Dessins d'Enfants and Topological Cyclic Actions on Surfaces

Charles Camacho

Oregon State University

AMS Sectional Meeting, Portland State University Portland, Oregon April 14, 2018

<ロ> (四) (四) (三) (三) (三)

A **dessin d'enfant** is a pair (X, D), where X is an orientable, compact surface and $D \subset X$ is a finite graph such that

- **D** is connected,
- D is bicolored (i.e., bipartite),
- Solution A > D is the union of finitely many topological discs, called the faces of D.

A **dessin d'enfant** is a pair (X, D), where X is an orientable, compact surface and $D \subset X$ is a finite graph such that

- **D** is connected,
- D is bicolored (i.e., bipartite),
- Solution 3 → Solution 2 → Solution 3 → S

Two dessins (X, D) and (X', D') are **equivalent** if there exists an orientation-preserving homeomorphism $X \to X'$ whose restriction to D induces isomorphisms as bicolored graphs.

<ロ > < (日) < (日) > < (H) > <

• The **automorphism group** Aut(D) of a dessin is the set of orientation-preserving homeomorphisms which preserve the dessin.

- The **automorphism group** Aut(D) of a dessin is the set of orientation-preserving homeomorphisms which preserve the dessin.
- A **regular dessin** is a dessin whose automorphism group acts transitively on the edges.

- The **automorphism group** Aut(D) of a dessin is the set of orientation-preserving homeomorphisms which preserve the dessin.
- A **regular dessin** is a dessin whose automorphism group acts transitively on the edges.

In other words, regular dessins are the most symmetric of all dessins.

- The **automorphism group** Aut(D) of a dessin is the set of orientation-preserving homeomorphisms which preserve the dessin.
- A **regular dessin** is a dessin whose automorphism group acts transitively on the edges.

In other words, regular dessins are the most symmetric of all dessins.

Example

Three regular dessins on the Riemann sphere with $Aut(D) \cong C_7$, the cyclic group of order seven.

Triangle Groups

A triangle group $\Delta(\ell, m, n)$ is a group with the following presentation: $\Delta(\ell, m, n) = \langle x, y, z : x^{\ell} = y^{m} = z^{n} = xyz = 1 \rangle.$

Triangle Groups

A triangle group $\Delta(\ell, m, n)$ is a group with the following presentation: $\Delta(\ell, m, n) = \langle x, y, z : x^{\ell} = y^{m} = z^{n} = xyz = 1 \rangle.$

It arises from tessellations via triangles having angles $\pi/\ell, \pi/m, \pi/n$.

Triangle Groups

A triangle group $\Delta(\ell, m, n)$ is a group with the following presentation: $\Delta(\ell, m, n) = \langle x, y, z : x^{\ell} = y^{m} = z^{n} = xyz = 1 \rangle.$

It arises from tessellations via triangles having angles $\pi/\ell, \pi/m, \pi/n$.

Figure: Tessellation of \mathbb{H} by $\Delta(2,3,7)$.

<□> <@> < E> < E> E のQC

A Belyĭ surface is a compact Riemann surface X admitting an embedded dessin. This happens if and only if X ≅ ℍ/Γ with Γ ≤ Δ for some triangle group Δ := Δ(n₁, n₂, n₃). The triple (n₁, n₂, n₃) is called a signature of X.

- A Belyĭ surface is a compact Riemann surface X admitting an embedded dessin. This happens if and only if X ≅ Ⅲ/Γ with Γ ≤ Δ for some triangle group Δ := Δ(n₁, n₂, n₃). The triple (n₁, n₂, n₃) is called a signature of X.
- A Belyĭ surface X is a quasiplatonic surface if it admits a regular dessin. This happens if and only if X ≅ ℍ/Γ for Γ ⊲ Δ for some triangle group Δ and Γ ≅ π₁(X).

- A Belyĭ surface is a compact Riemann surface X admitting an embedded dessin. This happens if and only if X ≅ Ⅲ/Γ with Γ ≤ Δ for some triangle group Δ := Δ(n₁, n₂, n₃). The triple (n₁, n₂, n₃) is called a signature of X.
- A Belyĭ surface X is a quasiplatonic surface if it admits a regular dessin. This happens if and only if X ≅ ℍ/Γ for Γ ⊲ Δ for some triangle group Δ and Γ ≅ π₁(X).

