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Automorphism groups

Automorphism groups of Riemann surfaces have been extensively studied,
going back to Wiman, Klein and Hurwitz, among others.

Let S denote a compact Riemann surface of genus g. Classically known:

▸ ∣Aut(S)∣ ≤ 84(g − 1).

▸ in the abelian case ∣Aut(S)∣ ≤ 4g + 4.

▸ in the cyclic case ∣Aut(S)∣ ≤ 4g + 2.

General problem: to understand the extent to which the order of the full
automorphism group determines the Riemann surface.

Examples:

1. Hurwitz curves are (2,3,7)-branched coverings of the projective line.

2. ∃! Riemann surface genus g admitting an automorphism of order 4g.

3. ∃! Riemann surface genus g with 8(g + 1) automorphisms.
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Automorphism groups
A very special family

Theorem (Bujalance-Costa-Izquierdo, 2017). Assume

g ≠ 3,6,12,15,30.

The Riemann surfaces of genus g admitting exactly 4g automorphisms
form an equisymmetric one-dimensional family, denoted by Fg.

Moreover, if S is a Riemann surface in Fg then

▸ its full automorphism group G is isomorphic to D2q, and

▸ the corresponding quotient S/G has genus zero.

Remark: This is the second possible largest order (next talk!).
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Plan

Let q ≥ 5 be a prime number. For each Riemann surface S in Fq we study:

▸ an algebraic description of S and of its automorphisms,

▸ a decomposition of the Jacobian variety JS,

▸ the possible fields of definitions of S and of JS, and

▸ the Shimura family associated to S.

Let S denote a Riemann surface in the family Fq and let

G = ⟨r, s ∶ r2q = s2 = (sr)2 = 1⟩ ≅D2q

denote its full automorphism group.
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Algebraic description

The quotient Riemann surface S/G has genus zero, and the associated
4q-fold branched regular covering map

πG ∶ S → S/G ≅ P1

ramifies over four values; three ramification values marked with 2 and
one ramification value marked with 2q.

Assumption. The branch values are ∞,0,1 marked with 2 and
λ ∈ C − {0,1} marked with 2q.

Let
Ω ∶= C − {0,±1, 1

2
,2, γ, γ2} where γ3 = −1

denote the set of admissible parameters.
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Algebraic description

Then Fq can be understood by means of an everywhere maximal rank
holomorphic map

h ∶ Fq → Ω

in such a way that the fibers of h agree with the Riemann surfaces in Fq.
We denote by Sλ the Riemann surface h−1(λ).

Theorem. Let λ ∈ Ω. Then Sλ is isomorphic to the Riemann surface
defined by the normalization of the hyperelliptic algebraic curve

y2 = x(x2q + 2 1+λ
1−λx

q
+ 1).

The full automorphism group of Sλ is generated by the transformations

r(x, y) = (ωqx,ω2qy) and s(x, y) = ( 1
x
, y
xq+1 )

where ωt = exp( 2πi
t

).
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The Jacobian variety

It is well-known that the dihedral group

G = ⟨r, s ∶ r2q = s2 = (sr)2 = 1⟩

has, up to equivalence, 4 complex irreducible representations of degree
one; namely,

V1 ∶ {
r → 1
s→ 1

V2 ∶ {
r → 1
s→ −1

V3 ∶ {
r → −1
s→ 1

V4 ∶ {
r → −1
s→ −1

and q − 1 complex irreducible representations of degree two; namely,

Vk+4 ∶ r ↦ diag(ωk2q, ω̄
k
2q), s↦ ( 0 1

1 0 )

for 1 ≤ k ≤ q − 1 and ωt = exp( 2πi
t

).
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The Jacobian variety

Lemma.

