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Dessins d’Enfants

A dessin d’enfant is a pair (X ,D), where X is an orientable, compact
surface and D ⊂ X is a finite graph such that

1 D is connected,

2 D is bicolored (i.e., bipartite),

3 X \ D is the union of finitely many topological discs, called the faces
of D.

Two dessins (X ,D) and (X ′,D ′) are equivalent if there exists an
orientation-preserving homeomorphism X → X ′ whose restriction to D
induces isomorphisms as bicolored graphs.
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Regular Dessins

The automorphism group Aut(D) of a dessin is the set of
orientation-preserving homeomorphisms which preserve the dessin.

A regular dessin is a dessin whose automorphism group acts
transitively on the edges.

In other words, regular dessins are the most symmetric of all dessins.

Example

Three regular dessins on the Riemann sphere with Aut(D) ∼= C7, the cyclic
group of order seven.
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Triangle Groups

A triangle group ∆(`,m, n) is a group with the following presentation:

∆(`,m, n) = 〈x , y , z : x` = ym = zn = xyz = 1〉.

It arises from tessellations via triangles having angles π/`, π/m, π/n.

Figure: Tessellation of H by ∆(2, 3, 7).
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Quasiplatonic Surfaces

Assume from now on that all surfaces will have genus at least two.

A Bely̆ı surface is a compact Riemann surface X admitting an
embedded dessin. This happens if and only if X ∼= H/Γ with Γ ≤ ∆
for some triangle group ∆ := ∆(n1, n2, n3). The triple (n1, n2, n3) is
called a signature of X .

A Bely̆ı surface X is a quasiplatonic surface if it admits a regular
dessin. This happens if and only if X ∼= H/Γ for Γ C ∆ for some
triangle group ∆ and Γ ∼= π1(X ).

Quasiplatonic surfaces are the most symmetric of all compact Riemann
surfaces.
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Example of Regular Dessin on Genus Three Surface

1

2

3
45

6

7

1
6

4 2

7

5
3

6



Automorphism Groups of Dessins and Triangle Groups

Let D be a regular dessin on a surface X ∼= H/Γ with Γ E ∆.

Then

Aut(D) ∼= ∆/Γ.

Moreover, Aut(D) acts by automorphisms on X .
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Surface-Kernel Epimorphisms

Let G := Aut(D) with D regular.

Since G ∼= ∆(n1, n2, n3)/Γ, we consider
surface-kernel epimorphisms

ρ : ∆(n1, n2, n3) −→ G

with ker ρ ∼= Γ and ker ρ torsion-free.

This map is achieved by mapping the generators x , y , z of ∆(n1, n2, n3) to
elements η1, η2, η3 of G satisfying

order of ηi equals ni for i = 1, 2, 3;

η1η2η3 = 1;

〈η1, η2, η3〉 = G .

The tuple (η1, η2, η3) is called a (n1, n2, n3)-generating vector of G .

8



Surface-Kernel Epimorphisms

Let G := Aut(D) with D regular. Since G ∼= ∆(n1, n2, n3)/Γ, we consider
surface-kernel epimorphisms

ρ : ∆(n1, n2, n3) −→ G

with ker ρ ∼= Γ and ker ρ torsion-free.

This map is achieved by mapping the generators x , y , z of ∆(n1, n2, n3) to
elements η1, η2, η3 of G satisfying

order of ηi equals ni for i = 1, 2, 3;

η1η2η3 = 1;

〈η1, η2, η3〉 = G .

The tuple (η1, η2, η3) is called a (n1, n2, n3)-generating vector of G .

8



Surface-Kernel Epimorphisms

Let G := Aut(D) with D regular. Since G ∼= ∆(n1, n2, n3)/Γ, we consider
surface-kernel epimorphisms

ρ : ∆(n1, n2, n3) −→ G

with ker ρ ∼= Γ and ker ρ torsion-free.

This map is achieved by mapping the generators x , y , z of ∆(n1, n2, n3) to
elements η1, η2, η3 of G satisfying

order of ηi equals ni for i = 1, 2, 3;

η1η2η3 = 1;

〈η1, η2, η3〉 = G .

The tuple (η1, η2, η3) is called a (n1, n2, n3)-generating vector of G .

