Dessins d'Enfants
 and Topological Cyclic Actions on Surfaces

Charles Camacho
Oregon State University

AMS Sectional Meeting, Portland State University
Portland, Oregon
April 14, 2018

Dessins d'Enfants

A dessin d'enfant is a pair (X, D), where X is an orientable, compact surface and $D \subset X$ is a finite graph such that
(1) D is connected,
(2) D is bicolored (i.e., bipartite),
(3) $X \backslash D$ is the union of finitely many topological discs, called the faces of D.

Dessins d'Enfants

A dessin d'enfant is a pair (X, D), where X is an orientable, compact surface and $D \subset X$ is a finite graph such that
(1) D is connected,
(2) D is bicolored (i.e., bipartite),
(3) $X \backslash D$ is the union of finitely many topological discs, called the faces of D.

Two dessins (X, D) and $\left(X^{\prime}, D^{\prime}\right)$ are equivalent if there exists an orientation-preserving homeomorphism $X \rightarrow X^{\prime}$ whose restriction to D induces isomorphisms as bicolored graphs.

Regular Dessins

Regular Dessins

- The automorphism group $\operatorname{Aut}(D)$ of a dessin is the set of orientation-preserving homeomorphisms which preserve the dessin.

Regular Dessins

- The automorphism group $\operatorname{Aut}(D)$ of a dessin is the set of orientation-preserving homeomorphisms which preserve the dessin.
- A regular dessin is a dessin whose automorphism group acts transitively on the edges.

Regular Dessins

- The automorphism group $\operatorname{Aut}(D)$ of a dessin is the set of orientation-preserving homeomorphisms which preserve the dessin.
- A regular dessin is a dessin whose automorphism group acts transitively on the edges.

In other words, regular dessins are the most symmetric of all dessins.

Regular Dessins

- The automorphism group $\operatorname{Aut}(D)$ of a dessin is the set of orientation-preserving homeomorphisms which preserve the dessin.
- A regular dessin is a dessin whose automorphism group acts transitively on the edges.

In other words, regular dessins are the most symmetric of all dessins.

Example

Three regular dessins on the Riemann sphere with $\operatorname{Aut}(D) \cong C_{7}$, the cyclic group of order seven.

Triangle Groups

A triangle group $\Delta(\ell, m, n)$ is a group with the following presentation:

$$
\Delta(\ell, m, n)=\left\langle x, y, z: x^{\ell}=y^{m}=z^{n}=x y z=1\right\rangle .
$$

Triangle Groups

A triangle group $\Delta(\ell, m, n)$ is a group with the following presentation:

$$
\Delta(\ell, m, n)=\left\langle x, y, z: x^{\ell}=y^{m}=z^{n}=x y z=1\right\rangle .
$$

It arises from tessellations via triangles having angles $\pi / \ell, \pi / m, \pi / n$.

Triangle Groups

A triangle group $\Delta(\ell, m, n)$ is a group with the following presentation:

$$
\Delta(\ell, m, n)=\left\langle x, y, z: x^{\ell}=y^{m}=z^{n}=x y z=1\right\rangle .
$$

It arises from tessellations via triangles having angles $\pi / \ell, \pi / m, \pi / n$.

Figure: Tessellation of \mathbb{H} by $\Delta(2,3,7)$.

Quasiplatonic Surfaces

Assume from now on that all surfaces will have genus at least two.

Quasiplatonic Surfaces

Assume from now on that all surfaces will have genus at least two.

- A Belyī surface is a compact Riemann surface X admitting an embedded dessin. This happens if and only if $X \cong \mathbb{H} / \Gamma$ with $\Gamma \leq \Delta$ for some triangle group $\Delta:=\Delta\left(n_{1}, n_{2}, n_{3}\right)$. The triple $\left(n_{1}, n_{2}, n_{3}\right)$ is called a signature of X.

Quasiplatonic Surfaces

Assume from now on that all surfaces will have genus at least two.

- A Belyī surface is a compact Riemann surface X admitting an embedded dessin. This happens if and only if $X \cong \mathbb{H} / \Gamma$ with $\Gamma \leq \Delta$ for some triangle group $\Delta:=\Delta\left(n_{1}, n_{2}, n_{3}\right)$. The triple $\left(n_{1}, n_{2}, n_{3}\right)$ is called a signature of X.
- A Belyı̆ surface X is a quasiplatonic surface if it admits a regular dessin. This happens if and only if $X \cong \mathbb{H} / \Gamma$ for $\Gamma \triangleleft \Delta$ for some triangle group Δ and $\Gamma \cong \pi_{1}(X)$.

Quasiplatonic Surfaces

Assume from now on that all surfaces will have genus at least two.

- A Belyī surface is a compact Riemann surface X admitting an embedded dessin. This happens if and only if $X \cong \mathbb{H} / \Gamma$ with $\Gamma \leq \Delta$ for some triangle group $\Delta:=\Delta\left(n_{1}, n_{2}, n_{3}\right)$. The triple $\left(n_{1}, n_{2}, n_{3}\right)$ is called a signature of X.
- A Bely̆̆ surface X is a quasiplatonic surface if it admits a regular dessin. This happens if and only if $X \cong \mathbb{H} / \Gamma$ for $\Gamma \triangleleft \Delta$ for some triangle group Δ and $\Gamma \cong \pi_{1}(X)$.
Quasiplatonic surfaces are the most symmetric of all compact Riemann surfaces.

