D7 (2)3, (7) L(7) (2)2, (4)(2), (3)2, (7)

(7, 4) (2)3, (3)2, (7)

11 D11 (2)5, (11) L(11) (2)4, (3)3, (5)2, (2)(6)(3), (11)

(11, 4) (2)5, (5)2, (10), (11) M11 (2)4, (2)(6)(3), (2)(8), (3)3,
(4)2, (5)2, (11)

13 D13 (2)6, (13) L(13) (2)4, (3)3, (3)4, (4)2(2)2,
(6)(3)(2), (8)(4), (13)

(13, 4) (2)6, (4)3, (13)

(13, 5) (2)6, (3)4, (6)2, (13)

(13, 6) (2)6, (3)4, (4)3,
(6)2, (12), (13)

17 D17 (2)8, (17) PSL2(16) (2)8, (3)5, (5)3, (15), (17)

(17, 3) (2)8, (4)4, (17) (17, 7) (2)6, (2)8, (3)5, (4)4,
(5)3, (6)2(3), (5)(10)(2),

(15), (17)

(17, 4) (2)8, (4)4, (8)2, (17) (17, 8) (2)(5)(10), (2)(4), (2)(4)3,
(2)6, (2)8, (3)(6)2, (3)5,

(3)2(12), (4)3, (5)3, (8)2,
(15), (17)

(17, 5) (2)8, (4)4, (8)2, (16), (17)

19 D19 (2)9, (19)

(19, 4) (2)9, (3)6, (6)3, (19)

(19, 6) (2)9, (3)6, (6)3, (9)2,
(18), (19)

23 D23 (2)11, (23) M23 (2)8, (2)2(4)4, (2)(7)(14),

(2)(4)(8)2, (2)2(3)2(6)2,
(23, 4) (2)11, (11)2, (22), (23) (3)(5)(15), (5)3, (5)4,

(7)3, (11)2, (23)

29 D29 (2)14, (29)

(29, 3) (2)14, (4)7, (29)

(29, 5) (2)14, (7)4, (14)2, (29)

(29.6) (2)14, (4)7, (7)4, (14)2,
(28), (29)



Polynomials with no real roots
What about polynomials f (x) ∈ Q[x ] which have all non-real roots?

A polynomial f (x) ∈ R[x ] with no real roots is called totally complex. Let g(x) be
given as

g(x) =
s∑

i=0

ai x i ∈ R[x ]

such that as > 0 and ∆g 6= 0. Let

f (x) = xn + t · g(x)

Theorem ((Otake and Shaska, 2018a))
f (x) is totally complex for all

t > max{α |∆f (α) = 0}

If g(x) satisfies the Eisenstein criteria, then f (x) satisfies the Eisenstein criteria. In this
case f (x) is irreducible over Q.

Lemma
If f (x) as above is irreducible then

Gal Q(t)(f )∼= Sn.



Let f (x) be as above. Then we have:

Theorem
i) The curve C : y2 = f (x) has End (J) = Z. Moreover, J (C) is absolutely simple.
ii) The curve X : yp = f (x) has End (J) = Z[εp]. Moreover, J (C) is absolutely simple.

Another family of polynomials:

Consider
f (x) = xn + ξ(x2 + ax + b)

where a, b ∈ R and ξ a parameter ξ ∈ R. Then we have the following:

Theorem ((Otake and Shaska, 2018b))
The polynomial

f (x) = xn + ξ(x2 + ax + b)

is a totally complex polynomial for any even n ≥ 4, such that ξ ∈ (0,∞), b 6= 0 and

b ≥ (n−1)2a2

4n(n−2)
.

Proof.
Quite tedious, using properties of Bezutians of polynomials.



Proposition
If n ≤ 9 then the Galois group of f (x) over Q(ξ),

Gal Q(ξ)f (x)∼= Sn.

Conjecture
The Galois group of f (x) over Q(ξ),

Gal Q(ξ)f (x)∼= Sn.

So we have created a family of curves of arbitrary large genus such that:

Theorem
i) The curve C : y2 = f (x) has End (J) = Z. Moreover, J (C) is absolutely simple.
ii) The curve C : yp = f (x) has End (J) = Z[εp]. Moreover, J (C) is absolutely
simple.
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