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Let k be an algebraically closed field (char k = 0) and X be a superelliptic
curve, i.e. yn = f (x).

There are two main problems

1) Determine an equation for X over a minimal field of definition K .

2) Find the best equation (with smaller coefficients) over K

In general, it is an open problem to determine an equation for X over a
minimal field of definition K .

However, we will consider the second question. Once an equation over a
minimal field of definition is given, how can we make this minimal in some
sense?



Height and moduli height of curves

Let f (x , y) ∈ K [x , y ] the height of f (x , y) (or naive height) is the maximum of
the absolute values of the coefficients.

Let Xg be an irreducible algebraic curve with affine equation F (x , y) = 0 for
F (x , y) ∈ K [x , y ]. We define the height of the curve over K to be

HK (Xg) := min {HK (G) : HK (G) ≤ HK (F )} .

where the curve G(x , y) = 0 is isomorphic to Xg over K .

If we consider the equivalence over K̄ then we get another height which we
denote it as HK (Xg) and call it minimal absolute height.

Lemma
Let K be a number field such that [K : Q] = d. Then, HK (Xg) and HK (Xg) are
well defined.

For any algebraic curve Xg we have HK (Xg) ≤ HK (Xg).



Let g be an integer g ≥ 2 andMg denote the coarse moduli space of
smooth, irreducible algebraic curves of genus g. The moduli spaceMg is
embedded in P3g−2.

Let p ∈Mg . We call the moduli height h(p) the usual height H(P) in the
projective space P3g−2. Obviously, h(p) is an invariant of the curve.

Theorem
For any constant c ≥ 1, degree d ≥ 1, and genus g ≥ 2 there are finitely
many superelliptic curves Xg defined over the ring of integers OK of an
algebraic number field K such that [K : Q] ≤ d and h(Xg) ≤ c.



Genus 2

Example
Let X be a genus 2 curve with equation

y2 = 7 t6 −
(

78 + 16
√

5
)

t5 +
(

72
√

5 + 617
)

t4 −
(

320
√

5 + 2148
)

t3

+
(

4961 + 456
√

5
)

t2 −
(

5214 + 672
√

5
)

t + 3167

Then, the traditional algorithm gives

y2 = 359785557t6 + 4935433518t5 + 29692428795t4 + 98737979076t3 + 193917220155t2 + 210507034158t + 100220296853

Can we get a ”better” equation? Can we get ”the best” equation?

With a reduction algorithm which will explain later we get

y2 = t6 + 2t4 + t2 + 3
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Reduction of binary quadratics

Vn,k denotes the (n + 1)-dimensional subspace of k [X ,Z ] consisting of
homogeneous polynomials.

f (X ,Z ) = a0X n + a1X n−1Z + · · ·+ anZ n (1)

of degree n up to multiplication by a constant. Elements in Vn,k are called
binary forms of degree n. The group GL2(k) acts on Vn,k by linear
transformations on the variables.

Let Q(X ,Z ) = aX 2 + bXZ + cZ 2 be a binary quadratic in R[X ,Z ]. Q(X ,Z ) is
positive definite if a > 0 and ∆ = b2 − 4ac < 0.

Denote the set of positive definite binary quadratics with V +
2,R, i.e.

V +
2,R =

{
Q(X ,Z ) ∈ R[X ,Z ]

∣∣∣ Q(X ,Z ) is positive definite
}
.



Modular Group and the Fundamental Domain
Let H2 =

{
z = x + iy ∈ C

∣∣ y > 0
}
⊂ C.

The group Γ = SL2(Z)/{±I} is called the modular group. Γ acts on H2 via
linear fractional transformations(

α β
γ δ

)
z =

αz + β

γz + δ
(2)

where
(
α β
γ δ

)
∈ Γ and z ∈ H2.

The group Γ acting on H2 has a fundamental domain F , i.e. a subset such
that:
i) any point in H2 is Γ-equivalent to some point in F ,
ii) no two points in the interior of F are Γ-equivalent.

T =

(
1 1
0 1

)
: z → z + 1

S =

(
0 −1
1 0

)
: z → −1

z

A positive definite quadratic has exactly one root in H2.



Consider the following map which is called the zero map

ξ : V +
2,R → H2

[Q]→ ξ(Q) =
−b
2a

+

√
|∆|

2a
i

(3)

This map ξ is a bijection and an equivariant map (i.e., for every matrix M ∈ Γ,
ξ(QM ) = ξ(Q)M−1

).

A quadratic Q(X ,Z ) is said to be reduced if ξ(Q) ∈ F .

Theorem
Every reduced quadratic has minimal height in its Γ-orbit.