Example of Regular Dessin on Genus Three Surface

Automorphism Groups of Dessins and Triangle Groups

Let D be a regular dessin on a surface $X \cong \mathbb{H} / \Gamma$ with $\Gamma \unlhd \Delta$.

Automorphism Groups of Dessins and Triangle Groups

Let D be a regular dessin on a surface $X \cong \mathbb{H} / \Gamma$ with $\Gamma \unlhd \Delta$. Then

$$
\operatorname{Aut}(D) \cong \Delta / \Gamma
$$

Automorphism Groups of Dessins and Triangle Groups

Let D be a regular dessin on a surface $X \cong \mathbb{H} / \Gamma$ with $\Gamma \unlhd \Delta$. Then

$$
\operatorname{Aut}(D) \cong \Delta / \Gamma
$$

Moreover, $\operatorname{Aut}(D)$ acts by automorphisms on X.

Surface-Kernel Epimorphisms

Let $G:=\operatorname{Aut}(D)$ with D regular.

Surface-Kernel Epimorphisms

Let $G:=\operatorname{Aut}(D)$ with D regular. Since $G \cong \Delta\left(n_{1}, n_{2}, n_{3}\right) / \Gamma$, we consider surface-kernel epimorphisms

$$
\rho: \Delta\left(n_{1}, n_{2}, n_{3}\right) \longrightarrow G
$$

with $\operatorname{ker} \rho \cong \Gamma$ and $\operatorname{ker} \rho$ torsion-free.

Surface-Kernel Epimorphisms

Let $G:=\operatorname{Aut}(D)$ with D regular. Since $G \cong \Delta\left(n_{1}, n_{2}, n_{3}\right) / \Gamma$, we consider surface-kernel epimorphisms

$$
\rho: \Delta\left(n_{1}, n_{2}, n_{3}\right) \longrightarrow G
$$

with $\operatorname{ker} \rho \cong \Gamma$ and $\operatorname{ker} \rho$ torsion-free.

This map is achieved by mapping the generators x, y, z of $\Delta\left(n_{1}, n_{2}, n_{3}\right)$ to elements $\eta_{1}, \eta_{2}, \eta_{3}$ of G satisfying

Surface-Kernel Epimorphisms

Let $G:=\operatorname{Aut}(D)$ with D regular. Since $G \cong \Delta\left(n_{1}, n_{2}, n_{3}\right) / \Gamma$, we consider surface-kernel epimorphisms

$$
\rho: \Delta\left(n_{1}, n_{2}, n_{3}\right) \longrightarrow G
$$

with $\operatorname{ker} \rho \cong \Gamma$ and $\operatorname{ker} \rho$ torsion-free.

This map is achieved by mapping the generators x, y, z of $\Delta\left(n_{1}, n_{2}, n_{3}\right)$ to elements $\eta_{1}, \eta_{2}, \eta_{3}$ of G satisfying

- order of η_{i} equals n_{i} for $i=1,2,3$;

Surface-Kernel Epimorphisms

Let $G:=\operatorname{Aut}(D)$ with D regular. Since $G \cong \Delta\left(n_{1}, n_{2}, n_{3}\right) / \Gamma$, we consider surface-kernel epimorphisms

$$
\rho: \Delta\left(n_{1}, n_{2}, n_{3}\right) \longrightarrow G
$$

with $\operatorname{ker} \rho \cong \Gamma$ and $\operatorname{ker} \rho$ torsion-free.

This map is achieved by mapping the generators x, y, z of $\Delta\left(n_{1}, n_{2}, n_{3}\right)$ to elements $\eta_{1}, \eta_{2}, \eta_{3}$ of G satisfying

- order of η_{i} equals n_{i} for $i=1,2,3$;
- $\eta_{1} \eta_{2} \eta_{3}=1$;

Surface-Kernel Epimorphisms

Let $G:=\operatorname{Aut}(D)$ with D regular. Since $G \cong \Delta\left(n_{1}, n_{2}, n_{3}\right) / \Gamma$, we consider surface-kernel epimorphisms

$$
\rho: \Delta\left(n_{1}, n_{2}, n_{3}\right) \longrightarrow G
$$

with $\operatorname{ker} \rho \cong \Gamma$ and $\operatorname{ker} \rho$ torsion-free.

This map is achieved by mapping the generators x, y, z of $\Delta\left(n_{1}, n_{2}, n_{3}\right)$ to elements $\eta_{1}, \eta_{2}, \eta_{3}$ of G satisfying

- order of η_{i} equals n_{i} for $i=1,2,3$;
- $\eta_{1} \eta_{2} \eta_{3}=1$;
- $\left\langle\eta_{1}, \eta_{2}, \eta_{3}\right\rangle=G$.