Quasiplatonic surfaces are the most symmetric of all compact Riemann surfaces.

◆□ → <@ → < \alpha + < \alpha + < \alpha = \alpha \alp

Example of Regular Dessin on Genus Three Surface

Automorphism Groups of Dessins and Triangle Groups

Let D be a regular dessin on a surface $X \cong \mathbb{H}/\Gamma$ with $\Gamma \trianglelefteq \Delta$.

Automorphism Groups of Dessins and Triangle Groups

Let D be a regular dessin on a surface $X \cong \mathbb{H}/\Gamma$ with $\Gamma \trianglelefteq \Delta$. Then

 $\operatorname{Aut}(D) \cong \Delta/\Gamma.$

Let *D* be a regular dessin on a surface $X \cong \mathbb{H}/\Gamma$ with $\Gamma \trianglelefteq \Delta$. Then

 $\operatorname{Aut}(D) \cong \Delta/\Gamma.$

Moreover, Aut(D) acts by automorphisms on X.

Surface-Kernel Epimorphisms

Let G := Aut(D) with D regular.

Surface-Kernel Epimorphisms

Let $G := \operatorname{Aut}(D)$ with D regular. Since $G \cong \Delta(n_1, n_2, n_3)/\Gamma$, we consider surface-kernel epimorphisms

$$\rho: \Delta(n_1, n_2, n_3) \longrightarrow G$$

with ker $\rho \cong \Gamma$ and ker ρ torsion-free.

$$\rho: \Delta(n_1, n_2, n_3) \longrightarrow G$$

with ker $\rho \cong \Gamma$ and ker ρ torsion-free.

This map is achieved by mapping the generators x, y, z of $\Delta(n_1, n_2, n_3)$ to elements η_1, η_2, η_3 of G satisfying

$$\rho: \Delta(n_1, n_2, n_3) \longrightarrow G$$

with ker $\rho \cong \Gamma$ and ker ρ torsion-free.

This map is achieved by mapping the generators x, y, z of $\Delta(n_1, n_2, n_3)$ to elements η_1, η_2, η_3 of G satisfying

• order of η_i equals n_i for i = 1, 2, 3;

$$\rho: \Delta(n_1, n_2, n_3) \longrightarrow G$$

with ker $\rho \cong \Gamma$ and ker ρ torsion-free.

This map is achieved by mapping the generators x, y, z of $\Delta(n_1, n_2, n_3)$ to elements η_1, η_2, η_3 of G satisfying

- order of η_i equals n_i for i = 1, 2, 3;
- $\eta_1 \eta_2 \eta_3 = 1;$

$$\rho: \Delta(n_1, n_2, n_3) \longrightarrow G$$

with ker $\rho \cong \Gamma$ and ker ρ torsion-free.

This map is achieved by mapping the generators x, y, z of $\Delta(n_1, n_2, n_3)$ to elements η_1, η_2, η_3 of G satisfying

- order of η_i equals n_i for i = 1, 2, 3;
- $\eta_1 \eta_2 \eta_3 = 1;$
- $\langle \eta_1, \eta_2, \eta_3 \rangle = G.$

(ロ) (部) (音) (音) (音) (の)

$$\rho: \Delta(n_1, n_2, n_3) \longrightarrow G$$

with ker $\rho \cong \Gamma$ and ker ρ torsion-free.

This map is achieved by mapping the generators x, y, z of $\Delta(n_1, n_2, n_3)$ to elements η_1, η_2, η_3 of G satisfying

- order of η_i equals n_i for i = 1, 2, 3;
- $\eta_1 \eta_2 \eta_3 = 1;$
- $\langle \eta_1, \eta_2, \eta_3 \rangle = G.$

The tuple (η_1, η_2, η_3) is called a (n_1, n_2, n_3) -generating vector of G.

Write $G = \langle \rho \rangle$ with $\rho^7 = 1$.

Write $G = \langle \rho \rangle$ with $\rho^7 = 1$. Then $(\rho^2, \rho^4, \rho^1), \quad (\rho^3, \rho^3, \rho^1), \quad (\rho^1, \rho^5, \rho^1)$

are all (7, 7, 7)-generating vectors for G.

Generating Vectors and Dessins

Identifying edges as shown makes a quasiplatonic surface $X \cong \mathbb{H}/\Gamma$ with $\Gamma \lhd \Delta(7,7,7)$ and $\Delta(7,7,7)/\Gamma \cong C_7$.