8



Surface-Kernel Epimorphisms

Let G := Aut(D) with D regular. Since G ∼= ∆(n1, n2, n3)/Γ, we consider
surface-kernel epimorphisms

ρ : ∆(n1, n2, n3) −→ G

with ker ρ ∼= Γ and ker ρ torsion-free.

This map is achieved by mapping the generators x , y , z of ∆(n1, n2, n3) to
elements η1, η2, η3 of G satisfying

order of ηi equals ni for i = 1, 2, 3;

η1η2η3 = 1;

〈η1, η2, η3〉 = G .

The tuple (η1, η2, η3) is called a (n1, n2, n3)-generating vector of G .

8



Surface-Kernel Epimorphisms

Let G := Aut(D) with D regular. Since G ∼= ∆(n1, n2, n3)/Γ, we consider
surface-kernel epimorphisms

ρ : ∆(n1, n2, n3) −→ G

with ker ρ ∼= Γ and ker ρ torsion-free.

This map is achieved by mapping the generators x , y , z of ∆(n1, n2, n3) to
elements η1, η2, η3 of G satisfying

order of ηi equals ni for i = 1, 2, 3;

η1η2η3 = 1;

〈η1, η2, η3〉 = G .

The tuple (η1, η2, η3) is called a (n1, n2, n3)-generating vector of G .

8



Surface-Kernel Epimorphisms

Let G := Aut(D) with D regular. Since G ∼= ∆(n1, n2, n3)/Γ, we consider
surface-kernel epimorphisms

ρ : ∆(n1, n2, n3) −→ G

with ker ρ ∼= Γ and ker ρ torsion-free.

This map is achieved by mapping the generators x , y , z of ∆(n1, n2, n3) to
elements η1, η2, η3 of G satisfying

order of ηi equals ni for i = 1, 2, 3;

η1η2η3 = 1;

〈η1, η2, η3〉 = G .

The tuple (η1, η2, η3) is called a (n1, n2, n3)-generating vector of G .

8



Surface-Kernel Epimorphisms

Let G := Aut(D) with D regular. Since G ∼= ∆(n1, n2, n3)/Γ, we consider
surface-kernel epimorphisms

ρ : ∆(n1, n2, n3) −→ G

with ker ρ ∼= Γ and ker ρ torsion-free.

This map is achieved by mapping the generators x , y , z of ∆(n1, n2, n3) to
elements η1, η2, η3 of G satisfying

order of ηi equals ni for i = 1, 2, 3;

η1η2η3 = 1;

〈η1, η2, η3〉 = G .

The tuple (η1, η2, η3) is called a (n1, n2, n3)-generating vector of G .

8



Example: G = C7

Write G = 〈ρ〉 with ρ7 = 1.

Then

(ρ2, ρ4, ρ1), (ρ3, ρ3, ρ1), (ρ1, ρ5, ρ1)

are all (7, 7, 7)-generating vectors for G .
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Generating Vectors and Dessins

Identifying edges as shown makes a quasiplatonic surface X ∼= H/Γ with
Γ C ∆(7, 7, 7) and ∆(7, 7, 7)/Γ ∼= C7.
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If ρ = (1, 2, 3, 4, 5, 6, 7) denotes rotation by 2π/7 clockwise about the
face-center bounded by the seven numbered edges, then the edges
about the white and black vertices are described by the permutations
ρ and ρ5, respectively.
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Group Acting on a Surface

A group G acts topologically on a surface X of genus g ≥ 2 if there is a
monomorphism ε : G → Homeo+(X ).

Two actions ε1 and ε2 are equivalent if ε1(G ) and ε2(G ) are conjugate in
Homeo+(X ).
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Main Questions

1 What is the total number of quasiplatonic actions of Cn, the cyclic
group of order n, on surfaces?

2 How does the total number of actions of Cn relate to the number of
regular dessins D with Aut(D) ∼= Cn?
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Harvey’s Theorem for the Quasiplatonic Case

Theorem (Harvey, 1966)

Let n = lcm(n1, n2, n3).Then Cn acts on X of genus g ≥ 2 with signature
(n1, n2, n3) if and only if

1 n = lcm(n1, n2) = lcm(n1, n3) = lcm(n2, n3);

2 for n even, exactly two of n1, n2, n3 must be divisible by the maximum
power of two dividing n;

3 the Riemann-Hurwitz formula holds:

g = 1 +
n

2

(
1− 1

n1
− 1

n2
− 1

n3

)
.
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Enumerating Topological Cyclic Actions - Benim, Wootton
2013

Let n =
∏r

i=1 p
ai
i be the prime factorization of n.

