

S. Allen Broughton - Rose-Hulman Institute of Technology

14 Apr 2018

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Overview and Introduction	\mathcal{H}^q and $\operatorname{Aut}(S)$	Actions and Signatures	Top vs \mathcal{H}^q Equivalence	Examples 00
Sections				
Sections				

Overview of sections

- Overview, introduction, and historical motivation
- $\mathcal{H}^q(S)$ and representations of $\operatorname{Aut}(S)$
- Actions and signatures especially prime cyclic n-gonal actions
- Topological vs \mathcal{H}^q equivalence
- Results and examples

Objects of study

- S, a Riemann surface of genus σ
- Aut(S) the automorphisms of S and G ⊆ Aut(S) a subgroup of interest
- \mathcal{H}^q the space of globally defined *q*-differentials on *S*

(ロ) (同) (三) (三) (三) (○) (○)

Overview and Introduction ○●○○	H ^q and Aut(S)	Actions and Signatures	Top vs \mathcal{H}^q Equivalence	Examples 00
Motivation				
History - 1				

- Definition and study of Riemann surfaces and their automorphism begun last half of 19th century.
- Surfaces and automorphism linked to Fuchsian groups about that time.
- Some enumeration of automorphism groups begun around the turn of the (last century).
- Continuation of the study of the above, along with moduli space and Teichmüller space during the last and this century.
- Computer computation has dramatically helped exploration in the last 30 years.

Overview and Introduction	H ^q and Aut(S)	Actions and Signatures	Top vs \mathcal{H}^q Equivalence	Examples 00
Motivation				
History - 2				

- Two classification schemes of automorphism groups:
 - Linear: action of automorphism group on Abelian differentials and the characters of these representations.
 - Topological: covering spaces, fundamental groups, uniformization by Fuchsian groups. Linked to moduli space and mapping class group.
- Topological classification in near perfect correspondence to Moduli space structures. There is a simple conceptual but computationally expensive method of enumeration.
- Linear classification has low genus failures: next slide.

Overview and Introduction	H ^q and Aut(S)	Actions and Signatures	Top vs \mathcal{H}^q Equivalence	Examples 00
Motivation				
Problem Fix?				

- There are two topologically distinct actions of \mathbb{Z}_5 in genus 4 that are linearly equivalent.
- The actions are conflated.

Question

Can the conflation problem be fixed by looking at higher order differentials?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Conjecture

The answer to the question is yes.

q = 1, Abelian differentials - significant in analysis and geometry of surfaces

- globally defined holomorphic differential 1-forms on a surface
- $\omega = f_1(z)dz$ in local co-ordinates
- define interesting functions via

$$F(z) = \int_{z_0}^z \omega$$

- used to measure moduli properties of surfaces integrate along a homology basis of loops on the surface
- used to construct the Jacobian variety of a surface

Overview and Introduction	\mathcal{H}^q and $\operatorname{Aut}(S)$ $\circ \circ $	Actions and Signatures	Top vs \mathcal{H}^q Equivalence	Examples	
q-differentials what are they?					
<i>q</i> -differentials - 2					

q = 2, Quadratic differentials - also have analytic and geometric applications

- $f_2(z)(dz)^2$ in local co-ordinates
- f₂(z)(dz)² is holomorphically varying homogeneous form of degree 2 on the tangent bundle T(S)

(日) (日) (日) (日) (日) (日) (日)

*H*²(*S*) may be identified with the tangent space of Teichmüller space at the point *S*.