(1) The rational irreducible representations of G, up to equivalence, are:

(a) four of degree 1; namely Wi ∶= Vi for 1 ≤ i ≤ 4 and
(b) two of degree q − 1; namely

W5 = ⊕σ∈G5V
σ
5 and W6 = ⊕σ∈G6V

σ
6

where G5 and G6 denote the Galois group associated to the
extensions Q ≤ Q(ω2q + ω̄2q) and Q ≤ Q(ωq + ω̄q) respectively, and
ωt = exp( 2πi

t
).

(2) The group algebra decomposition of JSλ with respect to G is

JSλ ∼G B1 ×B2 ×B3 ×B4 ×B
2
5 ×B

2
6

where Bj stands for the factor associated to the representation Wj .
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The Jacobian variety

To compute the dimension of the factors Bj (which may be zero) we
need to choose a generating vector representing the action of G on Sλ.

Lemma. Let σ be a generating vector of G of type (2,2,2,2q). Then
there exist integers e1, e2 with e1 − e2 even and not congruent to 0
modulo 2q, such that

σ = (sre1 , sre2 , rq, re1−e2+q)

up to the action of the symmetric group S3 over the first three entries.

Remark. The family Fq is equisymmetric: every generating vector of G of
the desired type can be chosen to represent the action of G on Sλ.
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The Jacobian variety

Problem. To analyze how such a choice changes the dimension of the
factors arising in the group algebra decomposition of JSλ.

Definition. Two generating vectors σ1 and σ2 are termed essentially equal
with respect to the action of G on Sλ if

dimτ1(Bj) = dimτ2(Bj)

for all j, where τi is the geometric signature associated to σi.

Lemma. Each generating vector of G of type (2,2,2,2q) is essentially
equal to

σ0 = (s, sr−2, rq, rq+2) or to σ1 = (sr, sr−1, rq, rq+2).
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The Jacobian variety

Proposition. Let λ ∈ Ω, and consider the group algebra decomposition of
JSλ with respect to G

JSλ ∼G B1 ×B2 ×B3 ×B4 ×B
2
5 ×B

2
6 .

If τ0 denotes the geometric signature associated to σ0, then

dimτ0(Bj) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 if j = 0,1,2,3,6
1 if j = 4
q−1
2

if j = 5

If τ1 denotes the geometric signature associated to σ1, then

dimτ0(Bj) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 if j = 0,1,2,4,6
1 if j = 3
q−1
2

if j = 5

In particular, JSλ contains an elliptic curve.

11 / 27



The Jacobian variety

Theorem. Let λ ∈ Ω. The group algebra decomposition of JSλ with
respect to G does not depend on the choice of the generating vector.

Proof We only need to compare the decompositions associated to σ0 and
σ1. These decompositions are

JSλ ∼G,σ0 B4 ×B
2
5 and JSλ ∼G,σ1 B3 ×B

2
5

respectively, showing that B3 and B4 are isogenous. We claim that, in
addition, B4 and B5 are equal: the outer automorphism Φ of G

r ↦ r, s↦ sr

identifies σ0 and σ1 and identifies W3 and W4.
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The Jacobian variety

Remark The independence of the group algebra decomposition on the
choice of the generating vector is not new: it was

1. noticed by Rojas when she considered the Weyl group Z3
2 ⋊S3 acting

on a Riemann surface of genus three with signature (2,4,6).

2. noticed by Izquierdo, Jiménez and Rojas when they studied a
two-dimensional family of Riemann surfaces of genus 2n − 1 with
action of D2n with signature (2,2,2,2, n).

The existence of outer automorphisms of the group is the key ingredient...
however it has not been proved a general result on this respect!!

From now on, we assume the action of G on Sλ to be determined by the
generating vector σ0 and

JSλ ∼G B4 ×B
2
5 .
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The Jacobian variety

Theorem. Let λ ∈ Ω. Consider the subgroups

H4 = ⟨r−2, sr−1⟩ and H5 = ⟨s⟩

of G, and the quotient Riemann surfaces Eλ and Cλ given by the action
of H4 and of H5 on Sλ, respectively. Then

B4 ∼ JEλ and B5 ∼ JCλ.

