One-dimensional families of Riemann surfaces of genus g with 4g+4 automorphisms

Milagros Izquierdo

joint work with A. Costa Automorphisms of Riemann Surfaces and Related Topics AMS Spring Western Sectional Meeting Portland, April 2018

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Riemann Surfaces, Complex Curves and Fuchsian Groups	Introduction
Maximal Order of Automorphism Groups	Fuchsian groups
Existence of Families with 4g+4 Automorphisms	Teichmüller and Moduli Spaces

Given an orientable, closed surface X of genus $g \ge 2$ The equivalence:

 $(X, \mathcal{M}(X), \text{ complex atlas})$ $(\mathcal{M}(X) = \langle x, y \rangle, p(x, y) = 0$, the field of meromorphic functions on X)

 $X \equiv \frac{\mathbb{H}}{\Delta}$, with Δ a (cocompact) Fuchsian group Δ discrete subgroup of $PSL(2, \mathbb{R})$

 $(X, \mathcal{M}(X), \text{ complex curve})$ $(\mathcal{M}(X) = \mathbb{C}[x, y]/p(x, y), \text{ the field of rational functions on } X)$

The curve X given by the polynomial p(x, y) and the meromorphic function $x : X \to \widehat{\mathbb{C}}$.

 Riemann Surfaces, Complex Curves and Fuchsian Groups
 Introduction

 Maximal Order of Automorphism Groups
 Fuchsian groups

 Existence of Families with 4g+4 Automorphisms
 Teichmüller and Moduli Spaces

Some classic results on automorphisms of curves of genus $g \ge 2$:

- ► There is a unique curve having an automorphism of order 4g + 2: Wiman's curve of type I y² = (x^{2g+1} - 1), with autom. gr. G = C_{4g+2},
- Except for g = 3, there is a unique curve having an automorphism of order 4g: Wiman's curve of type II y² = x(x^{2g} − 1), and autom. gr. G = C_{4g} ⋊_{2g−1} C₂, In genus two the group is G₂ = GL(2,3). The exception in genus 3 is Picards's curve y³ = (x⁴ − 1), and gr. G = C₁₂
- The largest number, of automorphisms, of type ag + b, of a curve in all genera is 8g + 8. For genera g ≡ 0, 1, 2 mod 4 there is a unique curve: Accola-Maclachlan's curve y² = x(x^{2g+2} 1), and gr. G = (C_{2g+2} × C₂) × C₂. For genera g ≡ 3 mod 4 there is one more curve: Kulkarni curve y^{2g+2} = x(x 1)^{g-1}(x + 1)^{g+2}, and gr. G = (x, y : x^{2g+2} = y⁴ = (xy)² = 1; y²xy² = x^{g+2} = 1)
 Wiman 1895, Accola 1968, Maclachlan 1969, Kulkarni 1991, 1997

 Riemann Surfaces, Complex Curves and Fuchsian Groups
 Introduction

 Maximal Order of Automorphism Groups
 Fuchsian groups

 Existence of Families with 4g+4 Automorphisms
 Teichmüller and Moduli Spaces

Kulkarni showed that, if the Riemann surfaces in a family (of RS of genus g) have at least 4g - 4 automorphisms, then the Teichmüller dimension of the family is 0 or 1.

We will see that he maximal number ag + b of automorphisms of equisymmetric and uniparametric families of Riemann surfaces appearing in all genera is 4g + 4.

For all genera $g \ge 2$ there is an equisymmetric, uniparametric family \mathcal{A}_g of Riemann surfaces with autom. gr. $D_{g+1} \times C_2$. For an infinite number of genera this is the only family. Accola-Maclachlan curve is (in the closure of) the family.

An equisymmetric family in the moduli space \mathcal{M}_g of Riemann surfaces of genus g is the subset of \mathcal{M}_g formed by Riemann surfaces with a fixed automorphism group, acting in a given topological way.

Broughton 1990, Acosta-I 2018

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Fuchsian Groups

- Δ (cocompact) discrete subgroup of $PSL(2,\mathbb{R})$
- A (compact) Riemann Surface (Orbifold) of genus $g \geq 2$ $X = \frac{\mathbb{H}}{\Delta}$

 Δ has presentation:

generators: $x_1, ..., x_r, a_1, b_1, ..., a_h, b_h$ relations: $x_i^{m_i}, i = 1 : r, x_1...x_r a_1 b_1 a_1^{-1} b_1^{-1} ... a_h b_h a_h^{-1} b_h^{-1}$ x_i : generator of the maximal cyclic subgroups of Δ $X = \frac{\mathbb{H}}{\Delta}$: orbifold with *r* cone points and underlying surface of genus *g*

Algebraic structure of Δ and geometric structure of X are determined by the signature $s(\Delta) = (h; m_1, \ldots, m_r)$ Δ is the orbifold-fundamental group of X.

