Topological and \mathcal{H}^{q} Equivalence of Prime Cyclic p-gonal Actions on Riemann Surfaces Tables

S. Allen Broughton

Example 1 The following table show the complete story for the smallest genus and prime with conflation.

Generating Vector of \mathbb{Z}_{5}	Multiplicity Matrix
$\left(c_{1}, c_{2}, c_{3}, c_{4}\right)=(1,1,1,2)$	$\left[\begin{array}{lllll}0 & 1 & 3 & 5 & 7 \\ 2 & 1 & 2 & 4 & 6 \\ 1 & 3 & 2 & 4 & 5 \\ 1 & 2 & 4 & 3 & 5 \\ 0 & 2 & 4 & 5 & 4\end{array}\right]$
$\left(c_{1}, c_{2}, c_{3}, c_{4}\right)=(1,1,4,4)$	$\left[\begin{array}{lllll}0 & 1 & 3 & 5 & 7 \\ 1 & 1 & 3 & 5 & 5 \\ 1 & 3 & 3 & 3 & 5 \\ 1 & 3 & 3 & 3 & 5 \\ 1 & 1 & 3 & 5 & 5\end{array}\right]$
$\left(c_{1}, c_{2}, c_{3}, c_{4}\right)=(1,2,3,4)$	$\left[\begin{array}{lllll}0 & 1 & 3 & 5 & 7 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5\end{array}\right]$

Table 1

Example 2 Here is a sample of low genus actions that are not distinguished by $\mathcal{H}^{1}(S)$ equivalence and the lowest degree differential that separates them.

p	t	σ	some conflated actions	smallest degree of separating differential
5	4	4	$(1,1,4,4),(1,2,3,4)$	2
5	5	6	$(1,1,1,3,4),(1,1,2,2,4)$	2
5	6	8	$(1,1,1,4,4,4),(1,1,2,3,4,4)$	2
7	4	6	$(1,1,6,6),(1,2,5,6)$	2
7	5	9	$(1,1,1,5,6),(1,1,2,5,5),(1,1,3,4,5)$	2
7	6	12	$(1,1,1,6,6,6),(1,1,2,5,6,6)$	3
			$(1,1,3,4,6,6),(1,2,3,4,5,6)$	

Table 2
Looking at the table we see that quadratic differentials will not always work.

Example 3 In the table following the column good degrees are the q such that \mathcal{H}^{q} separates topological actions for all t. The bad degrees have conflated actions for infinitely many values of t.

p	good degrees	bad degrees
3	$1,2,3$	
5	2,4	$1,3,5$
7	3,5	$1,2,4,6,7$
11	$3,5,7,9$	$1,2,4,6,8,10,11$
13	$2,4,6,8,10,12$	$1,3,5,7,9,11,13$
17	$2,4,5,6,8,10,12,13,14,16$	$1,3,7,9,11,15,17$
19	$3,4,5,7,8,9,11,12,13,15,16,17$	$1,2,6,10,14,18,19$

Table 3