Generating Vectors and Dessins

Identifying edges as shown makes a quasiplatonic surface $X \cong \mathbb{H}/\Gamma$ with $\Gamma \lhd \Delta(7,7,7)$ and $\Delta(7,7,7)/\Gamma \cong C_7$.

• If $\rho = (1, 2, 3, 4, 5, 6, 7)$ denotes rotation by $2\pi/7$ clockwise about the face-center bounded by the seven numbered edges, then the edges about the white and black vertices are described by the permutations ρ and ρ^5 , respectively.

A group G acts topologically on a surface X of genus $g \ge 2$ if there is a monomorphism $\epsilon : G \to \text{Homeo}^+(X)$.

- A group G acts topologically on a surface X of genus $g \ge 2$ if there is a monomorphism $\epsilon : G \to \text{Homeo}^+(X)$.
- Two actions ϵ_1 and ϵ_2 are **equivalent** if $\epsilon_1(G)$ and $\epsilon_2(G)$ are conjugate in Homeo⁺(X).

What is the total number of quasiplatonic actions of C_n, the cyclic group of order n, on surfaces?

- What is the total number of quasiplatonic actions of C_n, the cyclic group of order n, on surfaces?
- How does the total number of actions of C_n relate to the number of regular dessins D with $Aut(D) \cong C_n$?

Harvey's Theorem for the Quasiplatonic Case

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ つへの

Harvey's Theorem for the Quasiplatonic Case

Theorem (Harvey, 1966)

Let $n = lcm(n_1, n_2, n_3)$.
Harvey's Theorem for the Quasiplatonic Case

Theorem (Harvey, 1966)

Let $n = lcm(n_1, n_2, n_3)$. Then C_n acts on X of genus $g \ge 2$ with signature (n_1, n_2, n_3) if and only if

Harvey's Theorem for the Quasiplatonic Case

Theorem (Harvey, 1966)

Let $n = lcm(n_1, n_2, n_3)$. Then C_n acts on X of genus $g \ge 2$ with signature (n_1, n_2, n_3) if and only if

• $n = lcm(n_1, n_2) = lcm(n_1, n_3) = lcm(n_2, n_3);$

Theorem (Harvey, 1966)

Let $n = lcm(n_1, n_2, n_3)$. Then C_n acts on X of genus $g \ge 2$ with signature (n_1, n_2, n_3) if and only if

- $1 n = lcm(n_1, n_2) = lcm(n_1, n_3) = lcm(n_2, n_3);$
- If or n even, exactly two of n₁, n₂, n₃ must be divisible by the maximum power of two dividing n;

Theorem (Harvey, 1966)

Let $n = lcm(n_1, n_2, n_3)$. Then C_n acts on X of genus $g \ge 2$ with signature (n_1, n_2, n_3) if and only if

- $1 n = lcm(n_1, n_2) = lcm(n_1, n_3) = lcm(n_2, n_3);$
- If or n even, exactly two of n₁, n₂, n₃ must be divisible by the maximum power of two dividing n;

the Riemann-Hurwitz formula holds:

$$g = 1 + \frac{n}{2} \left(1 - \frac{1}{n_1} - \frac{1}{n_2} - \frac{1}{n_3} \right).$$

Enumerating Topological Cyclic Actions - Benim, Wootton 2013

Enumerating Topological Cyclic Actions - Benim, Wootton 2013

Let $n = \prod_{i=1}^{r} p_i^{a_i}$ be the prime factorization of n.

Signature	T = number of distinct topological actions
(n_1, n_2, n_3)	$T = \phi(gcd(n_1, n_2, n_3)) \cdot \prod_{i=1}^{w} \frac{p_i - 2}{p_i - 1}$
(n_1, n, n)	$T=rac{1}{2}\left(au_1(n,n_1)+\phi(n)\cdot\prod_{i=1}^wrac{p_i-2}{p_i-1} ight)$
(<i>n</i> , <i>n</i> , <i>n</i>)	$T = \frac{1}{6} \left(3 + 2\tau_2(n) + \phi(n) \cdot \prod_{i=1}^r \frac{p_i - 2}{p_i - 1} \right)$

Enumerating Topological Cyclic Actions - Benim, Wootton 2013

Let $n = \prod_{i=1}^{r} p_i^{a_i}$ be the prime factorization of n.