Riemann Surfaces, Complex Curves and Fuchsian Groups	Introduction
Maximal Order of Automorphism Groups	Fuchsian groups
Existence of Families with 4g+4 Automorphisms	Teichmüller and Moduli Spaces

Area of Δ : area of a fundamental region *P*

$$\mu(\Delta) = 2\pi (2h - 2 + \sum_{i=1}^{r} (1 - \frac{1}{m_i}))$$

X hyperbolic equivalent to $P/\langle \text{pairing} \rangle$
Poincaré's Th: $\Delta = \langle \text{pairing} \rangle$
But from now on $\mu(\Delta) = (2h - 2 + \sum_{i=1}^{r} (1 - \frac{1}{m_i}))$, reduced area.

Riemann-Hurwitz Formula: If Λ is a subgroup of finite index, N, of a Fuchsian group Δ , then $N = \frac{\mu(\Lambda)}{\mu(\Delta)}$ RUT: Any Riemann surface of genus $g \ge 2$ is uniformized by a surface Fuchsian group $\Gamma_g = \langle a_1, b_1, ..., a_g, b_g; a_1b_1a_1^{-1}b_1^{-1}...a_gb_ga_g^{-1}b_g^{-1} \rangle$

- 4 同下 4 日下 4 日下 - 日

Introduction Fuchsian groups Teichmüller and Moduli Spaces

Groups of Automorphisms

G finite group of automorphisms of $X_g = \mathbb{H}/\Gamma_g$, Γ_g a surface Fuchsian group iif there exist Δ Fuchsian group and epimorphism $\theta : \Delta \to G$ with $Ker(\theta) = \Gamma_g$ θ is the monodromy of the regular covering $f : \mathbb{H}/\Gamma_g \to \mathcal{H}/\Delta$

 \mathbb{H} $X/ = \mathbb{H}/\Gamma_g \qquad \downarrow \qquad \Delta: \text{ lifting to } \mathbb{H} \text{ of } G$ $X/G = \mathbb{H}/\Delta$

A morphism $f : X = \mathbb{H}/\Lambda \rightarrow Y = \mathbb{H}/\Delta$, X, Y compact Riemann orbifolds, group inclusion $i : \Lambda \rightarrow \Delta$ Singerman 71: Covering f determined by monodromy $\theta : \Delta \rightarrow \Sigma_N$ and $\Lambda = \theta^{-1}(STb(1))$ (symbol $\leftrightarrow \Lambda$ -coset \leftrightarrow sheet for $f \leftrightarrow$ copy of fund. polygon for Δ)

Teichmüller and Moduli Spaces

 $\Delta \text{ abstract Fuchsian group } s(\Delta) = (h; m_1, \dots, m_r)$ $\mathcal{T}_{\Delta} = \{\sigma : \Delta \to PSL(2, \mathbb{R}) \mid \sigma \text{ injective, } \sigma(\Delta) \text{ discrete } \}/PSL(2, \mathbb{R})$ Teichmüller space \mathcal{T}_{Δ} has a complex structure of dim 3h - 3 + r, diffeomorphic to a ball of dim 6h - 6 + 2r.

If Λ subgroup of Δ $(i : \Lambda \to \Delta) \Rightarrow i_* : \mathcal{T}_\Delta \to \mathcal{T}_\Lambda$ embedding Γ_g surface Fuchsian group $\Gamma_g \leq \Delta$ $\mathcal{T}_\Delta \subset \mathcal{T}_{\Gamma_g} = \mathcal{T}_g$ G finite group $\mathcal{T}_g^G = \{[\sigma] \in \mathcal{T}_g \mid g[\sigma] = [\sigma] \forall g \in G\} \neq \emptyset$ \mathcal{T}_g^G : surfaces with G as a group of automorphisms. Mapping class group $M^+(\Delta) = Out(\Delta) = \frac{Diff^+(\mathcal{H}/\Delta)}{Diff_0(\mathcal{H}/\Delta)}$ $\Delta = \pi_1(\mathcal{H}/\Delta)$ as orfibold $M^+(\Delta)$ acts properly discontinuously on \mathcal{T}_Δ $\mathcal{M}_\Delta = \mathcal{T}_\Delta/M^+(\Delta)$