Surface-Kernel Epimorphisms

Let $G:=\operatorname{Aut}(D)$ with D regular. Since $G \cong \Delta\left(n_{1}, n_{2}, n_{3}\right) / \Gamma$, we consider surface-kernel epimorphisms

$$
\rho: \Delta\left(n_{1}, n_{2}, n_{3}\right) \longrightarrow G
$$

with $\operatorname{ker} \rho \cong \Gamma$ and $\operatorname{ker} \rho$ torsion-free.

This map is achieved by mapping the generators x, y, z of $\Delta\left(n_{1}, n_{2}, n_{3}\right)$ to elements $\eta_{1}, \eta_{2}, \eta_{3}$ of G satisfying

- order of η_{i} equals n_{i} for $i=1,2,3$;
- $\eta_{1} \eta_{2} \eta_{3}=1$;
- $\left\langle\eta_{1}, \eta_{2}, \eta_{3}\right\rangle=G$.

The tuple $\left(\eta_{1}, \eta_{2}, \eta_{3}\right)$ is called a $\left(n_{1}, n_{2}, n_{3}\right)$-generating vector of G.

Example: $G=C_{7}$

Write $G=\langle\rho\rangle$ with $\rho^{7}=1$.

Example: $G=C_{7}$

Write $G=\langle\rho\rangle$ with $\rho^{7}=1$. Then

$$
\left(\rho^{2}, \rho^{4}, \rho^{1}\right), \quad\left(\rho^{3}, \rho^{3}, \rho^{1}\right), \quad\left(\rho^{1}, \rho^{5}, \rho^{1}\right)
$$

are all $(7,7,7)$-generating vectors for G.

Generating Vectors and Dessins

Identifying edges as shown makes a quasiplatonic surface $X \cong \mathbb{H} / \Gamma$ with $\Gamma \triangleleft \Delta(7,7,7)$ and $\Delta(7,7,7) / \Gamma \cong C_{7}$.

Generating Vectors and Dessins

Identifying edges as shown makes a quasiplatonic surface $X \cong \mathbb{H} / \Gamma$ with $\Gamma \triangleleft \Delta(7,7,7)$ and $\Delta(7,7,7) / \Gamma \cong C_{7}$.

- If $\rho=(1,2,3,4,5,6,7)$ denotes rotation by $2 \pi / 7$ clockwise about the face-center bounded by the seven numbered edges, then the edges about the white and black vertices are described by the permutations ρ and ρ^{5}, respectively.

Group Acting on a Surface

A group G acts topologically on a surface X of genus $g \geq 2$ if there is a monomorphism $\epsilon: G \rightarrow \operatorname{Homeo}^{+}(X)$.

Group Acting on a Surface

A group G acts topologically on a surface X of genus $g \geq 2$ if there is a monomorphism $\epsilon: G \rightarrow \operatorname{Homeo}^{+}(X)$.

Two actions ϵ_{1} and ϵ_{2} are equivalent if $\epsilon_{1}(G)$ and $\epsilon_{2}(G)$ are conjugate in Homeo ${ }^{+}(X)$.

Main Questions

(1) What is the total number of quasiplatonic actions of C_{n}, the cyclic group of order n, on surfaces?

Main Questions

(1) What is the total number of quasiplatonic actions of C_{n}, the cyclic group of order n, on surfaces?
(2) How does the total number of actions of C_{n} relate to the number of regular dessins D with $\operatorname{Aut}(D) \cong C_{n}$?

Harvey's Theorem for the Quasiplatonic Case

Harvey's Theorem for the Quasiplatonic Case

Theorem (Harvey, 1966)
Let $n=\operatorname{lcm}\left(n_{1}, n_{2}, n_{3}\right)$.

Harvey's Theorem for the Quasiplatonic Case

Theorem (Harvey, 1966)
Let $n=\operatorname{Icm}\left(n_{1}, n_{2}, n_{3}\right)$. Then C_{n} acts on X of genus $g \geq 2$ with signature $\left(n_{1}, n_{2}, n_{3}\right)$ if and only if

Harvey's Theorem for the Quasiplatonic Case

Theorem (Harvey, 1966)
Let $n=\operatorname{Icm}\left(n_{1}, n_{2}, n_{3}\right)$. Then C_{n} acts on X of genus $g \geq 2$ with signature $\left(n_{1}, n_{2}, n_{3}\right)$ if and only if
(1) $n=\operatorname{lcm}\left(n_{1}, n_{2}\right)=\operatorname{lcm}\left(n_{1}, n_{3}\right)=\operatorname{lcm}\left(n_{2}, n_{3}\right)$;

Harvey's Theorem for the Quasiplatonic Case

Theorem (Harvey, 1966)
Let $n=\operatorname{lcm}\left(n_{1}, n_{2}, n_{3}\right)$. Then C_{n} acts on X of genus $g \geq 2$ with signature $\left(n_{1}, n_{2}, n_{3}\right)$ if and only if
(1) $n=\operatorname{lcm}\left(n_{1}, n_{2}\right)=\operatorname{lcm}\left(n_{1}, n_{3}\right)=\operatorname{lcm}\left(n_{2}, n_{3}\right)$;
(2) for n even, exactly two of n_{1}, n_{2}, n_{3} must be divisible by the maximum power of two dividing n;