Signature	T = number of distinct topological actions
(n_1, n_2, n_3)	$T = \phi(\gcd(n_1, n_2, n_3)) \cdot \prod_{i=1}^{w} \frac{p_i - 2}{p_i - 1}$
(n_1, n, n)	$T=rac{1}{2}\left(au_1(n,n_1)+\phi(n)\cdot\prod_{i=1}^wrac{p_i-2}{p_i-1} ight)$
(<i>n</i> , <i>n</i> , <i>n</i>)	$T = \frac{1}{6} \left(3 + 2\tau_2(n) + \phi(n) \cdot \prod_{i=1}^r \frac{p_i - 2}{p_i - 1} \right)$

- $\tau_1(n_1, n) =$ number of noncongruent, nonzero solutions to $x^2 + 2x \equiv 0 \mod n$ where $gcd(x, n) = n/n_1$;
- τ₂(n) = number of noncongruent solutions to x² + x + 1 ≡ 0 mod n;
 w ≥ 0 is an integer representing the number of primes (including multiplicity) shared in common among n₁, n₂, n₃.

The Number of Quasiplatonic Cyclic Surfaces

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへの

The Number of Quasiplatonic Cyclic Surfaces

Let QC(n) be the number of distinct topological actions of C_n on quasiplatonic surfaces.

Compute QC(n) via the following procedure:

Compute QC(n) via the following procedure:

1 find all admissible signatures (n_1, n_2, n_3) for a given n;

Compute QC(n) via the following procedure:

- find all admissible signatures (n_1, n_2, n_3) for a given n;
- for each signature, use one of three different formulas giving the number of nonequivalent quasiplatonic cyclic actions on surfaces of that signature;

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─ 臣

Compute QC(n) via the following procedure:

- find all admissible signatures (n_1, n_2, n_3) for a given n;
- for each signature, use one of three different formulas giving the number of nonequivalent quasiplatonic cyclic actions on surfaces of that signature;
- add up all values given by the formulas from all possible signatures for *n*. This number will be QC(n).

・ロット ● ● ・ ● ● ・ ● ●

Let n = 20. Let $T(n_1, n_2, n_3)$ denote the number of topological actions of C_n on a surface with signature (n_1, n_2, n_3) .

Let n = 20. Let $T(n_1, n_2, n_3)$ denote the number of topological actions of C_n on a surface with signature (n_1, n_2, n_3) .

Signature	$T(n_1, n_2, n_3)$
(4, 5, 20)	T = 1
(4, 10, 20)	T = 1
(2, 20, 20)	T = 1
(5, 20, 20)	T=2
(10, 20, 20)	T=2

(ロ)、(部)、(E)、(E)、(E)

Let n = 20. Let $T(n_1, n_2, n_3)$ denote the number of topological actions of C_n on a surface with signature (n_1, n_2, n_3) .

Signature	$T(n_1, n_2, n_3)$
(4, 5, 20)	T = 1
(4, 10, 20)	T = 1
(2, 20, 20)	T = 1
(5, 20, 20)	T = 2
(10, 20, 20)	T=2

Then QC(20) = 1 + 1 + 1 + 2 + 2 = 7.

◆□▶ ◆御▶ ◆注▶ ◆注▶ ─ 注。

For $n = p \ge 5$ a prime, there is only one admissible signature: (p, p, p).

For $n = p \ge 5$ a prime, there is only one admissible signature: (p, p, p). Then

$$QC(p) = T(p, p, p) = \begin{cases} \frac{1}{6}(p+1) & p \equiv 5 \mod 6 \\ \\ \frac{1}{6}(p+1) + \frac{2}{3} & p \equiv 1 \mod 6 \end{cases}$$

•

Preliminary Results

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Preliminary Results

Theorem (C, 2018)

Suppose n is even and $n \ge 8$, so that $n = 2^{a_1} \prod_{i=2}^r p_i^{a_i}$. Then the number of distinct topological actions of C_n on quasiplatonic surfaces is

$$QC(2^{a_1}p_2^{a_2}\cdots p_r^{a_r})=2^{a_1-2}\left(\prod_{i=2}^r p_i^{a_i-1}(p_i+1)\right)-1+\begin{cases} 2^{r-2} & a_1=1\\ 2^{r-1} & a_1=2\\ 2^r & a_1\geq 3 \end{cases}$$