Surfaces with Non-Trivial Automorphisms

Marked surface $\sigma(X) \in \mathcal{T}_{g}$ and $\beta \in M_{\sigma}^{+}$, $\beta[\sigma] = [\sigma] \qquad \Leftrightarrow \quad \gamma \in PSL(2\mathbb{R}), \quad \sigma(\Gamma_{\sigma}) = \gamma^{-1}\sigma\beta(\Gamma_{\sigma})\gamma$ γ induces an automorphism of the RS $[\sigma(X)]$, $Stb_{\mathcal{M}_{\sigma}}[\sigma] = Aut([\sigma(X)])$ Action: $\theta : \Delta \to Aut(X_g) = G$, $ker(\theta) = \Gamma_g$ Two (surface) monodromies $\theta_1, \theta_2 : \Delta \to G$ topologically equiv. actions of G iff θ_1 , θ_2 equiv under $Out(\Delta) \times Aut(G)$, (G, θ) , determines the **symmetry** of X X_g , Y_g equisymmetric if $Aut(X_g)$ conjugate to $Aut(Y_g)$ $(Aut(X_g))$: full automorphism group) Broughton (1990): Equisymmetric Stratification $\mathcal{M}_{\varphi}^{G,\theta} = \{X \in \mathcal{M}_{\varphi} \mid \text{symmetry type of } X \text{ is } G\}$ $\overline{\mathcal{M}}_{g}^{G,\theta} = \{X \in \mathcal{M}_{g} \,|\, \text{symmetry type of } X \text{ contains } G\}$ $\mathcal{M}_{g}^{\tilde{G},\theta}$ smooth, connected, locally closed alg. var. of \mathcal{M}_{g} , dense in $\overline{\mathcal{M}}^{\check{\mathsf{G}}, heta}$ ◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Signatures for Maximal Order of Automorphism Groups

Let a, b be two integers with a > 0. We say (a, b) is **admissible** if for all $g \ge 2$ there is an equisymmetric, uniparametric family of Riemann surfaces of genus g and with automorphism group of order ag + b. Let A be the family of admissible (a, b). Consider the lexicographic order on A

Claim:
$$\max \mathbb{A} = (4, 4)$$

We know that max $A \ge (4,0)$, Bujalance-Costa-I 2017

The signatures $s_{(a,b)}$ such that (a,b) may be maximal are:

(0; 2,2,2,3),(0;2,2,2,4),(0;2,2,2,6),(0;2,2,3,3) and (0;2,2,2,g+1)Riemann Hurwitz formula tells us:

 $(ag + b)\mu(s_{(a,b)}) = |G|\mu(s_{(a,b)}) = 2(g - 1)$ Since dim $\mathcal{T}(s_{(a,b)}) = 1$, then $s_{(a,b)} = (0; m_1, m_2, m_3, m_4)$ or (1; m). If (a, b) is maximal $(a, b) \ge (4, 0)$, then $s_{(a,b)}$ must be of the form either (0; 2, 2, 2, n], $n \ge 3$ or (0; 2, 2, 3, n] with $3 \le n \le 5$.

1. For
$$s_{(a,b)} = (0; 2, 2, 2, 3)$$
 one gets $\mu(s_{(a,b)}) = \frac{1}{6}$ and $(a, b) = (12, -12)$.
2. For $s_{(a,b)} = (0; 2, 2, 2, 4)$; $\mu(s_{(a,b)}) = \frac{1}{4}$ and $(a, b) = (8, -8)$.
3. For $s_{(a,b)} = (0; 2, 2, 2, 6)$ and $(0; 2, 2, 3, 3)$; $\mu(s_{(a,b)}) = \frac{1}{3}$ and
 $(a, b) = (6, -6)$.
4. For $s_{(a,b)} = (0; 2, 2, 2, m)$ with $m = 5, 7, ..., 10$ we have respectively
 $\mu(s_{(a,b)}) =, \frac{3}{10} \frac{5}{14}, \frac{3}{8}, \frac{7}{18}, \frac{2}{5}$, but they are non-admissible pairs.
Again for $s_{(a,b)} = (0; 2, 2, 2, m)$ with $m > 10$, then $\mu(s_{(a,b)}) \ge \frac{9}{22}$ and:
 $2g - 2 = (ag + b)\mu(s_{(a,b)}) \ge (ag + b)\frac{9}{22}$

Hence $\mu(s_{(a,b)}) \leq \frac{44}{9}(g-1)$, so (a,b) < (5,b') for any integer b'.