Overview and Introduction	\mathcal{H}^q and $\operatorname{Aut}(S)$ 0000000	Actions and Signatures	Top vs \mathcal{H}^q Equivalence	Examples			
q-differentials what are they?							
q-differentials	q-differentials - 3						

General q

- T*(S) = cotangent (line) bundle of S, i.e., "linear forms" on vector fields
- $\mathcal{H}^q(S)$ = global sections of the *q*-fold tensorial line bundle $T^*(S) \otimes \cdots \otimes T^*(S)$
- $f_q(z)(dz)^q$ in local co-ordinates
- H^q(S) yields an interesting projective embedding of a surface, q = 1 is canonical embedding
- dimension over ${\mathbb C}$

$$\dim \mathcal{H}^1(S) = \sigma$$

 $\dim \mathcal{H}^q(S) = (2q-1)(\sigma-1), q > 1$

(日) (日) (日) (日) (日) (日) (日)

Overview and Introduction	\mathcal{H}^q and $\operatorname{Aut}(S)$	Actions and Signatures	Top vs \mathcal{H}^q Equivalence	Examples 00
$\operatorname{Aut}(S)$ acting on $\mathcal{H}^q(S)$				
D				

Representations and characters - 1

• Aut(S) acts on $\mathcal{H}^q(S)$ via

$$g^*(f_q(z)(dz)^q = (f_q(g^{-1}z)(dg^{-1}z)^q)$$

 the representation of G ⊆ Aut(S) on H^q(S) is completely determined by its character

$$\mathrm{ch}_{\mathcal{H}^q(\mathcal{S})}(g) = \mathit{Trace}(g^* ext{ on } \mathcal{H}^q(\mathcal{S}))$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- set notation:
 - irreducible characters of *G*: χ_0, \ldots, χ_I
 - multiplicity inner product: $\mu_q^j = \langle ch_{\mathcal{H}^q(\mathcal{S})}, \chi_j \rangle$

Overview and Introduction	\mathcal{H}^q and $\operatorname{Aut}(S)$	Actions and Signatures	Top vs \mathcal{H}^q Equivalence	Examples 00
$\operatorname{Aut}(S)$ acting on $\mathcal{H}^q(S)$				

Representations and characters - 2

write

$$\mathrm{ch}_{\mathcal{H}^q(S)} = \mu_q^0 \chi_0 + \dots + \mu_q^l \chi_l,$$

define the column vector R_q

$$\boldsymbol{R}_{\boldsymbol{q}}^{t} = \left[\begin{array}{ccc} \mu_{\boldsymbol{q}}^{0} & \cdots & \mu_{\boldsymbol{q}}^{l} \end{array} \right]$$

 gather various R_q into a matrix sufficient to describe the characters for all q-differentials

$$M = \begin{bmatrix} R_1 & \cdots & R_{|G|} \end{bmatrix} = \begin{bmatrix} \mu_q^j \end{bmatrix}, j = 0, \dots, l, q = 1, \dots, |G|$$

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへ⊙

Overview and Introduction	\mathcal{H}^q and $\operatorname{Aut}(S)$	Actions and Signatures	Top vs \mathcal{H}^q Equivalence	Examples 00
Fichlor traco formula				

Fixed points and rotation numbers

• Fixed points:

$$S^g = \{P : gP = P\}$$

• Rotation number $\epsilon(P,g)$ at fixed point in S^g :

$$dg^{-1}: T_P(S) \to T_P(S)$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

is multiplication by $\epsilon(P, g)$, an o(g)th root of unity.

Overview and Introduction	\mathcal{H}^q and $\operatorname{Aut}(S)$	Actions and Signatures	Top vs \mathcal{H}^q Equivalence	Examples	
Eichler trace formula					
Fichler trace formula					

• Define
$$\lambda_q : G \to \mathbb{C}, q \ge 1$$

$$egin{aligned} \lambda_q(1) &= (\sigma-1)(2q-1) \ \lambda_q(g) &= \sum_{P \in S^g} rac{(arepsilon(P,g))^q}{1-arepsilon(P,g)} \end{aligned}$$

• Eichler's trace formula:

$$\mathrm{ch}_{\mathcal{H}^1(S)}(g) = 1 + \lambda_1(g) = \chi_0(g) + \lambda_1(g)$$