Preliminary Results

Theorem (C, 2018)

Suppose n is even and $n \ge 8$, so that $n = 2^{a_1} \prod_{i=2}^r p_i^{a_i}$. Then the number of distinct topological actions of C_n on quasiplatonic surfaces is

$$QC(2^{a_1}p_2^{a_2}\cdots p_r^{a_r})=2^{a_1-2}\left(\prod_{i=2}^r p_i^{a_i-1}(p_i+1)\right)-1+\begin{cases} 2^{r-2} & a_1=1\\ 2^{r-1} & a_1=2\\ 2^r & a_1\geq 3 \end{cases}.$$

Corollary

Let $r(C_n)$ denote the number of regular dessins with C_n as their automorphism group. Then for even $n \ge 8$,

$$QC(n) - \frac{1}{6}r(C_n) = -1 + \begin{cases} 2^{r-2} & a_1 = 1\\ 2^{r-1} & a_1 = 2\\ 2^r & a_1 \ge 3 \end{cases}$$

Proof Outline - Recursive Formulas A and B

<ロト < 団 ト < 臣 ト < 臣 ト 三 の < @</p>

19

Proof Outline - Recursive Formulas A and B

(A) First show, when $n = 2 \cdot \prod_{i=2}^{r} p_i^{a_i}$ $QC(n \cdot p_{r+1}^{a_{r+1}}) = (QC(n) + 1 - 2^{r-2})p_{r+1}^{a_{r+1}-1}(p_{r+1}+1) - 1 + 2^{r-1}.$ (A) First show, when $n = 2 \cdot \prod_{i=2}^{r} p_i^{a_i}$ $QC(n \cdot p_{r+1}^{a_{r+1}}) = (QC(n) + 1 - 2^{r-2})p_{r+1}^{a_{r+1}-1}(p_{r+1}+1) - 1 + 2^{r-1}.$

(B) Then prove, for any even $n \ge 8$, $QC(2^{a_1}p_2^{a_2}\cdots p_r^{a_r}) = 2 \cdot QC(2^{a_1-1}p_2^{a_2}\cdots p_r^{a_r}) + 1 + \begin{cases} 0 & 2 \le a_1 \le 3\\ -2^r & 4 \le a_1 \end{cases}$.

QC(n) Graph

▶ < Ē ▶ < Ē ▶ Ē *)Q(*

20

QC(n) versus Euler Totient Function $\phi(n)$

Current Work and Future Directions

・ロ・・母・・ヨ・・ヨ・ シへぐ

22

Current Work and Future Directions

• Derive QC(n) formula for positive, odd integers n.

Current Work and Future Directions

- Derive QC(n) formula for positive, odd integers n.
- Explore the darker lines of the QC(n) graph.

- Derive QC(n) formula for positive, odd integers n.
- Explore the darker lines of the QC(n) graph.
- Generalize methods to any quasiplatonic group; i.e., find all topological actions of $G = \Delta/\Gamma$ on surfaces $X \cong \mathbb{H}/\Gamma$.

- Derive QC(n) formula for positive, odd integers n.
- Explore the darker lines of the QC(n) graph.
- Generalize methods to any quasiplatonic group; i.e., find all topological actions of $G = \Delta/\Gamma$ on surfaces $X \cong \mathbb{H}/\Gamma$.
- Physics applications? (string theory, Fenyman diagrams, statistical mechanics...)

References

- Benim, R., Wootton, A. Enumerating Quasiplatonic Cyclic Group Actions. Journal of Mathematics, 43(5), 2013.
- Broughton, S. A. Classifying finite group actions on surfaces of low genus. Journal of Pure and Applied Algebra, 69(3), 233-270. 1991.
- Girondo, E., González-Diez, G. Introduction to Compact Riemann Surfaces and Dessins d'Enfants. Cambridge: Cambridge UP, 2012. Print.
- Harvey, W. J. Cyclic groups of automorphisms of a compact Riemann surface. The Quarterly Journal of Mathematics, 17(1), 86-97. 1966.
- Jones, G. A. Regular dessins with a given automorphism group. Contemporary Mathematics, 629, 245-260. 2014.
- Jones, G. A., Wolfart, J. Dessins d'Enfants on Riemann Surfaces. Switzerland: Springer International Publishing, 2016. Print.
- By Tamfang Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=12806647
- Wootton, A. Extending topological group actions to conformal group actions. Albanian Journal of Mathematics (ISNN: 1930-1235), 1(3), 133-143. 2007.

