Genus 2 Belyĭ surfaces with a unicellular uniform dessin

David Torres (joint work with Ernesto Girondo)

State College, PA

October 20, 2009

- 4 同 6 4 日 6 4 日 6

Definition

A dessin d'enfant is a bipartite graph embedded into an oriented compact surface S and dividing it into topological discs, called the faces of the dessin.

We say that \mathcal{D} is **uniform** when all of its white vertices (resp. black vertices, faces) have the same valency p (resp. the same valency q, the same valency 2r), and (p, q, r) is said to be the type of \mathcal{D} .

We say that \mathcal{D} is **unicellular** when it consists of only one face.

Definition

A dessin d'enfant is a bipartite graph embedded into an oriented compact surface S and dividing it into topological discs, called the faces of the dessin.

We say that D is **uniform** when all of its white vertices (resp. black vertices, faces) have the same valency p (resp. the same valency q, the same valency 2r), and (p, q, r) is said to be the type of D.

We say that \mathcal{D} is **unicellular** when it consists of only one face.

Such a dessin corresponds to the inclusion of a (torsion free) group K uniformizing S inside a triangle group $\Delta = \Delta(p, q, r)$.

The corresponding Belyĭ function can be seen as the projection $\beta: \mathbb{D}/K \longrightarrow \mathbb{D}/\Delta.$

QUESTION: When do different dessins \mathcal{D} and \mathcal{D}' belong to the same surface S?

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Multiple dessins lying on the same surface

QUESTION: When do different dessins \mathcal{D} and \mathcal{D}' belong to the same surface S?

Let K be the Fuchsian group uniformizing S:

- There exists some $\alpha \in PSL_2(\mathbb{R})$ such that $K < \Delta$ and $K < \alpha \Delta \alpha^{-1}$.
- 2 There exists some $\alpha \in PSL_2(\mathbb{R})$ such that $K < \Delta$ and $\alpha^{-1}K\alpha < \Delta$.

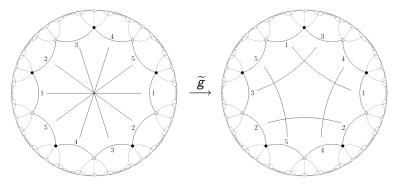


Figure: Two uniform dessins on the curve $y^2 = x^5 - 1$. They correspond to different inclusions $K < \Delta(5, 5, 5)$ and $\tilde{g}K\tilde{g}^{-1} < \Delta(5, 5, 5)$.

・ロン ・回と ・ヨン・

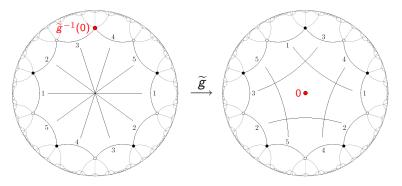


Figure: A lift of the isomorphism g^{-1} identifies the center of the second dessin in the fundamental polygon of the first.

- 4 回 2 - 4 □ 2 - 4 □

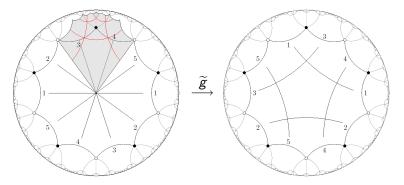


Figure: The side-pairings of the fundamental polygon of K around $\tilde{g}^{-1}(0)$ coincide with the ones of the second dessin.

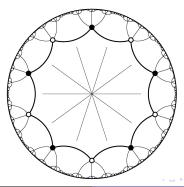
- 4 回 2 - 4 □ 2 - 4 □

< 글 > < 글 >

Admissible distances

Let $K < \Delta(p, q, r)$ correspond to a (p, q, r)-dessin on \mathbb{D}/K . Consider the tessellation of the disc in 2r-gons associated to $\Delta(p, q, r)$.

All the transformations in K translate the origin to another polygon center (point of order r) in the disc.

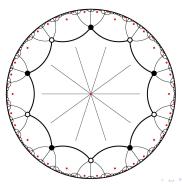


(Ξ) + (Ξ) +

Admissible distances

Let $K < \Delta(p, q, r)$ correspond to a (p, q, r)-dessin on \mathbb{D}/K . Consider the tessellation of the disc in 2r-gons associated to $\Delta(p, q, r)$.

All the transformations in K translate the origin to another polygon center (point of order r) in the disc.