イロン イロン イヨン イヨン 三日

7. If we have a pair (4, b), b > 0, with $s_{(4,b)} = (0; 2, 2, 2, m)$, there is a cyclic group in G of order m with m divides 4g + b : 4g + b = km:

$$2g-2 = (4g+b)\mu(s_{(a,b)}) = (4g+b)(\frac{1}{2}-\frac{1}{m}) = 2g+\frac{b}{2}-k$$

hence $k = \frac{b}{2} + 2$ and b is an even integer. We have $4g + b = (\frac{b}{2} + 2)m$. For the case g = 2 we have $\frac{b}{2} + 2$ divides b + 8 then $\frac{b}{2} + 2$ divides 4 and b = 4. Thus a pair (4, b), b > 0, is admissible only if b = 4 with signature $s_{(4,4)} = (0; 2, 2, 2, g + 1)$.

The pairs (12, -12), (8, -8), (6, -6) are not admissible. Example: case (12, -12), with signature (0; 2, 2, 2, 3). Assume that the pair (12, -12) is admissible, then for all $g \ge 2$ there is a family \mathcal{F}_g of RS where each $X = \mathbb{H}/\Gamma_g \in \mathcal{F}_g$ has a group $G_g \le Aut(X)$ with $|G_g| = 12(g - 1)$ such that $X/G_g = \mathbb{H}/\Delta$ with $s(\Delta) = (0; 2, 2, 2, 3)$. Consider $g \equiv 0 \mod 3$ with g - 1 a prime, $g \ge 12$. There is a unique cyclic group C_{g-1} in G_g ; the group C_{g-1} acts freely of X. Then there is a surface Fuchsian group Λ such that: $X = \mathbb{H}/\Gamma \to X/C_{g-1} = \mathbb{H}/\Lambda \to X/G_g = \mathbb{H}/\Delta$

The surface X/C_{g-1} has genus 2 and the covering $\mathbb{H}/\Lambda \to \mathbb{H}/\Delta$ is a normal covering with group of automorphisms $D_6 = G_2$. The monodromy $\theta : \Delta \to D_6 = \langle s_1, s_2 : s_1^2 = s_2^2 = (s_1s_2)^6 = 1 \rangle$ is (up to automorphisms): $\theta(x_1) = (s_1s_2)^3, \theta(x_2) = s_1, \theta(x_3) = s_2, \theta(x_1) = (s_1s_2)^2$

The covering $X \to X/G_g$ is a regular covering, with group of automorphisms G_g an extension of C_{g-1} by D_6 . The possible extensions are:

 $G_{\sigma} = C_{\sigma-1} \times D_6, G_{\sigma} = C_{g-1} \rtimes_2 D_6 = D_{6(g-1)}, G_g = C_{g-1} \rtimes_1 D_6.$ If $C_{g-1} = \langle c : c^{g-1} = 1 \rangle$ and $D_6 = \langle s_1, s_2 : s_1^2 = s_2^2 = (s_1 s_2)^6 = 1 \rangle$, the group $C_{g-1} \rtimes_1 D_6$ satisfies $s_1 c s_1 = c^{-1}$ and $s_2 c s_2 = c$. The covering $X = \mathbb{H}/\Gamma_{\varphi} \to X/G_{\varphi}$ has a monodromy $\omega : \Delta \to G_{\varphi}$. But ω cannot exist for any of the three extensions G_{g} . Case 1. $G_{e} = C_{e-1} \times D_{6}$: This group is not generated by elements of order two, but, $\omega(\Delta)$ is generated by $\omega(x_1)$, $\omega(x_2)$, $\omega(x_3)$, of order two. For $G_{\sigma} = C_{\sigma-1} \rtimes_i D_6$, i = 1, 2 we have that ω is as follows: $\omega(x_1) = c^{j_1}(s_1s_2)^3, \ \omega(x_2) = c^{j_2}s_1, \ \omega(x_3) = c^{j_3}s_2.$ Case 2. $G_g = D_{6(g-1)}$. Since $\omega(x_1)$ has order two $j_1 = 1$. Now $\omega(x_2)\omega(x_3)$ must generate C_{g-1} but then $\omega(x_4) = (\omega(x_1)\omega(x_2)\omega(x_3))^{-1}$ have order $3(g-1) \neq 3$. Case 3. $G_g = C_{g-1} \rtimes_1 D_6$. In this case $s_1 cs_1 = c^{-1}$ and $s_2 cs_2 = c$, then $i_3 = 1$. And again if $\omega(x_2)\omega(x_3)$ generate C_{g-1} then $\omega(x_4)$ does not have order 3. <ロ> (四) (四) (注) (注) (三) (三)