Signature T = number of distinct topological actions

(n1, n2, n3) T = φ(gcd(n1, n2, n3)) ·
w∏
i=1

pi − 2

pi − 1

(n1, n, n) T = 1
2

(
τ1(n, n1) + φ(n) ·

w∏
i=1

pi − 2

pi − 1

)

(n, n, n) T = 1
6

(
3 + 2τ2(n) + φ(n) ·

r∏
i=1

pi − 2

pi − 1

)
τ1(n1, n) = number of noncongruent, nonzero solutions to
x2 + 2x ≡ 0 mod n where gcd(x , n) = n/n1;

τ2(n) = number of noncongruent solutions to x2 + x + 1 ≡ 0 mod n;

w ≥ 0 is an integer representing the number of primes (including
multiplicity) shared in common among n1, n2, n3.
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The Number of Quasiplatonic Cyclic Surfaces

Let QC (n) be the number of distinct topological actions of Cn on
quasiplatonic surfaces.

Compute QC (n) via the following procedure:

1 find all admissible signatures (n1, n2, n3) for a given n;

2 for each signature, use one of three different formulas giving the
number of nonequivalent quasiplatonic cyclic actions on surfaces of
that signature;

3 add up all values given by the formulas from all possible signatures for
n. This number will be QC (n).
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Example

Let n = 20. Let T (n1, n2, n3) denote the number of topological actions of
Cn on a surface with signature (n1, n2, n3).

Signature T (n1, n2, n3)

(4, 5, 20) T = 1

(4, 10, 20) T = 1

(2, 20, 20) T = 1

(5, 20, 20) T = 2

(10, 20, 20) T = 2

Then QC (20) = 1 + 1 + 1 + 2 + 2 = 7.
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Example

For n = p ≥ 5 a prime, there is only one admissible signature: (p, p, p).

Then

QC (p) = T (p, p, p)

=


1
6(p + 1) p ≡ 5 mod 6

1
6(p + 1) + 2

3 p ≡ 1 mod 6
.
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Preliminary Results

Theorem (C, 2018)

Suppose n is even and n ≥ 8, so that n = 2a1
∏r

i=2 p
ai
i . Then the number

of distinct topological actions of Cn on quasiplatonic surfaces is

QC (2a1pa22 · · · p
ar
r ) = 2a1−2

(
r∏

i=2

pai−1i (pi + 1)

)
− 1 +


2r−2 a1 = 1
2r−1 a1 = 2
2r a1 ≥ 3

.

Corollary

Let r(Cn) denote the number of regular dessins with Cn as their
automorphism group. Then for even n ≥ 8,

QC (n)− 1

6
r(Cn) = −1 +


2r−2 a1 = 1
2r−1 a1 = 2
2r a1 ≥ 3

.
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Proof Outline - Recursive Formulas A and B

(A) First show, when n = 2 ·
∏r

i=2 p
ai
i

QC (n · par+1

r+1 ) =
(
QC (n) + 1− 2r−2

)
p
ar+1−1
r+1 (pr+1 + 1)− 1 + 2r−1.

(B) Then prove, for any even n ≥ 8,

QC (2a1pa22 · · · parr ) = 2 · QC (2a1−1pa22 · · · parr ) + 1 +

{
0 2 ≤ a1 ≤ 3
−2r 4 ≤ a1

.
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QC (n) Graph

20



QC (n) versus Euler Totient Function φ(n)
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Current Work and Future Directions

Derive QC (n) formula for positive, odd integers n.

Explore the darker lines of the QC (n) graph.

Generalize methods to any quasiplatonic group; i.e., find all
topological actions of G = ∆/Γ on surfaces X ∼= H/Γ.

Physics applications? (string theory, Fenyman diagrams, statistical
mechanics...)
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Group Actions and Generating Vectors

Theorem (Riemann Existence Theorem)

A group G acts topologically on X of signature (n1, n2, n3) of genus g ≥ 2
if and only if G has a (n1, n2, n3)-generating vector and the
Riemann-Hurwitz formula holds:

g = 1 +
|G |
2

(
1− 1

n1
− 1

n2
− 1

n3

)
.