Admissible distances

Let $K < \Delta(p, q, r)$ correspond to a (p, q, r)-dessin on \mathbb{D}/K . Consider the tessellation of the disc in 2r-gons associated to $\Delta(p, q, r)$. All the transformations in K translate the origin to another polygon center (point of order r) in the disc.

Definition

We define the set of admissible distances of type (p, q, r):

$$d(p,q,r) = \{d_1 < d_2 < d_3 < \dots\}$$

as the set of (hyperbolic) distances between any two 2r-gon centers as above.

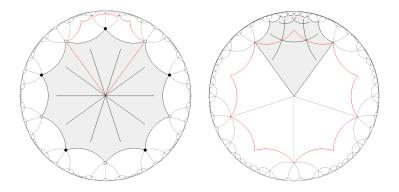


Figure: The points in \mathbb{D} corresponding to centers of dessins in \mathbb{D}/K are translated admissible distances by the elements of K.

<ロ> (日) (日) (日) (日) (日)

同 と く ヨ と く ヨ と

A criterion to find uniform dessins

Lemma

Let \mathcal{D} be a dessin given by the inclusion $K < \Delta(p, q, r)$, and let \mathcal{D}' be another dessin of the same type in the same surface. If $z \in \mathbb{D}$ corresponds to a face center of \mathcal{D}' , then for every $g \in K$ the hyperbolic distance $\rho(z, g(z))$ is an admissible distance.

・ 同 ト ・ ヨ ト ・ ヨ ト

A criterion to find uniform dessins

Lemma

Let \mathcal{D} be a dessin given by the inclusion $K < \Delta(p, q, r)$, and let \mathcal{D}' be another dessin of the same type in the same surface. If $z \in \mathbb{D}$ corresponds to a face center of \mathcal{D}' , then for every $g \in K$ the hyperbolic distance $\rho(z, g(z))$ is an admissible distance.

Any point of \mathbb{D} moved an admissible distance by every transformation in K will be called an **admissible point**.

A criterion to find uniform dessins

Lemma

Let \mathcal{D} be a dessin given by the inclusion $K < \Delta(p, q, r)$, and let \mathcal{D}' be another dessin of the same type in the same surface. If $z \in \mathbb{D}$ corresponds to a face center of \mathcal{D}' , then for every $g \in K$ the hyperbolic distance $\rho(z, g(z))$ is an admissible distance.

Any point of \mathbb{D} moved an admissible distance by every transformation in K will be called an **admissible point**.

How is the set of points of \mathbb{D} which are translated a fixed distance by a given $g \in K$?

- 4 同 6 4 日 6 4 日 6

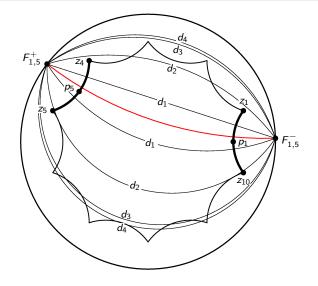


Figure: Some of the admissible arcs in the case (p, q, r) = (5, 5, 5).

向下 イヨト イヨト

The main result

Theorem

Two unicellular uniform dessins of the same type in genus 2 belong to the same surface if and only if they are either dual or isomorphic.

The main result

Theorem

Two unicellular uniform dessins of the same type in genus 2 belong to the same surface if and only if they are either dual or isomorphic.

This statement is known to be false in general.

- There is a genus 2 surface containing two (not unicellular) uniform dessins of type (2,3,9);
- Klein's surface of genus 3 contains two (not unicellular) uniform dessins of type (2,3,7).

(E.Girondo, J.Wolfart, D.T.)

▲冊→ ▲屋→ ▲屋→

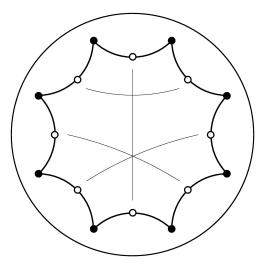
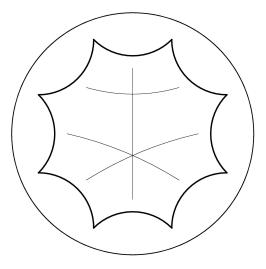
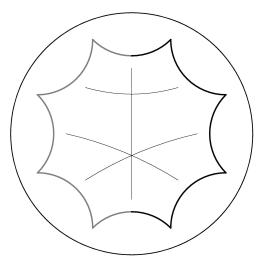
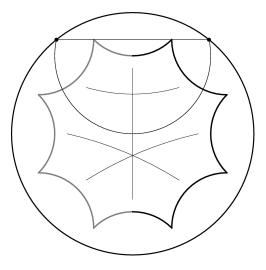
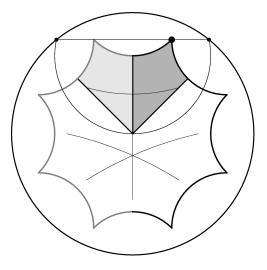