Family with Automorphism Group $D_{g+1}2 imes C_2$

For every $g \geq 2$ there is an equisymmetric and uniparametric family \mathcal{A}_g of Riemann surfaces of genus g such that if $X \in \mathcal{A}_g$, $D_{g+1} \times C_2 \leq \operatorname{Aut}(X)$, the regular covering $X \to X/D_{g+1} \times C_2$ has four branched points of order 2, 2, 2 and g + 1 and $X/(D_{g+1} \times C_2)$ is the Riemann sphere.

This family is given by the monodromy

$$\omega: \Delta \to D_{g+1} \times C_2 = \left\langle s_1, s_2 : s_1^2 = s_2^2 = (s_1 s_2)^{g+1} = 1 \right\rangle \times \left\langle t : t^2 = 1 \right\rangle$$

defined by:

$$\omega(x_1) = t, \omega(x_2) = ts_1, \omega(x_3) = s_2, \omega(x_4) = s_2s_1$$

The surfaces in \mathcal{A}_g are hyperelliptic. The hyperelliptic involution corresponds the generator t of $D_{g+1} \times C_2$. Accola-Maclachlan surface is in the (closure of) family \mathcal{A}_g .

A Second Family

Assume $g \equiv -1 \mod 4$. There is an equisymmetric uniparametric family \mathcal{K}_g of Riemann surfaces such that there is G of order 4g + 4, such that $G \leq \operatorname{Aut}(X)$ for all $X \in \mathcal{K}_g$ and G is isomorphic to:

$$H_{g} = \left\langle \begin{array}{c} t, b, s : t^{g+1} = b^{4} = s^{2} = 1; \ (bs)^{2} = (bt)^{2} = 1; \\ b^{2} = t^{\frac{g+1}{2}}; sts = t^{\frac{g-1}{2}} \end{array} \right\rangle$$

and $X/G = \mathbb{H}/\Delta$ with signature of Δ : (0; 2, 2, 2, g + 1). Their automorphism groups are isomorphic to the central product of D_4 with C_{g+1} . The common center of the group is $C_2 = \langle b^2 \rangle$, with no fixed points.

The surfaces in \mathcal{K}_g are non-hyperelliptic.

Kulkarni surface (with 8g + 8 automorphisms) is in the (closure of) family \mathcal{K}_g .

◆□→ ◆□→ ◆注→ ◆注→ □ 注

The real Riemann surface \mathcal{A}_g has an anticonformal involution whose fixed point set consists of three arcs a_1, a_2, b , corresponding the real Riemann surfaces in the family. The topological closure of \mathcal{A}_g in $\widehat{\mathcal{M}}_g$ has an anticonformal involution with fixed point set $\overline{a_1 \cup a_2 \cup b}$ (closure of $a_1 \cup a_2 \cup b$ in $\widehat{\mathcal{M}}_g$) which is a closed Jordan curve. The set $\overline{a_1 \cup a_2 \cup b} \setminus (a_1 \cup a_2 \cup b)$ consists of three points, two nodal surfaces and the Accola-Maclachlan surface of genus g.

The real Riemann surface \mathcal{K}_g has an anticonformal involution whose fixed point set consists of three arcs a_1, a_2, b , corresponding the real Riemann surfaces in the family. The topological closure $\widehat{\mathcal{K}_g}$ of \mathcal{K}_g in $\widehat{\mathcal{M}_g}$ has an anticonformal involution with fixed point set $\overline{a_1 \cup a_2 \cup b}$ (closure of $a_1 \cup a_2 \cup b$ in $\widehat{\mathcal{M}_g}$) which is a closed curve. The set $\overline{a_1 \cup a_2 \cup b} \setminus (a_1 \cup a_2 \cup b)$ consists of two points, one nodal surface and the Kulkarni surface of genus g (note that the nodal surface corresponds to a node of $\widehat{\mathcal{K}_g}$ in $\widehat{\mathcal{M}_g}$.

Some Families Containing Classical curves Families of Real Curves

THANK YOU

イロン 不同と 不良と 不良と 一直