Harvey's Theorem for the Quasiplatonic Case

Theorem (Harvey, 1966)
Let $n=\operatorname{lcm}\left(n_{1}, n_{2}, n_{3}\right)$. Then C_{n} acts on X of genus $g \geq 2$ with signature $\left(n_{1}, n_{2}, n_{3}\right)$ if and only if
(1) $n=\operatorname{lcm}\left(n_{1}, n_{2}\right)=\operatorname{lcm}\left(n_{1}, n_{3}\right)=\operatorname{lcm}\left(n_{2}, n_{3}\right)$;
(2) for n even, exactly two of n_{1}, n_{2}, n_{3} must be divisible by the maximum power of two dividing n;
(3) the Riemann-Hurwitz formula holds:

$$
g=1+\frac{n}{2}\left(1-\frac{1}{n_{1}}-\frac{1}{n_{2}}-\frac{1}{n_{3}}\right) .
$$

Enumerating Topological Cyclic Actions - Benim, Wootton 2013

Enumerating Topological Cyclic Actions - Benim, Wootton 2013

Let $n=\prod_{i=1}^{r} p_{i}^{a_{i}}$ be the prime factorization of n.

Signature	$T=$ number of distinct topological actions
$\left(n_{1}, n_{2}, n_{3}\right)$	$T=\phi\left(\operatorname{gcd}\left(n_{1}, n_{2}, n_{3}\right)\right) \cdot \prod_{i=1}^{w} \frac{p_{i}-2}{p_{i}-1}$
$\left(n_{1}, n, n\right)$	$T=\frac{1}{2}\left(\tau_{1}\left(n, n_{1}\right)+\phi(n) \cdot \prod_{i=1}^{w} \frac{p_{i}-2}{p_{i}-1}\right)$
(n, n, n)	$T=\frac{1}{6}\left(3+2 \tau_{2}(n)+\phi(n) \cdot \prod_{i=1}^{r} \frac{p_{i}-2}{p_{i}-1}\right)$

Enumerating Topological Cyclic Actions - Benim, Wootton 2013

Let $n=\prod_{i=1}^{r} p_{i}^{a_{i}}$ be the prime factorization of n.

Signature	$T=$ number of distinct topological actions
$\left(n_{1}, n_{2}, n_{3}\right)$	$T=\phi\left(\operatorname{gcd}\left(n_{1}, n_{2}, n_{3}\right)\right) \cdot \prod_{i=1}^{w} \frac{p_{i}-2}{p_{i}-1}$
$\left(n_{1}, n, n\right)$	$T=\frac{1}{2}\left(\tau_{1}\left(n, n_{1}\right)+\phi(n) \cdot \prod_{i=1}^{w} \frac{p_{i}-2}{p_{i}-1}\right)$
(n, n, n)	$T=\frac{1}{6}\left(3+2 \tau_{2}(n)+\phi(n) \cdot \prod_{i=1}^{r} \frac{p_{i}-2}{p_{i}-1}\right)$

- $\tau_{1}\left(n_{1}, n\right)=$ number of noncongruent, nonzero solutions to $x^{2}+2 x \equiv 0 \bmod n$ where $\operatorname{gcd}(x, n)=n / n_{1}$;
- $\tau_{2}(n)=$ number of noncongruent solutions to $x^{2}+x+1 \equiv 0 \bmod n$;
- $w \geq 0$ is an integer representing the number of primes (including multiplicity) shared in common among n_{1}, n_{2}, n_{3}.

The Number of Quasiplatonic Cyclic Surfaces

The Number of Quasiplatonic Cyclic Surfaces

Let $Q C(n)$ be the number of distinct topological actions of C_{n} on quasiplatonic surfaces.

The Number of Quasiplatonic Cyclic Surfaces

Let $Q C(n)$ be the number of distinct topological actions of C_{n} on quasiplatonic surfaces.

Compute $Q C(n)$ via the following procedure:

The Number of Quasiplatonic Cyclic Surfaces

Let $Q C(n)$ be the number of distinct topological actions of C_{n} on quasiplatonic surfaces.

Compute $Q C(n)$ via the following procedure:
(1) find all admissible signatures $\left(n_{1}, n_{2}, n_{3}\right)$ for a given n;

The Number of Quasiplatonic Cyclic Surfaces

Let $Q C(n)$ be the number of distinct topological actions of C_{n} on quasiplatonic surfaces.

Compute $Q C(n)$ via the following procedure:
(1) find all admissible signatures $\left(n_{1}, n_{2}, n_{3}\right)$ for a given n;
(2) for each signature, use one of three different formulas giving the number of nonequivalent quasiplatonic cyclic actions on surfaces of that signature;

The Number of Quasiplatonic Cyclic Surfaces

Let $Q C(n)$ be the number of distinct topological actions of C_{n} on quasiplatonic surfaces.

Compute $Q C(n)$ via the following procedure:
(1) find all admissible signatures $\left(n_{1}, n_{2}, n_{3}\right)$ for a given n;
(2) for each signature, use one of three different formulas giving the number of nonequivalent quasiplatonic cyclic actions on surfaces of that signature;
(3) add up all values given by the formulas from all possible signatures for n. This number will be $Q C(n)$.

