Topological and \mathcal{H}^q Equivalence of Prime Cyclic *p*-gonal Actions on Riemann Surfaces -Tables

S. Allen Broughton

Example 1 The following table show the complete story for the smallest genus and prime with conflation.

Generating Vector of \mathbb{Z}_5	Multiplicity Matrix		
	$\begin{bmatrix} 0 & 1 & 3 & 5 & 7 \end{bmatrix}$		
	2 1 2 4 6		
$(c_1, c_2, c_3, c_4) = (1, 1, 1, 2)$	$1 \ 3 \ 2 \ 4 \ 5$		
	$1 \ 2 \ 4 \ 3 \ 5$		
	$\begin{bmatrix} 0 & 1 & 3 & 5 & 7 \end{bmatrix}$		
	$1 \ 1 \ 3 \ 5 \ 5$		
$(c_1, c_2, c_3, c_4) = (1, 1, 4, 4)$	$1 \ 3 \ 3 \ 3 \ 5$		
	1 3 3 3 5		
	$\begin{bmatrix} 1 & 1 & 3 & 5 & 5 \end{bmatrix}$		
	$1 \ 2 \ 3 \ 4 \ 5$		
$(c_1, c_2, c_3, c_4) = (1, 2, 3, 4)$	$1 \ 2 \ 3 \ 4 \ 5$		
	1 2 3 4 5		
	$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$		

Table 1

Example 2 Here is a sample of low genus actions that are not distinguished by $\mathcal{H}^1(S)$ equivalence and the lowest degree differential that separates them.

p	t	σ	some conflated actions	smallest degree of
				separating differential
5	4	4	(1, 1, 4, 4), (1, 2, 3, 4)	2
5	5	6	(1, 1, 1, 3, 4), (1, 1, 2, 2, 4)	2
5	6	8	(1, 1, 1, 4, 4, 4), (1, 1, 2, 3, 4, 4)	2
7	4	6	(1, 1, 6, 6), (1, 2, 5, 6)	2
7	5	9	(1, 1, 1, 5, 6), (1, 1, 2, 5, 5), (1, 1, 3, 4, 5)	2
7	6	12	(1, 1, 1, 6, 6, 6), (1, 1, 2, 5, 6, 6)	3
			(1, 1, 3, 4, 6, 6), (1, 2, 3, 4, 5, 6)	

Table 2

Looking at the table we see that quadratic differentials will not always work.

Example 3 In the table following the column good degrees are the q such that \mathcal{H}^q separates topological actions for all t. The bad degrees have conflated actions for infinitely many values of t.

p	good degrees	bad degrees
3	1,2,3	
5	2,4	1, 3, 5
7	3,5	1, 2, 4, 6, 7
11	3, 5, 7, 9	1, 2, 4, 6, 8, 10, 11
13	2, 4, 6, 8, 10, 12	1, 3, 5, 7, 9, 11, 13
17	2, 4, 5, 6, 8, 10, 12, 13, 14, 16	1, 3, 7, 9, 11, 15, 17
19	3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17	1, 2, 6, 10, 14, 18, 19

Table 3