In particular, JSλ decomposes into a product of Jacobians as follows:

JSλ ∼G JEλ × JC
2
λ.

Remark. Cλ is an irregular 2q-gonal Riemann surface of genus q−1
2
. The

elliptic curve Eλ is algebraically represented by

y2 = x(x − 1)(x − λ).

14 / 27



Fields of definition

Let k be a subfield of C and let X be an algebraic variety.

Definition. The field k is a field of definition of X if there exists Y ≅X
such that Y is the zero locus of polynomials with coefficients in k.

Interesting fields of definition are:

1. the field of the reals,

2. the algebraic closure of Q, and

3. the field of moduli of X.

Real Riemann surfaces An algebraic variety is called real if it can be
defined over the field of the real numbers; equivalently, if it admits an
anticonformal involution.

Remark. Fq ⊂ Mq admits an anticonformal involution whose fixed point
set consists of points representing real Riemann surfaces.
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Fields of definition

Theorem. Let λ ∈ Ω. Then the following statements are equivalent:

(a) Sλ is a real Riemann surface.

(b) JSλ is a real algebraic variety.

(c) λ ∈ {λ̄,1 − λ̄,1/λ̄, λ̄/(1 − λ̄)}

Remark. The real Riemann surfaces in the family Fq form three
one-real-dimensional arcs.

To compactify the union of these arcs in the Deligne-Mumford
compactification of Mg, it is enough to add to Fq three points:

1. two nodal Riemann surfaces, and

2. the Wiman surface of type II
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Fields of definition

We can recover part of these results:

The Riemann surfaces Sλ1 and Sλ2 are isomorphic if and only if
λ2 = T (λ1) for some

T ∈ G = ⟨z ↦ 1
z
, z ↦ 1

1−z ⟩ ≅ S3. (1)

Observe that for the exceptional values −1, 1
2
,2, γ and γ2 where γ3 = −1,

the Riemann surface Sλ has more than 4q automorphisms.

Thus, the family Fq is isomorphic to the quotient of the parameter space

Ω = C − {0,±1, 1
2
,2, γ, γ2}

up to the action of G. Namely: Ω→ Ω/G ≅ Fq ≅ C − {0,1}.
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Fields of definition

The complex numbers λ ∈ Ω representing Riemann surfaces Sλ which are
real can be represented in the diagram below; the colored red points
represent Riemann surfaces with more than 4q automorphisms.
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Fields of definition

A fundamental region for the action of G on Ω is given by

{z ∈ C ∶ ∣z∣ < 1,Re(z) < 1
2
}

and, consequently, the subsets of Fq given by

Π({eiθ ∶ π < θ < π
2
}), Π({z ∶ ∣z − 1∣ = 1, ∣z∣ < 1}) and Π(] − 1,0[)

are the three arcs in Fq (denoted by a2, a1 and b respectively)

The limit point of Fq which connects the arcs a2 and b correspond to
S−1 and therefore can be algebraically described by

y2 = x(x2q + 1).
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Fields of definition

The map (x, y) ↦ (−ω4qx,ω8qy) where ωt = exp( 2πi
t

), induces an
isomorphism between S−1 and the curve

y2 = x(x2q − 1);

this is the Wiman surface of type II.

Arithmetic Riemann surfaces. An algebraic variety is called arithmetic if it
can be defined over a number field.

Equivalence. (Belyi’s theorem)

1. a Riemann surface S is arithmetic.

2. S admits a non-constant meromorphic function with three critical
values.

As in the case of real Riemann surfaces, arithmetic Riemann surfaces
among the Riemann surfaces in the family Fq can be easily identified.
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Fields of definition

Theorem. Let λ ∈ Ω. Then the following statements are equivalent:

(a) Sλ is an arithmetic Riemann surface.

(b) JSλ is an arithmetic algebraic variety.

(c) λ is an algebraic complex number.

Corollary. Let λ ∈ Ω be an algebraic complex number. Then JSλ is an
arithmetic algebraic variety admitting a group algebra decomposition in
which each factor is arithmetic as well.