 $\mathrm{ch}_{\mathcal{H}^q(S)}(g) = \lambda_q(g), q > 1$

Overview and Introduction	\mathcal{H}^q and $\operatorname{Aut}(S)$	Actions and Signatures	Top vs \mathcal{H}^q Equivalence	Examples 00		
Eichler trace formula						
Linear + Periodic character						

- the Eichler trace formula shows a linear (depending only on G) plus periodic (depending on the action) pattern
 - in formulas below |G| can be replaced by exp(G)

Proposition

For q > |G|, write q = a|G| + b with $1 \le b \le |G|$. Then,

$$ch_{\mathcal{H}^{q}(S)} = 2a(\sigma - 1)\chi_{reg} + ch_{\mathcal{H}^{b}(S)} - \chi_{0}, \ b = 1 ch_{\mathcal{H}^{q}(S)} = 2a(\sigma - 1)\chi_{reg} + ch_{\mathcal{H}^{b}(S)}, \ b \neq 1.$$

 the periodic component nature is encoded by the multiplicity matrix, introduced earlier,

$$M = \left[\mu_q^j\right]$$

Overview and Introduction	\mathcal{H}^q and $\operatorname{Aut}(S)$	Actions and Signatures ●oooo	Top vs \mathcal{H}^q Equivalence	Examples
Group Actions				
Group actions	s - 1			

• conformal group action: a monomorphism

 $\epsilon: \mathbf{G} \to \operatorname{Aut}(\mathbf{S})$

- assume S/G has genus 0, so that the action is n-gonal
- $\pi: S \rightarrow S/G$ is branched over *t* points Q_1, \ldots, Q_t
- define $T = S/G \simeq \mathbb{P}^1$, $T^\circ = T \{Q_1, \ldots, Q_t\}$, and $S^\circ = \pi^{-1}(T^\circ)$.
- π : S[◦] → T[◦] is a regular covering space with deck transformation group G.

Overview and Introduction	\mathcal{H}^q and $\operatorname{Aut}(S)$	Actions and Signatures ○●○○○	Top vs \mathcal{H}^q Equivalence	Examples		
Group Actions						
Group actions - 2						

• let $Q_0 \in T^\circ$, then

$$\pi_1(T^\circ, Q_0) = \langle \gamma_1, \ldots, \gamma_t : \gamma_1 \cdots \gamma_t = \mathbf{1} \rangle$$

and there is an epimorphism

$$\xi: \pi_1(T^\circ, Q_0) \to G$$

define

$$c_j = \xi(\gamma_j)$$

and set

$$n_j = o(c_j) \tag{1}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• (0; n_1, \ldots, n_t) is called the signature of the *G* action

Overview and Introduction	\mathcal{H}^q and $\operatorname{Aut}(S)$	Actions and Signatures	Top vs \mathcal{H}^q Equivalence	Examples 00		
Group Actions						
Group actions - 3						

- (c_1, \ldots, c_t) is called a *generating vector* for the action
- the generating vector satisfies

$$G = \langle c_1, \ldots, c_t \rangle \tag{2}$$

and

$$c_1 \cdots c_t = Id(G) \tag{3}$$

Proposition

The group G acts on a surface of genus

$$\sigma = 1 + \frac{|G|}{2} \left(t - 2 - \sum_{j=1}^{t} \frac{1}{n_j} \right)$$

if and only if there is a generating vector (c_1, \ldots, c_t) satisfying equations 1, 2, and 3.

- assume $G = \mathbb{Z}_p$
- the signature is (p, \ldots, p) (*t* times) and the genus is

$$\sigma = \frac{(t-2)(p-1)}{2}$$

- a unique fixed point P_j lies over each Q_j
- the Eichler trace formula is easier to apply
- the characters are defined by:

$$\chi_j(c) = \zeta^{cj}, \ \zeta = \exp(2\pi i/p)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

the multiplicity matrix is p × p

$$M = \left[\mu_q^j\right], \ j = 0, \dots, p-1, \ q = 1, \dots, p$$

a generating vector is a set of integers satisfying

$$1 \leq c_1, \ldots, c_t \leq p-1$$

$$c_1 + \cdots + c_t = 0 \mod p$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

there are many of these, but we reduce this in the next section

Overview and Introduction	H ^q and Aut(S)	Actions and Signatures	Top vs \mathcal{H}^q Equivalence	Examples
Topological equivalence				