Julia invariant and quadratic of a binary form

Let f (x , y) ∈ R[x , y ] be a degree n binary form given as follows

f (X ,Z ) = a0X n + a1X n−1Z + · · ·+ anZ n

and suppose that a0 6= 0. Let the real roots of f (X ,Z ) be αi , for 1 ≤ i ≤ r and
the pair of complex roots βj , β̄j for 1 ≤ j ≤ s, where r + 2s = n. The form can
be factored as

f (X ,Z ) =
r∏

i=1

(X − αiZ ) ·
s∏

i=1

(X − βiZ )(X − β̄iZ ). (4)

The ordered pair (r , s) of numbers r and s is called the signature of the form
f .
We associate to f the two quadratic forms Tr (X ,Z ) and Ss(X ,Z ) of degree r
and s respectively given by the formulas

Tr (X ,Z ) =
r∑

i=1

t2
i (X −αiZ )2, and Ss(X ,Z ) =

s∑
j=1

2u2
j (X −βjZ )(X − β̄jZ ),

(5)
where ti , uj are to be determined.



Proposition
Qf = Tr + Ss is a positive definite quadratic form with discriminant Df

Df = ∆(Tr ) + ∆(Ss)− 8
∑
i,j

t2
i u2

j

(
(αi − aj )

2 + b2
j

)

We define the θ0 of a binary form as follows

θ0(f ) =
a2

0 · |Df|n/2∏r
i=1 t2

i

∏s
j=1 u4

j

.

We pick t1, . . . , tr , u1, . . . , us such that θ0 obtains a minimum.

Proposition (Julia 1917)
θ0 : Rr+s → R obtains a minimum at a unique point (̄t1, . . . , t̄r , ū1, . . . , ūs).

The quadratic Jf := Qf (̄t1, . . . , t̄r , ū1, . . . , ūs)(X ,Z ) is called the Julia’s
quadratic of f and θf := θ0(̄t1, . . . , t̄r , ū1, . . . , ūs) is called the Julia invariant.

Theorem
i) θf is an SL2(C) invariant
iii) Jf (X ,Z ) ∈ R[X ,Z ] is a positive definite quadratic.

Thus, to each binary form f we associate a unique positive definite binary
quadratic form Jf and therefore a unique point in H2.



Reduction of higher degree binary forms

Define the zero map for a binary form as

ξ̄ : Vn,R −→ V +
2,R −→ H2

f −→ Jf −→ ξ(Jf )

Proposition
The map ξ̄ : Vn,R → H2 is SL2(C)-equivariant (i.e., for every matrix
M ∈ SL2(C), ξ̄(QM ) = ξ̄(Q)M−1

). .

A binary form f ∈ R[X ,Z ] is said to be a reduced binary form if ξ̄(f ) ∈ F .
We denote by red (f ) the reduction form of f .



Determining the Julia quadratic
Let be given a binary form f ∈ Vn,C Then, f (X , 1) can be factored as

f (X , 1) = a0(X − α1)(X − α2) · · · (X − αn), (6)

Let αi,j = |αi − αj |2, i < j and w = t2
i we have

n · w1
(
w2α1,2 + w3α1,3 + · · ·+ wnα1,n

)
− 2 ·

∑
i<j

wi wjαi,j = 0

n · w2
(
w1α1,2 + w3α2,3 + · · ·+ wnα2,n

)
− 2 ·

∑
i<j

wi wjαi,j = 0

...

n · wn
(
w1α2,n + w3α3, n + · · ·+ wn−1αn−1,n

)
− 2 ·

∑
i<j

wi wjαi,j = 0

w1 · w2 · · ·wn − 1 = 0

(7)

For totally real binary forms the Julia quadratic is the unique quadratic factor
of the homogenous polynomial G(x , y) which has degree d = (n − 1)(n − 2)
and is defined as follows

G(x , y) =
(x · fx (−fy (x , y), fx (x , y)) + y · fy (−fy (x , y), fx (x , y)))

n f (x , y)
(8)

Then



In this example we show how these coefficients are picked in the case of
binary cubics with reals roots.

Example
Let f (X ) = aX 3 + bX 2 + cX + d be a binary cubic with three real roots
α1, α2, α3. We pick t1, t2, t3 as follows:

t1 = (α2 − α3)2, t2 = (α3 − α1)2, t3 = (α1 − α2)2

and Julia quadratic is as follows

Jf (X ,Z ) = (α2 −α3)2(X −α1)2 + (α3 −α1)2(X −α2)2 + (α1 −α2)2(X −α3)2

We can express the Julia quadratic covariant in terms of the coefficient of
f (X ) as follows

Jf (X ,Z ) = (b2 − 3ac)X 2 + (bc − 9ad)X + (c2 − 3bd)

up to a constant factor.



Julia quadratic of genus two curves with extra automorphisms

What about the general case when the standard form is not defined over a
ring of integers?

By definition the Julia quadratic depends on the roots of the binary form.

