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X a compact Riemann surface.

Automorphism group G of X leads to covering map X → X/G,
branched at r places.

If X has genus g, and X/G has genus h, and those branch
points have monodromy of order m1, . . . ,mr , respectively, then
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orbit genus ↓ ↓ r is tail length

[h; m1, . . . ,mr︸ ︷︷ ︸
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is the signature of the action of G on X .



A finite group G acts on a compact Riemann surface X of
genus g ≥ 2 with signature [h;m1, . . . ,mr ] if and only if:

I. the Riemann-Hurwitz formula is satisfied:

g = 1 + |G|(h − 1) +
|G|
2

r∑
j=1

(
1− 1

mj

)
,

II. there exists a generating vector (a1,b1, . . .ah,bh, c1, . . . , cr )
of elements of G which satisfies the following properties:

1 G = 〈a1,b1,a2,b2, . . . ,ah,bh, c1, . . . , cr 〉.
2 The order of cj is mj for 1 ≤ j ≤ r .
3
∏h

i=1[ai ,bi ]
∏r

j=1 cj = eG, the identity in G.

potential signatures satisfy I.
actual signatures satisfy I. and II.
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These are not always the same.

Example

[0;3,3,9] satisfies Riemann-Hurwitz for a curve of genus 2 and
a group of order 9. But this signature cannot be an actual
signature for abelian groups. (There’s an issue with the lcm of
the mi . See Breuer Theorem 9.1.)

All groups of order 9 are
abelian.

Sometimes they are badly not the same for a fixed group

Example

Take q = pn for p an odd prime. Then [0;2,2, . . . ,2︸ ︷︷ ︸
r>4

] is a

potential signature for SL(2,q), but only one element of order 2.
r copies of this element of order 2 will never generate SL(2,q).
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We wondered which groups only have a finite number of
potential signatures which fail to be actual signatures.

We say such groups satisfy the Finiteness Signature
Condition (FSC).

The order set is:

O(G) = {o(g) | g ∈ G} − {1}
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[1;n] will be a potential signature for every n ∈ O(G) for every
group G.

To create a generating vector, we need [a,b] ∈ [G,G] and
c ∈ G with o(c) = n so that [a,b] · c = eG. Hence [a,b] must
have order n to create generating vector (a,b, c).

More generally, [h;n] is a potential signature for every positive
orbit genus h and n ∈ O(G), and so there must be ai ,bi , c ∈ G
with o(c) = n so that

∏h
i=1[ai ,bi ] · c = eG.

The commutator subgroup must contain an element of every
order in O(G).
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For every element n of the order set, [0;n, . . . ,n︸ ︷︷ ︸
r

] will be a

potential signature for sufficiently large r .

For each n in O(G), the set of elements in G of that order must
generate the group.



For every element n of the order set, [0;n, . . . ,n︸ ︷︷ ︸
r

] will be a

potential signature for sufficiently large r .

For each n in O(G), the set of elements in G of that order must
generate the group.



Suppose (c1, . . . , cr ) is a generating vector with
o(cj) = n ∈ O(G) and n odd. Then so are:

(c1, . . . , cr , cr , c−1
r )

(c1, . . . , cr , c2
r , c
−1
r , c−1

r ) . . .

If (c1, . . . , cr ) is a generating vector with o(cj) = n and n even
and r odd. Then so are:

(c1, . . . , cr , cr , c−1
r ) . . .

(c1, . . . , cr , c1, . . . , cr )

(c1, . . . , cr , c1, . . . , cr , cr , c−1
r ) . . .
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Theorem (Carvacho, Paulhus, Wootton)
A group G has the FSC if and only if the following conditions
hold:

1 The commutator subgroup [G,G] contains an element of
order every ni ∈ O(G).

2 For each ni ∈ O(G), there exists an odd integer Ni such
that [0;ni , . . . ,ni︸ ︷︷ ︸

Ni

] is an actual signature.

The proof is to show, given these conditions, the orbit genus of
failures (potential signatures which are not actual signatures) is
bounded and that the tail length of failures is bounded (by
constructing appropriate generating vectors).



Theorem (Carvacho, Paulhus, Wootton)
A group G has the FSC if and only if the following conditions
hold:

1 The commutator subgroup [G,G] contains an element of
order every ni ∈ O(G).

2 For each ni ∈ O(G), there exists an odd integer Ni such
that [0;ni , . . . ,ni︸ ︷︷ ︸

Ni

] is an actual signature.

The proof is to show, given these conditions, the orbit genus of
failures (potential signatures which are not actual signatures) is
bounded and that the tail length of failures is bounded (by
constructing appropriate generating vectors).



For condition (2), here’s an example to highlight the key idea.

Example

G a group, O(G) = {n1,n2,n3}. Let {g1,g2,g3} be a set of
generators of G of order n3.

Suppose c1 and c2 in G with o(ci) = ni .

Then
(c1, c2,g−1

2 ,g−1
1 ,g3︸ ︷︷ ︸

c2
−1

,g−1
3 ,g2,g2,g−1

1︸ ︷︷ ︸
c1

−1

)

is a generating vector for signature

[0;n1,n2,n3, . . . ,n3︸ ︷︷ ︸
7

].
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If a group G satisfies the FSC, then it is either a non-abelian
p-group, or a perfect group (commutator subgroup is the whole
group).

Since the commutator subgroup must contain elements of every
order in O(G), any group satisfying FSC must be non-abelian.

What if we have a group G which is not a p-group but satisfies
FSC?
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p and q two distinct primes in O(G).

Since FSC, G is generated by elements of order p, which
means G/[G,G] is generated by elements of order p.

But G/[G,G] is also abelian so G/[G,G] is elementary abelian
of order pk , some k .

Same argument for the prime q implies G/[G,G] is elementary
abelian of order q`, some `. So G/[G,G] must be trivial, hence
G is perfect. �
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Not all perfect groups satisfy FSC!

See SL(2,q) above when q is odd.



Not all non-abelian p-groups satisfy FSC!

Example

Group (27,4) is 〈a,b | a9 = b3 = e,bab−1 = a4〉. Its
commutator subgroup only has elements of order 3. The 8
elements of order 3 only generate a subgroup of order 9.

Example

Group (243,26) has 170 elements of order 3 and 72 of order 9.
The commutator subgroup contains elements of both non-trivial
orders. But the elements of order 9 generate a subgroup of
order 81.
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But some p-groups do satisfy FSC!

Corollary
For p odd, any non-abelian p-group of exponent p satisfies
FSC.

Example

Group (243,28) has a commutator subgroup with elements of
both order 9 and 3. And the group can be generated by the
elements of order 9, as well as generated by the elements of
order 3.
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And some perfect groups do satisfy FSC!

Example

PSL(2,q) for all appropriate q from 4 through 27.



The End