Example

Let $n=20$. Let $T\left(n_{1}, n_{2}, n_{3}\right)$ denote the number of topological actions of C_{n} on a surface with signature $\left(n_{1}, n_{2}, n_{3}\right)$.

Example

Let $n=20$. Let $T\left(n_{1}, n_{2}, n_{3}\right)$ denote the number of topological actions of C_{n} on a surface with signature $\left(n_{1}, n_{2}, n_{3}\right)$.

Signature	$T\left(n_{1}, n_{2}, n_{3}\right)$
$(4,5,20)$	$T=1$
$(4,10,20)$	$T=1$
$(2,20,20)$	$T=1$
$(5,20,20)$	$T=2$
$(10,20,20)$	$T=2$

Example

Let $n=20$. Let $T\left(n_{1}, n_{2}, n_{3}\right)$ denote the number of topological actions of C_{n} on a surface with signature $\left(n_{1}, n_{2}, n_{3}\right)$.

Signature	$T\left(n_{1}, n_{2}, n_{3}\right)$
$(4,5,20)$	$T=1$
$(4,10,20)$	$T=1$
$(2,20,20)$	$T=1$
$(5,20,20)$	$T=2$
$(10,20,20)$	$T=2$

Then $Q C(20)=1+1+1+2+2=7$.

Example

For $n=p \geq 5$ a prime, there is only one admissible signature: (p, p, p).

Example

For $n=p \geq 5$ a prime, there is only one admissible signature: (p, p, p).
Then

$$
\begin{aligned}
Q C(p) & =T(p, p, p) \\
& =\left\{\begin{array}{ll}
\frac{1}{6}(p+1) & p \equiv 5 \bmod 6 \\
\frac{1}{6}(p+1)+\frac{2}{3} & p \equiv 1 \bmod 6
\end{array} .\right.
\end{aligned}
$$

Preliminary Results

Preliminary Results

Theorem (C, 2018)
Suppose n is even and $n \geq 8$, so that $n=2^{a_{1}} \prod_{i=2}^{r} p_{i}^{a_{i}}$. Then the number of distinct topological actions of C_{n} on quasiplatonic surfaces is

$$
Q C\left(2^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}\right)=2^{a_{1}-2}\left(\prod_{i=2}^{r} p_{i}^{a_{i}-1}\left(p_{i}+1\right)\right)-1+\left\{\begin{array}{ll}
2^{r-2} & a_{1}=1 \\
2^{r-1} & a_{1}=2 \\
2^{r} & a_{1} \geq 3
\end{array} .\right.
$$

Preliminary Results

Theorem (C, 2018)

Suppose n is even and $n \geq 8$, so that $n=2^{a_{1}} \prod_{i=2}^{r} p_{i}^{a_{i}}$. Then the number of distinct topological actions of C_{n} on quasiplatonic surfaces is

$$
Q C\left(2^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}\right)=2^{a_{1}-2}\left(\prod_{i=2}^{r} p_{i}^{a_{i}-1}\left(p_{i}+1\right)\right)-1+\left\{\begin{array}{ll}
2^{r-2} & a_{1}=1 \\
2^{r-1} & a_{1}=2 \\
2^{r} & a_{1} \geq 3
\end{array} .\right.
$$

Corollary

Let $r\left(C_{n}\right)$ denote the number of regular dessins with C_{n} as their automorphism group. Then for even $n \geq 8$,

$$
Q C(n)-\frac{1}{6} r\left(C_{n}\right)=-1+\left\{\begin{array}{ll}
2^{r-2} & a_{1}=1 \\
2^{r-1} & a_{1}=2 \\
2^{r} & a_{1} \geq 3
\end{array} .\right.
$$

Proof Outline - Recursive Formulas A and B

Proof Outline - Recursive Formulas A and B

(A) First show, when $n=2 \cdot \prod_{i=2}^{r} p_{i}^{a_{i}}$
$Q C\left(n \cdot p_{r+1}^{a_{r+1}}\right)=\left(Q C(n)+1-2^{r-2}\right) p_{r+1}^{a_{r+1}-1}\left(p_{r+1}+1\right)-1+2^{r-1}$.

Proof Outline - Recursive Formulas A and B

(A) First show, when $n=2 \cdot \prod_{i=2}^{r} p_{i}^{a_{i}}$
$Q C\left(n \cdot p_{r+1}^{a_{r+1}}\right)=\left(Q C(n)+1-2^{r-2}\right) p_{r+1}^{a_{r+1}-1}\left(p_{r+1}+1\right)-1+2^{r-1}$.
(B) Then prove, for any even $n \geq 8$,
$Q C\left(2^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}\right)=2 \cdot Q C\left(2^{a_{1}-1} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}\right)+1+\left\{\begin{array}{lr}0 & 2 \leq a_{1} \leq 3 \\ -2^{r} & 4 \leq a_{1}\end{array}\right.$.