Questions? Thank you!

Theorem (Riemann Existence Theorem)

A group G acts topologically on X of signature (n_1, n_2, n_3) of genus $g \ge 2$ if and only if G has a (n_1, n_2, n_3) -generating vector and the Riemann-Hurwitz formula holds:

$$g = 1 + \frac{|G|}{2} \left(1 - \frac{1}{n_1} - \frac{1}{n_2} - \frac{1}{n_3} \right)$$

Theorem (Riemann Existence Theorem)

A group G acts topologically on X of signature (n_1, n_2, n_3) of genus $g \ge 2$ if and only if G has a (n_1, n_2, n_3) -generating vector and the Riemann-Hurwitz formula holds:

$$g = 1 + \frac{|G|}{2} \left(1 - \frac{1}{n_1} - \frac{1}{n_2} - \frac{1}{n_3} \right)$$

The equivalence of G-actions on X of signature (n_1, n_2, n_3) induces an equivalence on the (n_1, n_2, n_3) -generating vectors ν of G:

Theorem (Riemann Existence Theorem)

A group G acts topologically on X of signature (n_1, n_2, n_3) of genus $g \ge 2$ if and only if G has a (n_1, n_2, n_3) -generating vector and the Riemann-Hurwitz formula holds:

$$g = 1 + rac{|G|}{2} \left(1 - rac{1}{n_1} - rac{1}{n_2} - rac{1}{n_3}
ight).$$

The equivalence of G-actions on X of signature (n_1, n_2, n_3) induces an equivalence on the (n_1, n_2, n_3) -generating vectors ν of G:

• Two vectors ν and ν' are **equivalent** if there exists $(w, \phi) \in \operatorname{Aut}(G) \times \operatorname{Aut}(\Delta)$ such that $\rho' = w \circ \rho \circ \phi^{-1}$, where ρ and ρ' are the corresponding surface-kernel epimorphisms of ν and ν' .

Signatures for $n = 2 \prod_{i=2}^{r} p_i^{a_i}$ are of the form

$$\left(2^{k_1}p_2^{k_2}\cdots p_r^{k_r}, 2^{\ell_1}p_2^{\ell_2}\cdots p_r^{\ell_r}, 2^{h_1}p_2^{h_2}\cdots p_r^{h_r}\right).$$
Signatures for $n = 2 \prod_{i=2}^{r} p_i^{a_i}$ are of the form

$$\left(2^{k_1}p_2^{k_2}\cdots p_r^{k_r}, 2^{\ell_1}p_2^{\ell_2}\cdots p_r^{\ell_r}, 2^{h_1}p_2^{h_2}\cdots p_r^{h_r}\right).$$

We extend to signatures for $n \cdot p_{r+1}^{a_{r+1}}$ by multiplying each period by p_{r+1}^t .

Consider p^a for a prime p and a positive integer a. If $a \ge 2$, define

$$f(p^{k}) = \begin{cases} 1 & k = 0\\ p^{k-1}(p-1) & 1 \le k \le a-1\\ p^{a-1}(p-2) & k = a \end{cases}$$

If a = 1, then define

$$f(p^k) = \left\{ egin{array}{cc} 1 & k=0 \ p-2 & k=1 \end{array}
ight.$$

.

٠

Proof Sketch - Two Cases

Fix parameters k_1, \ldots, k_r . For a signature $\left(2^{k_1}p_2^{k_2}\cdots p_r^{k_r}, 2^{\ell_1}p_2^{\ell_2}\cdots p_r^{\ell_r}, 2^{h_1}p_2^{h_2}\cdots p_r^{h_r}\right)$ of *n*,

Proof Sketch - Two Cases

Fix parameters $k_1, ..., k_r$. For a signature $(2^{k_1} p_2^{k_2} \cdots p_r^{k_r}, 2^{\ell_1} p_2^{\ell_2} \cdots p_r^{\ell_r}, 2^{h_1} p_2^{h_2} \cdots p_r^{h_r})$ of n,

