BOUNDING SKELETAL SIGNATURE SPACES

S Joseph Lippert and Aaron Wootton

Content Layout

- Motivation and Goals
- Potential Skeletal Signature Spaces
- Absolute Skeletal Signature Spaces
- End Behavior
- Future Projects

Motivation and Goals

Definition: For a given signature $(h; m_1, m_2, ..., m_r)$, its skeletal signature is the point (h,r)

- Can be represented as lattice points on a plane
- Need to be careful about losing signatures in the mapping
- Groups with no more than 2 elements of nontrivial order have a bijection between the signatures and the skeletal signatures
- There are three families of groups with this property

Motivation and Goals

- Discover upper and lower bounds on the number of lattice points in the skeletal signature spaces for a fixed genus, $\sigma \ge 2$.
- An upper bound could be attained by considering potential signatures.
- A lower bound could be attained by considering potential signatures that were guaranteed a group action
- After finding these bounds we wanted to study how they changed as *σ* increased.

p-Groups	pq-Groups	p²-Groups
Potential Space	Potential Space	Potential Space
Absolute Space	Absolute Space	Х
End Behavior	End Behavior	Х

Potential Skeletal Signature Space

Definition: The potential skeletal signature space of given genus, σ , Order set, O, and group order, n, is the set of points (h,r) such that there exists a tuple $(h; m_1, m_2, ..., m_r)$ s.t. $m_i \in O$ that satisfies the Riemann Hurwitz formula for |G| = n.

$$6. \quad (0; 2, 2, 2, 2, 3, 3, 3) \longrightarrow (0, 7)$$

Potential Skeletal Signature Spaces

- For this family $0 = \{p\}$ and $|G| = p^n$
- To be a potential signature it must satisfy:

$$2\sigma - 2 = 2|G|(h-1) + |G| \sum_{i=1}^{n} 1 - \frac{1}{m_i}$$

- This becomes: $2 \sigma - 2 = 2p^{n}(h-1) + p^{n} \sum_{i=1}^{r} 1 - \frac{1}{p}$ $\frac{\sigma - 1}{p^{n-1}} = p(h-1) + r \frac{(p-1)}{2}$
- We can see that:

$$h = h_1 + k \frac{(p-1)}{2}$$
$$r = r_1 - kp^2$$

Potential Skeletal Signature Spaces

Using a similar argument for pq and p² groups we found

p² -Groups $h=h_1+k_2\frac{p-1}{2}$ $s=s_1+k_1(p+1)-k_2p\\$ $t=t_1-k_1p$

Absolute Skeletal Signature Spaces

Definition: The Absolute space is the subset of the Potential Space such that a group action exists for all possible groups of that order and order set

<u>p-Groups</u>

- To generate a group of order pⁿ at least n elements are needed.
- A generating vector is guaranteed if $2h + r \ge n + 1$ and $r \ne 1$
- The exception r = 1 only occurs when $\frac{\sigma-1}{p^{n-1}} \equiv \frac{p-1}{2} \mod p$
 - Consequence of Riemann Hurwitz Formula
- h is bounded above by $h < \frac{\sigma-1}{p^{n-1}} \frac{n(p-1)}{2} + p$

Absolute Skeletal Signature Space

pq-Groups

- To generate a group of order pⁿq at least n+1 elements are needed with one being order q
- A generating vector is guaranteed if $t \ge 2 \lor (h > 0 \land t = 0)$ and 2h + s + t > n + 2
- The exception $h = 0 \land t = 0$ occurs only

when
$$\frac{\sigma-1}{p^{n-1}q} \equiv -1 \mod \frac{p-1}{2}$$

• If t=1 then $\frac{\sigma-1}{p^{n-1}} \equiv \frac{p(q-1)}{2} \mod q$ the converse is true given

$$\frac{\sigma - 1}{p^{n-1}} \ge \frac{1}{2}(q(p-3)(p-1) + p(q-1))$$

h is bounded above by

$$h < \frac{\sigma - 1}{p^n} + s \frac{(q - p)}{p} + 1 - n \frac{q - 1}{2}$$

End Behavior ($\sigma \rightarrow \infty$)

 The potential space is equal to the absolute space if and only if

$$\sigma > \frac{p^n n(p-1) + 2p(p^{n-1}+1) - 2p^{n+1} - 2}{2(p-1)}$$

- With the one family of exceptions when $\frac{\sigma-1}{p^{n-1}} \equiv \frac{p-1}{2} \mod p$ in this case (h,1) is excluded
- The potential space is equal to the absolute space if and only if $\sigma > \frac{n(q-1)p^nq + 2q - 2}{2(q-1)}$
- With two families of exceptions
 - When $\frac{\sigma-1}{p^{n-1}q} \equiv -1 \mod \frac{p-1}{2}$ then the point where h=0 and t=0 is excluded

• If
$$\frac{\sigma-1}{p^{n-1}q} \equiv \frac{p(q-1)}{2} \mod q$$
 check that $\frac{\sigma-1}{p^{n-1}} \ge \frac{1}{2}(q(p-3)(p-1)+p(q-1)).$

Future Projects

- Establish a clear structure of the absolute space for p²-Groups
- Generalize skeletal signatures to dimension 3+ in order to find new families whose signature space is preserved under mapping
- Use these structures to develop geometric arguments for previous results.

Thanks and Ackowledgements

- Aaron Wootton, Ph.D.
- Organizers of the special session