QC(n) Graph

$Q C(n)$ versus Euler Totient Function $\phi(n)$

Current Work and Future Directions

Current Work and Future Directions

- Derive $Q C(n)$ formula for positive, odd integers n.

Current Work and Future Directions

- Derive $Q C(n)$ formula for positive, odd integers n.
- Explore the darker lines of the $Q C(n)$ graph.

Current Work and Future Directions

- Derive $Q C(n)$ formula for positive, odd integers n.
- Explore the darker lines of the $Q C(n)$ graph.
- Generalize methods to any quasiplatonic group; i.e., find all topological actions of $G=\Delta / \Gamma$ on surfaces $X \cong \mathbb{H} / \Gamma$.

Current Work and Future Directions

- Derive $Q C(n)$ formula for positive, odd integers n.
- Explore the darker lines of the $Q C(n)$ graph.
- Generalize methods to any quasiplatonic group; i.e., find all topological actions of $G=\Delta / \Gamma$ on surfaces $X \cong \mathbb{H} / \Gamma$.
- Physics applications? (string theory, Fenyman diagrams, statistical mechanics...)

References

- Benim, R., Wootton, A. Enumerating Quasiplatonic Cyclic Group Actions. Journal of Mathematics, 43(5), 2013.
- Broughton, S. A. Classifying finite group actions on surfaces of low genus. Journal of Pure and Applied Algebra, 69(3), 233-270. 1991.
- Girondo, E., González-Diez, G. Introduction to Compact Riemann Surfaces and Dessins d'Enfants. Cambridge: Cambridge UP, 2012. Print.
- Harvey, W. J. Cyclic groups of automorphisms of a compact Riemann surface. The Quarterly Journal of Mathematics, 17(1), 86-97. 1966.
- Jones, G. A. Regular dessins with a given automorphism group. Contemporary Mathematics, 629, 245-260. 2014.
- Jones, G. A., Wolfart, J. Dessins d'Enfants on Riemann Surfaces. Switzerland: Springer International Publishing, 2016. Print.
- By Tamfang - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=12806647
- Wootton, A. Extending topological group actions to conformal group actions. Albanian Journal of Mathematics (ISNN: 1930-1235), 1(3), 133-143. 2007.

Questions? Thank you!

Group Actions and Generating Vectors

Theorem (Riemann Existence Theorem)

A group G acts topologically on X of signature $\left(n_{1}, n_{2}, n_{3}\right)$ of genus $g \geq 2$ if and only if G has a $\left(n_{1}, n_{2}, n_{3}\right)$-generating vector and the Riemann-Hurwitz formula holds:

$$
g=1+\frac{|G|}{2}\left(1-\frac{1}{n_{1}}-\frac{1}{n_{2}}-\frac{1}{n_{3}}\right) .
$$

Group Actions and Generating Vectors

Theorem (Riemann Existence Theorem)

A group G acts topologically on X of signature $\left(n_{1}, n_{2}, n_{3}\right)$ of genus $g \geq 2$ if and only if G has a $\left(n_{1}, n_{2}, n_{3}\right)$-generating vector and the Riemann-Hurwitz formula holds:

$$
g=1+\frac{|G|}{2}\left(1-\frac{1}{n_{1}}-\frac{1}{n_{2}}-\frac{1}{n_{3}}\right) .
$$

The equivalence of G-actions on X of signature $\left(n_{1}, n_{2}, n_{3}\right)$ induces an equivalence on the (n_{1}, n_{2}, n_{3})-generating vectors ν of G :

Group Actions and Generating Vectors

Theorem (Riemann Existence Theorem)

A group G acts topologically on X of signature $\left(n_{1}, n_{2}, n_{3}\right)$ of genus $g \geq 2$ if and only if G has a $\left(n_{1}, n_{2}, n_{3}\right)$-generating vector and the Riemann-Hurwitz formula holds:

$$
g=1+\frac{|G|}{2}\left(1-\frac{1}{n_{1}}-\frac{1}{n_{2}}-\frac{1}{n_{3}}\right) .
$$

The equivalence of G-actions on X of signature $\left(n_{1}, n_{2}, n_{3}\right)$ induces an equivalence on the (n_{1}, n_{2}, n_{3})-generating vectors ν of G :

- Two vectors ν and ν^{\prime} are equivalent if there exists $(w, \phi) \in \operatorname{Aut}(G) \times \operatorname{Aut}(\Delta)$ such that $\rho^{\prime}=w \circ \rho \circ \phi^{-1}$, where ρ and ρ^{\prime} are the corresponding surface-kernel epimorphisms of ν and ν^{\prime}.

Proof Sketch - Recursive Formula A

Signatures for $n=2 \prod_{i=2}^{r} p_{i}^{a_{i}}$ are of the form

$$
\left(2^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}, 2^{\ell_{1}} p_{2}^{\ell_{2}} \cdots p_{r}^{\ell_{r}}, 2^{h_{1}} p_{2}^{h_{2}} \cdots p_{r}^{h_{r}}\right) .
$$

Proof Sketch - Recursive Formula A

Signatures for $n=2 \prod_{i=2}^{r} p_{i}^{a_{i}}$ are of the form

$$
\left(2^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}, 2^{\ell_{1}} p_{2}^{\ell_{2}} \cdots p_{r}^{\ell_{r}}, 2^{h_{1}} p_{2}^{h_{2}} \cdots p_{r}^{h_{r}}\right) .
$$

We extend to signatures for $n \cdot p_{r+1}^{a_{r+1}}$ by multiplying each period by p_{r+1}^{t}.