Riemann surfaces defined over the field of moduli. The field of moduli
M(S) of a compact Riemann surface S is by definition the fixed field of
the group

I(S) = {σ ∈ Gal(C) ∶ Sσ ≅ S}.
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Fields of definition

Proposition. Let λ ∈ Ω. Then

Q(j(λ)) ≤M(S) ≤ Q(λ)

where j denotes the Legende invariant function for elliptic curves.

▸ Weil: necessary conditions for S to admit its field of moduli as a
field of definition.

▸ these conditions hold trivially if S does not have non-trivial
automorphisms.

▸ Wolfart: if S/Aut(S) is an orbifold with signature of type (a, b, c)
then S can be defined over its field of moduli.

▸ Dèbes-Emsalem: there is a field of definition of S which is an
extension of finite degree of its field of moduli.

By a result of Huggins follows directly that:

Proposition. The field of moduli of Sλ is a field of definition for Sλ.
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Shimura family

Let S be a compact Riemann surface of genus g ≥ 2, and let

JS = (H 1,0
(S,C))

∗
/H1(S,Z)

be its Jacobian variety.

After fixing a symplectic basis of H1(S,Z) we have:

1. a period matrix (Ig ZS) with ZS ∈ Hg for JS, and

2. a rational representation of LS ∶= EndQ(JS) = End(JS) ⊗Z Q

If S is hyperelliptic, then the symplectic representation

ρr ∶ G→ Sp(2g,Z)

of the automorphism group G of S induces an isomorphism

G ≅ G ∶= {R ∈ Sp(2g,Z) ∶ R ⋅ZS = ZS}.
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Shimura family

We can now consider the complex submanifold of Hg

Hg(G) = {Z ∈ Hg ∶ R ⋅Z = Z for all R ∈ G}

consisting of those period matrices Z representing ppavs of dimension g
admitting the given action of G. Clearly, ZS ∈ Hg(G).

In the case of the action of D10 on the Riemann surfaces in family F5,
we can be much more explicit.

Theorem. Consider the action of D10 with generating vector σ0.
There exists a three-dimensional family

A5(D10) ⊂ A5

of principally polarized abelian varieties of dimension five admitting the
given group action; it is given by the period matrices in H5 of the
following form:
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Shimura family

⎛
⎜
⎜
⎜
⎜
⎜
⎝

2(u+v+u) −w−u −2v −v−w−u −v+u
−w−u −v− 1

2
w+ 5

4
u v− 1

2
u w+ 1

2
u v−u

−2v v− 1
2
u u v w

−v−w−u w+ 1
2
u v u −w

−v+u v−u w −w 2(u−v−w)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

for complex numbers u, v and w.
Furthermore, A5(D10) contains the one-dimensional family F5.

The automorphism group G of S can be canonically seen as a subgroup
of LS . Thus, the variety Hg(G) contains the complex submanifold

H(LS) = the Shimura domain of S

whose points are matrices representing ppavs containing LS in their
endomorphism algebras (the Shimura family).

Proposition. Let λ ∈ Ω. The dimension of the Shimura family of each
Riemann surface Sλ in Fq is q+1

2
.
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Shimura family

Given a Riemann surface S, to provide an explicit description of the
elements of H(LS) seems to be a difficult task.

As a simple consequence of the previous theorem, we obtain:

Corollary. Each element of the Shimura family associated to every
member of the family F5 admits a period matrix of the form

⎛
⎜
⎜
⎜
⎜
⎜
⎝

2(u+v+u) −w−u −2v −v−w−u −v+u
−w−u −v− 1

2
w+ 5

4
u v− 1

2
u w+ 1

2
u v−u

−2v v− 1
2
u u v w

−v−w−u w+ 1
2
u v u −w

−v+u v−u w −w 2(u−v−w)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(2)

for some u, v,w ∈ C.
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Thanks!
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