• if ℓ_1, \ldots, ℓ_r and h_1, \ldots, h_r are not all equal, then

$$T\left(2^{k_1}p_2^{k_2}\cdots p_r^{k_r}, 2^{\ell_1}p_2^{\ell_2}\cdots p_r^{\ell_r}, 2^{h_1}p_2^{h_2}\cdots p_r^{h_r}\right) = \prod_{i=2}^r f(p_i^{k_i}).$$

Proof Sketch - Two Cases

Fix parameters $k_1, ..., k_r$. For a signature $(2^{k_1} p_2^{k_2} \cdots p_r^{k_r}, 2^{\ell_1} p_2^{\ell_2} \cdots p_r^{\ell_r}, 2^{h_1} p_2^{h_2} \cdots p_r^{h_r})$ of n,

• if ℓ_1, \ldots, ℓ_r and h_1, \ldots, h_r are not all equal, then

$$T\left(2^{k_1}p_2^{k_2}\cdots p_r^{k_r}, 2^{\ell_1}p_2^{\ell_2}\cdots p_r^{\ell_r}, 2^{h_1}p_2^{h_2}\cdots p_r^{h_r}\right) = \prod_{i=2}^r f(p_i^{k_i}).$$

• if ℓ_1, \ldots, ℓ_r and h_1, \ldots, h_r are all equal, then

$$T\left(p_{2}^{k_{2}}\cdots p_{r}^{k_{r}}, 2p_{2}^{a_{2}}\cdots p_{r}^{a_{r}}, 2p_{2}^{a_{2}}\cdots p_{r}^{a_{r}}\right) \\ = \begin{cases} \frac{1}{2}\prod_{i=2}^{r}f(p_{i}^{k_{i}}) & 1 \le k_{i} \le a_{i} - 1 \text{ for some } i \\ \frac{1}{2}\prod_{i=2}^{r}f(p_{i}^{k_{i}}) + \frac{1}{2} & \text{otherwise} \end{cases}$$

Proof Sketch - Extending The First Case

Assume ℓ_1, \ldots, ℓ_r and h_1, \ldots, h_r are not all equal. Signatures for $n \cdot p_{r+1}^{a_{r+1}}$ consist of the following three forms:

$$\begin{aligned} & \left(2^{k_1} p_2^{k_2} \cdots p_r^{k_r} p_{r+1}^t, 2^{\ell_1} p_2^{\ell_2} \cdots p_r^{\ell_r} p_{r+1}^{a_{r+1}}, 2^{h_1} p_2^{h_2} \cdots p_r^{h_r} p_{r+1}^{a_{r+1}}\right), 0 \le t \le a_{r+1}, \\ & \left(2^{k_1} p_2^{k_2} \cdots p_r^{k_r} p_{r+1}^{a_{r+1}}, 2^{\ell_1} p_2^{\ell_2} \cdots p_r^{\ell_r} p_{r+1}^t, 2^{h_1} p_2^{h_2} \cdots p_r^{h_r} p_{r+1}^{a_{r+1}}\right), 0 \le t \le a_{r+1} - 1, \\ & \left(2^{k_1} p_2^{k_2} \cdots p_r^{k_r} p_{r+1}^{a_{r+1}}, 2^{\ell_1} p_2^{\ell_2} \cdots p_r^{\ell_r} p_{r+1}^{a_{r+1}}, 2^{h_1} p_2^{h_2} \cdots p_r^{h_r} p_{r+1}^{a_{r+1}}\right), 0 \le t \le a_{r+1} - 1. \end{aligned}$$

Proof Sketch - Extending The First Case

Assume ℓ_1, \ldots, ℓ_r and h_1, \ldots, h_r are not all equal. Signatures for $n \cdot p_{r+1}^{a_{r+1}}$ consist of the following three forms:

$$\begin{split} & \left(2^{k_1} p_2^{k_2} \cdots p_r^{k_r} p_{r+1}^t, 2^{\ell_1} p_2^{\ell_2} \cdots p_r^{\ell_r} p_{r+1}^{a_{r+1}}, 2^{h_1} p_2^{h_2} \cdots p_r^{h_r} p_{r+1}^{a_{r+1}}\right), 0 \le t \le a_{r+1}, \\ & \left(2^{k_1} p_2^{k_2} \cdots p_r^{k_r} p_{r+1}^{a_{r+1}}, 2^{\ell_1} p_2^{\ell_2} \cdots p_r^{\ell_r} p_{r+1}^t, 2^{h_1} p_2^{h_2} \cdots p_r^{h_r} p_{r+1}^{a_{r+1}}\right), 0 \le t \le a_{r+1} - 1, \\ & \left(2^{k_1} p_2^{k_2} \cdots p_r^{k_r} p_{r+1}^{a_{r+1}}, 2^{\ell_1} p_2^{\ell_2} \cdots p_r^{\ell_r} p_{r+1}^{a_{r+1}}, 2^{h_1} p_2^{h_2} \cdots p_r^{h_r} p_{r+1}^t\right), 0 \le t \le a_{r+1} - 1. \end{split}$$