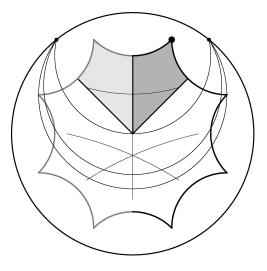
Figure: Our dessin \mathcal{D} given by an inclusion $\mathcal{K} < \Delta(2,8,8)$.

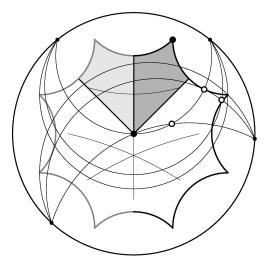


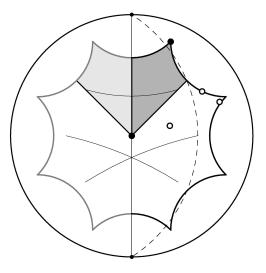


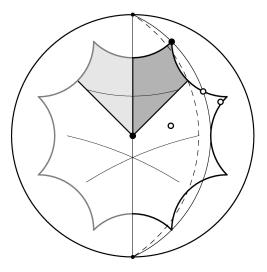


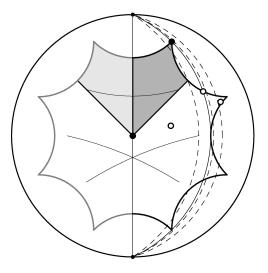




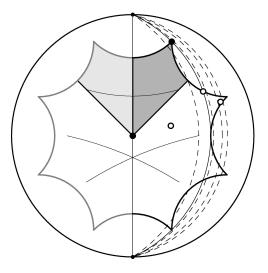




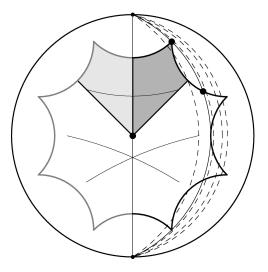


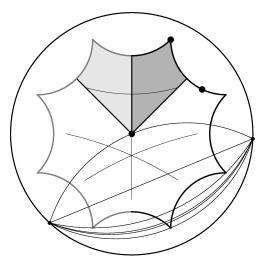


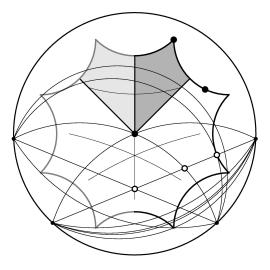
◆□ > ◆□ > ◆臣 > ◆臣 > □ 臣 □

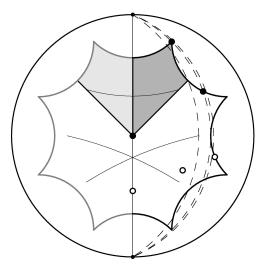


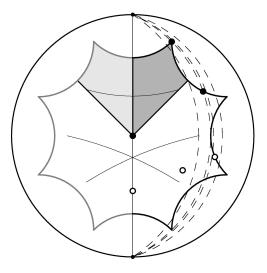
◆□ > ◆□ > ◆臣 > ◆臣 > □ 臣 □

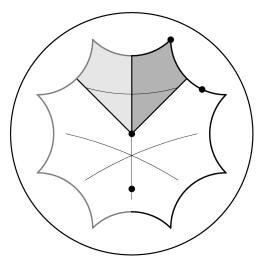


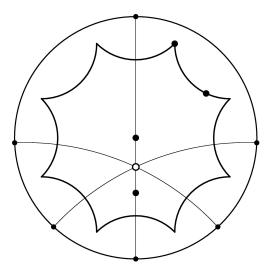












Thank you!!!

David Torres (joint work with Ernesto Girondo) Genus 2 Belyĭ surfaces with a unicellular uniform dessin