Topological Equivalence

Definition

Two actions ϵ_1, ϵ_2 of *G* on possibly different surfaces S_1, S_2 are topologically equivalent if there is an intertwining homeomorphism $h: S_1 \to S_2$ and an automorphism $\omega \in \operatorname{Aut}(G)$ such that

$$\epsilon_2(g) = h\epsilon_1(\omega(g))h^{-1}, \forall g \in G.$$

- topological equivalence converts the classification of actions into a discrete problem of classifying generating vectors
- for abelian groups we can arbitrarily permute elements of a generating vector with the same order
- for any group we may apply a group automorphism to all elements of a vector to get an equivalent action

Overview and Introduction	\mathcal{H}^q and $\operatorname{Aut}(S)$	Actions and Signatures	Top vs \mathcal{H}^q Equivalence $\circ \bullet \circ \circ$	Examples
Topological equivalence				

Branch Locus of Moduli Space

Why is topological equivalence important? (Broad statements with little explanation here.)

- Topological equivalence classes correspond to conjugacy classes of finite subgroups of the mapping class groups.
- Topological equivalence classes correspond to "equisymmetric strata" in the branch locus of the moduli space, via the mapping class group action on Teichmüller space.
- An equisymmetric stratum corresponds to a parametric family of surfaces with the "same" automorphism group, usually G. The correspondence is not 1 – 1 but is well understood.

Overview and Introduction	\mathcal{H}^q and $\operatorname{Aut}(S)$	Actions and Signatures	Top vs \mathcal{H}^q Equivalence	Examples
Topological equivalence				

Prime cyclic *n*-gonal strata

- In the *n*-gonal case, the parametric family is determined by the coordinates of Q₁,..., Q_t and has t – 3 independent parameters.
- A prime cyclic group is a minimal action subgroup, so the corresponding stratum is maximal (Galois relations are satisfied).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Overview and Introduction	\mathcal{H}^q and $\operatorname{Aut}(S)$	Actions and Signatures	Top vs \mathcal{H}^q Equivalence	Examples 00
\mathcal{H}^q Equivalence				
\mathcal{H}^q Equivaler	nce			

Definition

Two actions ϵ_1, ϵ_2 of *G* on possibly different surfaces S_1, S_2 are \mathcal{H}^q equivalent if the representations on $\mathcal{H}^q(S_1)$ and $\mathcal{H}^q(S_2)$ are equivalent representations. Equivalently, the characters of *G* afforded by $\mathcal{H}^q(S_1)$ and $\mathcal{H}^q(S_2)$ are equal.

The following Proposition may be proven using the Eichler trace formula.

Proposition

If two actions ϵ_1, ϵ_2 of G on possibly different surfaces S_1, S_2 are topologically equivalent then they are \mathcal{H}^q equivalent.

Overview and Introduction	\mathcal{H}^q and $\operatorname{Aut}(S)$	Actions and Signatures	Top vs \mathcal{H}^q Equivalence	Examples ●○
Small examp	les			

Example

For genus 4, p=5 and t=4 we get the smallest genus example. See Table 1.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Example

Some additional examples for small primes See Table 2.

Overview and Introduction	H ^q and Aut(S)	Actions and Signatures	Top vs \mathcal{H}^q Equivalence	Examples ○●

Other Examples

Example

The number of conflated actions can be quite large. For example for $p = 11, t = 10, q = 1, \sigma = 40$ there are 854 actions with numerous conflations. In one case 31 different actions all have the same \mathcal{H}^1 character. For $p = 19, t = 10, q = 1, \sigma = 63$ there are 9143 actions with a maximum of 116 conflated actions.

Example

See Table 3 for more examples on the the values of q for which conflation can occur.