Then the total number of topological actions for this case is

$$\prod_{i=2}^{r} f(p_i^{k_i}) \cdot \left(\sum_{t=0}^{a_{r+1}} (f(p_{r+1}^t)) + 2 \sum_{t=0}^{a_{r+1}-1} (f(p_{r+1}^t)) \right)$$
$$= \prod_{i=2}^{r} f(p_i^{k_i}) \cdot \left(p_{r+1}^{a_{r+1}-1} (p_{r+1}+1) \right).$$

Proof Sketch - Extending the Second Case

We consider signatures for $n \cdot p_{r+1}^{a_{r+1}}$ of the following two possible extensions:

$$\left(p_2^{k_2} \cdots p_r^{k_r} p_{r+1}^t, 2^{a_1} p_2^{a_2} \cdots p_r^{a_r} p_{r+1}^{a_{r+1}}, 2^{a_1} p_2^{a_2} \cdots p_r^{a_r} p_{r+1}^{a_{r+1}} \right), 0 \le t \le a_{r+1}$$

$$\left(p_2^{k_2} \cdots p_r^{k_r} p_{r+1}^{a_{r+1}}, 2^{a_1} p_2^{a_2} \cdots p_r^{a_r} p_{r+1}^t, 2^{a_1} p_2^{a_2} \cdots p_r^{a_r} p_{r+1}^{a_{r+1}} \right), 0 \le t \le a_{r+1} - 1.$$

Proof Sketch - Extending the Second Case

We consider signatures for $n \cdot p_{r+1}^{a_{r+1}}$ of the following two possible extensions:

$$\left(p_2^{k_2} \cdots p_r^{k_r} p_{r+1}^t, 2^{a_1} p_2^{a_2} \cdots p_r^{a_r} p_{r+1}^{a_{r+1}}, 2^{a_1} p_2^{a_2} \cdots p_r^{a_r} p_{r+1}^{a_{r+1}} \right), 0 \le t \le a_{r+1}$$

$$\left(p_2^{k_2} \cdots p_r^{k_r} p_{r+1}^{a_{r+1}}, 2^{a_1} p_2^{a_2} \cdots p_r^{a_r} p_{r+1}^t, 2^{a_1} p_2^{a_2} \cdots p_r^{a_r} p_{r+1}^{a_{r+1}} \right), 0 \le t \le a_{r+1} - 1.$$

We will incur factors of 1/2 depending on whether

•
$$k_i = a_i$$
 or $k_i = 0$ for each i

• or
$$1 \le k_i \le a_i - 1$$
 for some *i*.

Proof Sketch - Extending the Second Case

We consider signatures for $n \cdot p_{r+1}^{a_{r+1}}$ of the following two possible extensions:

$$\left(p_2^{k_2} \cdots p_r^{k_r} p_{r+1}^t, 2^{a_1} p_2^{a_2} \cdots p_r^{a_r} p_{r+1}^{a_{r+1}}, 2^{a_1} p_2^{a_2} \cdots p_r^{a_r} p_{r+1}^{a_{r+1}} \right), 0 \le t \le a_{r+1}$$

$$\left(p_2^{k_2} \cdots p_r^{k_r} p_{r+1}^{a_{r+1}}, 2^{a_1} p_2^{a_2} \cdots p_r^{a_r} p_{r+1}^t, 2^{a_1} p_2^{a_2} \cdots p_r^{a_r} p_{r+1}^{a_{r+1}} \right), 0 \le t \le a_{r+1} - 1.$$

We will incur factors of 1/2 depending on whether

•
$$k_i = a_i$$
 or $k_i = 0$ for each i

• or
$$1 \le k_i \le a_i - 1$$
 for some *i*.

Consider those subcases, and follow the same procedure as before...!