The equivalence of G -actions on X of signature (n1, n2, n3) induces an
equivalence on the (n1, n2, n3)-generating vectors ν of G :

Two vectors ν and ν ′ are equivalent if there exists
(w , φ) ∈ Aut(G )× Aut(∆) such that ρ′ = w ◦ ρ ◦ φ−1, where ρ and
ρ′ are the corresponding surface-kernel epimorphisms of ν and ν ′.
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Proof Sketch - Recursive Formula A

Signatures for n = 2
∏r

i=2 p
ai
i are of the form(

2k1pk22 · · · p
kr
r , 2

`1p`22 · · · p
`r
r , 2

h1ph22 · · · p
hr
r

)
.

We extend to signatures for n · par+1

r+1 by multiplying each period by ptr+1.
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Proof Sketch - Notation

Consider pa for a prime p and a positive integer a. If a ≥ 2, define

f (pk) =


1 k = 0
pk−1(p − 1) 1 ≤ k ≤ a− 1
pa−1(p − 2) k = a

.

If a = 1, then define

f (pk) =

{
1 k = 0
p − 2 k = 1

.
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Proof Sketch - Two Cases

Fix parameters k1, . . . , kr .

For a signature
(

2k1pk22 · · · pkrr , 2`1p
`2
2 · · · p`rr , 2h1p

h2
2 · · · phrr

)
of n,

• if `1, . . . , `r and h1, . . . , hr are not all equal, then

T
(

2k1pk22 · · · p
kr
r , 2

`1p`22 · · · p
`r
r , 2

h1ph22 · · · p
hr
r

)
=

r∏
i=2

f (pkii ).

• if `1, . . . , `r and h1, . . . , hr are all equal, then

T
(
pk22 · · · p

kr
r , 2p

a2
2 · · · p

ar
r , 2p

a2
2 · · · p

ar
r

)
=

{
1
2

∏r
i=2 f (pkii ) 1 ≤ ki ≤ ai − 1 for some i

1
2

∏r
i=2 f (pkii ) + 1

2 otherwise
.
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Proof Sketch - Extending The First Case

Assume `1, . . . , `r and h1, . . . , hr are not all equal.
Signatures for n · par+1

r+1 consist of the following three forms:(
2k1pk22 · · · p

kr
r ptr+1, 2

`1p`22 · · · p
`r
r p

ar+1

r+1 , 2
h1ph22 · · · p

hr
r p

ar+1

r+1

)
, 0 ≤ t ≤ ar+1,(

2k1pk22 · · · p
kr
r p

ar+1

r+1 , 2
`1p`22 · · · p

`r
r p

t
r+1, 2

h1ph22 · · · p
hr
r p

ar+1

r+1

)
, 0 ≤ t ≤ ar+1 − 1,(

2k1pk22 · · · p
kr
r p

ar+1

r+1 , 2
`1p`22 · · · p

`r
r p

ar+1

r+1 , 2
h1ph22 · · · p

hr
r ptr+1

)
, 0 ≤ t ≤ ar+1 − 1.

Then the total number of topological actions for this case is

r∏
i=2

f (pkii ) ·

(
ar+1∑
t=0

(f (ptr+1)) + 2

ar+1−1∑
t=0

(f (ptr+1))

)

=
r∏

i=2

f (pkii ) ·
(
p
ar+1−1
r+1 (pr+1 + 1)

)
.
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Proof Sketch - Extending the Second Case

We consider signatures for n ·par+1

r+1 of the following two possible extensions:(
pk22 · · · p

kr
r ptr+1, 2

a1pa22 · · · p
ar
r p

ar+1

r+1 , 2
a1pa22 · · · p

ar
r p

ar+1

r+1

)
, 0 ≤ t ≤ ar+1(

pk22 · · · p
kr
r p

ar+1

r+1 , 2
a1pa22 · · · p

ar
r ptr+1, 2

a1pa22 · · · p
ar
r p

ar+1

r+1

)
, 0 ≤ t ≤ ar+1 − 1.

We will incur factors of 1/2 depending on whether

ki = ai or ki = 0 for each i

or 1 ≤ ki ≤ ai − 1 for some i .

Consider those subcases, and follow the same procedure as before...!
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