Proof Sketch - Notation

Consider p^{a} for a prime p and a positive integer a. If $a \geq 2$, define

$$
f\left(p^{k}\right)=\left\{\begin{array}{lr}
1 & k=0 \\
p^{k-1}(p-1) & 1 \leq k \leq a-1 \\
p^{a-1}(p-2) & k=a
\end{array} .\right.
$$

If $a=1$, then define

$$
f\left(p^{k}\right)=\left\{\begin{array}{ll}
1 & k=0 \\
p-2 & k=1
\end{array} .\right.
$$

Proof Sketch - Two Cases

Fix parameters k_{1}, \ldots, k_{r}.
For a signature $\left(2^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}, 2^{\ell_{1}} p_{2}^{\ell_{2}} \cdots p_{r}^{\ell_{r}}, 2^{h_{1}} p_{2}^{h_{2}} \cdots p_{r}^{h_{r}}\right)$ of n,

Proof Sketch - Two Cases

Fix parameters k_{1}, \ldots, k_{r}.
For a signature $\left(2^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}, 2^{\ell_{1}} p_{2}^{\ell_{2}} \cdots p_{r}^{\ell_{r}}, 2^{h_{1}} p_{2}^{h_{2}} \cdots p_{r}^{h_{r}}\right)$ of n,

- if $\ell_{1}, \ldots, \ell_{r}$ and h_{1}, \ldots, h_{r} are not all equal, then

$$
T\left(2^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}, 2^{\ell_{1}} p_{2}^{\ell_{2}} \cdots p_{r}^{\ell_{r}}, 2^{h_{1}} p_{2}^{h_{2}} \cdots p_{r}^{h_{r}}\right)=\prod_{i=2}^{r} f\left(p_{i}^{k_{i}}\right)
$$

Proof Sketch - Two Cases

Fix parameters k_{1}, \ldots, k_{r}.
For a signature $\left(2^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}, 2^{\ell_{1}} p_{2}^{\ell_{2}} \cdots p_{r}^{\ell_{r}}, 2^{h_{1}} p_{2}^{h_{2}} \cdots p_{r}^{h_{r}}\right)$ of n,

- if $\ell_{1}, \ldots, \ell_{r}$ and h_{1}, \ldots, h_{r} are not all equal, then

$$
T\left(2^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}, 2^{\ell_{1}} p_{2}^{\ell_{2}} \cdots p_{r}^{\ell_{r}}, 2^{h_{1}} p_{2}^{h_{2}} \cdots p_{r}^{h_{r}}\right)=\prod_{i=2}^{r} f\left(p_{i}^{k_{i}}\right)
$$

- if $\ell_{1}, \ldots, \ell_{r}$ and h_{1}, \ldots, h_{r} are all equal, then

$$
\begin{aligned}
& T\left(p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}, 2 p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}, 2 p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}\right) \\
& =\left\{\begin{array}{lr}
\frac{1}{2} \prod_{i=2}^{r} f\left(p_{i}^{k_{i}}\right) \quad 1 \leq k_{i} \leq a_{i}-1 \text { for some } i \\
\frac{1}{2} \prod_{i=2}^{r} f\left(p_{i}^{k_{i}}\right)+\frac{1}{2} & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Proof Sketch - Extending The First Case

Assume $\ell_{1}, \ldots, \ell_{r}$ and h_{1}, \ldots, h_{r} are not all equal.
Signatures for $n \cdot p_{r+1}^{a_{r+1}}$ consist of the following three forms:

$$
\begin{aligned}
& \left(2^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}} p_{r+1}^{t}, 2^{\ell_{1}} p_{2}^{\ell_{2}} \cdots p_{r}^{\ell_{r}} p_{r+1}^{a_{r+1}}, 2^{h_{1}} p_{2}^{h_{2}} \cdots p_{r}^{h_{r}} p_{r+1}^{a_{r+1}}\right), 0 \leq t \leq a_{r+1}, \\
& \left(2^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}} p_{r+1}^{a_{r+1}}, 2^{\ell_{1}} p_{2}^{\ell_{2}} \cdots p_{r}^{\ell_{r}} p_{r+1}^{t}, 2^{h_{1}} p_{2}^{h_{2}} \cdots p_{r}^{h_{r}} p_{r+1}^{a_{r+1}}\right), 0 \leq t \leq a_{r+1}-1, \\
& \left(2^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}} p_{r+1}^{a_{r+1}}, 2^{\ell_{1}} p_{2}^{\ell_{2}} \cdots p_{r}^{\ell_{r}} p_{r+1}^{a_{r+1}}, 2^{h_{1}} p_{2}^{h_{2}} \cdots p_{r}^{h_{r}} p_{r+1}^{t}\right), 0 \leq t \leq a_{r+1}-1 .
\end{aligned}
$$