Since we want to compute the Julia quadratic for each curve, then first we
would like to determine the Weierstrass points of the given curve.

The following result gives a choice for the set of Weierstrass points.

Lemma
Let X be a genus 2 curve defined over a field k such that char k 6= 2 and W
be the set of Weierstrass points. Then the following hold:
i) If Aut (X ) ≡ V4, then W = {±α,±β,± 1

αβ
}

ii) If Aut (X ) ≡ D4, then W =
{
±1,±α,± 1

α

}
.

iii) If Aut (X ) ≡ D6, then W = {1, ε3, ε
2
3, l , lε3, lε2

3}, where l is a parameter and
ε3 is a primitive third root of unity.



The case of V4 group

The set of Weierstrass points is W = {±α,±β,± 1
αβ
} and since α and β are

distinct the only two cases that can happen are the following:
i) α and β are conjugates of each other and W = {±α,±α,± 1

||α||2 }
ii) α, β ∈ R, i.e. all roots are real and W = {±α,±β,± 1

αβ
}

In the first case the Julia quadratic can be computed solving the system.

In the second case the equation of the curve X is a totally real binary form.
For a totally real binary form we can perform reduction using the polynomial
G(x , z) defined in Eq. (8).

Computations show that Gf (x , z) is factored in three factors. One has degree
2, one degree 6, and one degree 12 as follows

Gf (x , 1) =1024 u6
(

4 u3 − v2
)3
· g0(x , 1) · g1(x , 1) · g2(x , 1)

where



g0(x) =x2 − (v2 − 4 u3)

g1(x) =
(
−u2 − 3 v

)
x6 +

(
36 u3 − 2 u2v − 18 v2

)
x5

+
(
−4 u5 + 180 u3v + u2v2 − 45 v3

)
x4

+
(
−480 u6 − 16 u5v + 360 u3v2 + 4 u2v3 − 60 v4

)
x3+

+
(

16 u8 − 720 u6v − 8 u5v2 + 360 u3v3 + u2v4 − 45 v5
)

x2+

+
(

576 u9 − 32 u8v − 576 u6v2 + 16 u5v3 + 180 u3v4 − 2 u2v5 − 18 v6
)

x+

+ 64 u11 + 192 u9v − 48 u8v2 − 144 u6v3 + 12 u5v4 + 36 u3v5 − u2v6 − 3 v7

(9)

while we don’t display g2(x).



Genus two curves with Aut (X ) ≡ D4

The set of Weierstrass points is W = {±1,±α,± 1
α
}.Hence, we have the

following two cases:
i) If ||α||2 = 1 then α and 1

α
are conjugates of each other and

W = {±1,±α,±α}
ii) otherwise all roots are real and W = {±1,±α,± 1

α
}

In the first case the Julia quadratic can be computed solving the system.

In the second case, if α ∈ R the binary form corresponding to X is a totally
real form. Computing the polynomial Gf (x , z) defined in Eq. (8) for this
curves we have

Gf (x , 1) =
(

5 x4 + x2 − 3 s
)
·(

25 sx8 + (12− 10 s)x6 + (37 s − 70 s2)x4 + 14 s2x2 + s3
)

For a given binary form the Julia quadratic will be the unique quadratic factor
of Gf .



Genus two curves with Aut (X ) ≡ D6

In an analogue way the polynomial Gf (x , z) for curves with automorphism
group D6 is

Gf (x , 1) = 972 x
(

x6 − w
)

(
8 wx12 + (12 w + 1)x9 + 12 wx6 + (12 w + 1)wx3 + 8 w3

)
(10)

For a given binary form the Julia quadratic will be the unique quadratic factor
of Gf .



Hence, for genus two curves with extra involution we can conclude the
following.

Theorem
Let X be a genus two curve with Aut (X ) > 2, affine equation y2 = f (x), and
F its field of moduli. Then, the following are true
i) If Aut (C) ≡ V4, then the Julia quadratic is the unique quadratic factor of
Gf (x , z) as defined in Eq. (9).
ii) If Aut (C) ≡ D4, then the Julia quadratic is the unique quadratic factor of

Gf (x , 1) =
(

5 x4 + x2 − 3 s
)
·(

25 sx8 + (12− 10 s)x6 + (37 s − 70 s2)x4 + 14 s2x2 + s3
)

iii) If Aut (C) ≡ D6, then the Julia quadratic is the unique quadratic factor of

Gf (x , 1) = 972 x
(

x6 − w
)

(
8 wx12 + (12 w + 1)x9 + 12 wx6 + (12 w + 1)wx3 + 8 w3

)
(11)



Work in progress

Theorem (B-, Steward)
Let X be a superelliptic curve with an extra involution and Weierstrass
equation

yn = x2n +
n−1∑
i=0

aix2i + 1

over a ring of integers OK . Then, X has minimal absolute height.

Thank you for your attention!
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