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Motivation and Goals

 Can be represented as lattice points on 
a plane

 Need to be careful about losing 
signatures in the mapping

 Groups with no more than 2 elements 
of nontrivial order have a bijection 
between the signatures and the 
skeletal signatures

 There are three families of groups with 
this property 

Definition: For a given signature , its skeletal 
signature is the point (h,r)



Motivation and Goals

 Discover upper and lower bounds on the 
number of lattice points in the skeletal 
signature spaces for a fixed   genus, 𝜎 ≥
2 .

 An upper bound could be attained by 
considering potential signatures.

 A lower bound could be attained by 
considering potential signatures that were 
guaranteed a group action

 After finding these bounds we wanted to 
study how they changed as 𝜎 increased.
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Potential Skeletal Signature Space

𝜎 = 7,    𝑂 = 2,3            𝑛 = 6

2 𝜎 − 2 = 2 𝐺 ℎ − 1 + 𝐺 1 −
1

𝑚

2 7 − 2 = 4 = 2 6 2 − 1 + 0

So (2; −) is a Potential Signature so (2,0) 
is a potential skeletal signature

1. 2; −

2. 1; 3, 3, 3

3. 1; 2, 2, 2, 2

4. 0; 3, 3, 3, 3, 3, 3

5. 0; 2, 2, 2, 2, 2, 2, 2, 2

6. (0; 2, 2, 2, 2, 3, 3, 3)

Definition: The potential skeletal signature space of given genus, , 
Order set , O, and group order, n, is the set of points (h,r) such that 
there exists a tuple that satisfies the 
Riemann Hurwitz formula for .

(2, 0)

(1, 3)

(1, 4)

(0, 6)

(0, 8)

(0, 7)



Potential Skeletal Signature Spaces

 For this family 𝑂 = {𝑝} and 𝐺 = 𝑝

 To be a potential signature it must satisfy:

2 𝜎 − 2 = 2 𝐺 ℎ − 1 + 𝐺 1 −
1

𝑚

 This becomes:

2 𝜎 − 2 = 2𝑝 ℎ − 1 + 𝑝 1 −
1

𝑝

 𝜎 − 1

𝑝
= 𝑝 ℎ − 1 + 𝑟

𝑝 − 1

2

 We can see that:

ℎ = ℎ + 𝑘
𝑝 − 1

2
𝑟 = 𝑟 − 𝑘𝑝



Potential Skeletal Signature Spaces

Using a similar argument for pq and p2 groups we found

pq-Groups p2 -Groups



Absolute Skeletal Signature Spaces

Definition: The Absolute space is the subset of the Potential Space 
such that a group action exists for all possible groups of that order and 
order set

• To generate a group of order pn at least n 
elements are needed. 

• A generating vector is guaranteed if 2ℎ + 𝑟 ≥
𝑛 + 1 and 𝑟 ≠ 1

• The exception 𝑟 = 1 only occurs when ≡

 𝑚𝑜𝑑 𝑝  

• Consequence of Riemann Hurwitz Formula

• h is bounded above by ℎ < − + 𝑝

p-Groups



Absolute Skeletal Signature Space

pq-Groups
 To generate a group of order pnq at least n+1 elements are 

needed with one being order q

 A generating vector is guaranteed if 𝑡 ≥ 2 ∨ (ℎ > 0 ∧ 𝑡 = 0) and 
2ℎ + 𝑠 + 𝑡 > 𝑛 + 2

 The exception ℎ = 0 ∧ 𝑡 = 0 occurs only 

when ≡ −1 𝑚𝑜𝑑

 If t=1 then 
 

≡ 𝑚𝑜𝑑 𝑞 the converse is true given 

𝜎 − 1

𝑝
≥

1

2
(𝑞 𝑝 − 3 𝑝 − 1 + 𝑝 𝑞 − 1 )

 h is bounded above by 

ℎ <
𝜎 − 1

𝑝
+ 𝑠

𝑞 − 𝑝

𝑝
+ 1 − 𝑛

𝑞 − 1

2



End Behavior ( )

 The potential space is equal to the absolute 
space if and only if

𝜎 >
𝑝 𝑛 𝑝 − 1 + 2𝑝 𝑝 + 1 − 2𝑝 − 2

2 𝑝 − 1

 With the one family of exceptions when ≡

 𝑚𝑜𝑑 𝑝 in this case (h,1) is excluded

 The potential space is equal to the 
absolute space if and only if

𝜎 >
𝑛 𝑞 − 1 𝑝 𝑞 + 2𝑞 − 2

2 𝑞 − 1

 With two families of exceptions

 When ≡ −1 𝑚𝑜𝑑 then the point  where 

h=0 and t=0 is excluded

 If ≡  𝑚𝑜𝑑 𝑞 check that        
 

≥

(𝑞 𝑝 − 3 𝑝 − 1 + 𝑝 𝑞 − 1 ). 



Future Projects

 Establish a clear structure of the absolute space for p2-Groups

 Generalize skeletal signatures to dimension 3+ in order to find new families whose 
signature space is preserved under mapping

 Use these structures to develop geometric arguments for previous results.
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