Proof Sketch - Extending The First Case

Assume $\ell_{1}, \ldots, \ell_{r}$ and h_{1}, \ldots, h_{r} are not all equal.
Signatures for $n \cdot p_{r+1}^{a_{r+1}}$ consist of the following three forms:

$$
\begin{aligned}
& \left(2^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}} p_{r+1}^{t}, 2^{\ell_{1}} p_{2}^{\ell_{2}} \cdots p_{r}^{\ell_{r}} p_{r+1}^{a_{r+1}}, 2^{h_{1}} p_{2}^{h_{2}} \cdots p_{r}^{h_{r}} p_{r+1}^{a_{r+1}}\right), 0 \leq t \leq a_{r+1}, \\
& \left(2^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}} p_{r+1}^{a_{r+1}}, 2^{\ell_{1}} p_{2}^{\ell_{2}} \cdots p_{r}^{\ell_{r}} p_{r+1}^{t}, 2^{h_{1}} p_{2}^{h_{2}} \cdots p_{r}^{h_{r}} p_{r+1}^{a_{r+1}}\right), 0 \leq t \leq a_{r+1}-1, \\
& \left(2^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}} p_{r+1}^{a_{r+1}}, 2^{\ell_{1}} p_{2}^{\ell_{2}} \cdots p_{r}^{\ell_{r}} p_{r+1}^{a_{r+1}}, 2^{h_{1}} p_{2}^{h_{2}} \cdots p_{r}^{h_{r}} p_{r+1}^{t}\right), 0 \leq t \leq a_{r+1}-1 .
\end{aligned}
$$

Then the total number of topological actions for this case is

$$
\begin{aligned}
\prod_{i=2}^{r} f\left(p_{i}^{k_{i}}\right) & \cdot\left(\sum_{t=0}^{a_{r+1}}\left(f\left(p_{r+1}^{t}\right)\right)+2 \sum_{t=0}^{a_{r+1}-1}\left(f\left(p_{r+1}^{t}\right)\right)\right) \\
& =\prod_{i=2}^{r} f\left(p_{i}^{k_{i}}\right) \cdot\left(p_{r+1}^{a_{r+1}-1}\left(p_{r+1}+1\right)\right) .
\end{aligned}
$$

Proof Sketch - Extending the Second Case

We consider signatures for $n \cdot p_{r+1}^{a_{r+1}}$ of the following two possible extensions:

$$
\begin{aligned}
& \left(p_{2}^{k_{2}} \cdots p_{r}^{k_{r}} p_{r+1}^{t}, 2^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}} p_{r+1}^{a_{r+1}}, 2^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}} p_{r+1}^{a_{r+1}}\right), 0 \leq t \leq a_{r+1} \\
& \left(p_{2}^{k_{2}} \cdots p_{r}^{k_{r}} p_{r+1}^{a_{r+1}}, 2^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}} p_{r+1}^{t}, 2^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}} p_{r+1}^{a_{r+1}}\right), 0 \leq t \leq a_{r+1}-1
\end{aligned}
$$

Proof Sketch - Extending the Second Case

We consider signatures for $n \cdot p_{r+1}^{a_{r+1}}$ of the following two possible extensions:

$$
\begin{aligned}
& \left(p_{2}^{k_{2}} \cdots p_{r}^{k_{r}} p_{r+1}^{t}, 2^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}} p_{r+1}^{a_{r+1}}, 2^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}} p_{r+1}^{a_{r+1}}\right), 0 \leq t \leq a_{r+1} \\
& \left(p_{2}^{k_{2}} \cdots p_{r}^{k_{r}} p_{r+1}^{a_{r+1}}, 2^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}} p_{r+1}^{t}, 2^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}} p_{r+1}^{a_{r+1}}\right), 0 \leq t \leq a_{r+1}-1
\end{aligned}
$$

We will incur factors of $1 / 2$ depending on whether

- $k_{i}=a_{i}$ or $k_{i}=0$ for each i
- or $1 \leq k_{i} \leq a_{i}-1$ for some i.

Proof Sketch - Extending the Second Case

We consider signatures for $n \cdot p_{r+1}^{a_{r+1}}$ of the following two possible extensions:

$$
\begin{aligned}
& \left(p_{2}^{k_{2}} \cdots p_{r}^{k_{r}} p_{r+1}^{t}, 2^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}} p_{r+1}^{a_{r+1}}, 2^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}} p_{r+1}^{a_{r+1}}\right), 0 \leq t \leq a_{r+1} \\
& \left(p_{2}^{k_{2}} \cdots p_{r}^{k_{r}} p_{r+1}^{a_{r+1}}, 2^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}} p_{r+1}^{t}, 2^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}} p_{r+1}^{a_{r+1}}\right), 0 \leq t \leq a_{r+1}-1
\end{aligned}
$$

We will incur factors of $1 / 2$ depending on whether

- $k_{i}=a_{i}$ or $k_{i}=0$ for each i
- or $1 \leq k_{i} \leq a_{i}-1$ for some i.

Consider those subcases, and follow the same procedure as before...!

