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Introduction - Motivation

We all know how the fundamental group of a Riemann surface
looks like:

Theorem
Let X be a Riemann surface. Then π1(X ) is given by 2g
generators subject to one relation:

g∏
i=1

[ai , bi ] = 1 (1)

1. This theorem is a classical well known result for X
Riemann surface so why am I interested in that?

2. ... because usually when we think about algebraic curves
f (x , y) = 0 we think in terms of cuts and analytic
continuation
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The Problem

1. How do you get from cuts to the theorem above?

2. Of course we show this through topological arguments
but I am looking for a direct proof.

3. I like to capture the Non Abelian part of the fundamental
group as well.
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Problem Formalizing

1. Given an equation f (x , y) = 0 it’s well known that every
x has n roots counting multiplicity

2. There is a finite number of points in λ1...λr ∈ CP1 where
we have less points on the fiber

3. λ1, ...λr are the ramification points.
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Ramification Map

1. For each ramification point λi we have the preimages :
(λ1, ψ1) , ... (λ1, ψk)

2. Each pre-image is given locally by the mapping z 7→ z j

and
∑

j = n

Example
Let y 3 =

∏r
i=1(x − λi). In this case the ramification points are

λi and the local coordinate is given by: t = (x − λi)
1
3 or

x = t3 + λi
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Analytic Continuation

1. For a general equation f (x , y) = 0 the analytic
continuation isn’t as easy

2. The analytic continuation is encoded by picking a base
point b on CP1 which has exactly n pre-images
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Analytic Continuation II

1. Create a loop surrounding the branch points and
analytically continue across it

2. For the base point b select a pre-image bj and lift σi to a
pre-image starting with bj

3. The loop σi will end on another pre-image of b, bk and
this induces a permutation representation for each σi .
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The Loops on the CP1 − {λ1, ...λr}
1. Schematic view of the loops is given below
2. σi rotates around the branch point and goes back to the

base point on the CP1

3.
∏r

i=1 σi = 1 and π1(CP1 − {λ1, ...λr} , b) can be
regarded as a free group in generators σ1...σr−1
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Riemann Existence Theorem

It turns out that the converse is also true and you can encode
Algebraic curves via the permutation representation. We have
the following theorem:

Theorem
Let h1, ...hr be permutation in Sn satisfying the following 2
properties:

1.
∏r

i=1 hi = 1

2. hi acts transitively on the set {1...n}
Then there exists a compact algebraic curve X and a mapping
f : X 7→ CP1 such that the permutation representation
associated with X is precisely hi .
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Proof of the theorem (sketch)

1. π1
(
CP1 \ (λ1, ...λr )

)
is a group on r generators σ1, ...σr

subject to the relation
∏r

i=1 σi = 1..

2. By covering theory h1, , ...hr corresponds to a cover of
π1

(
CP1 \ (λ1, ...λr )

)
. Call this cover X op

3. To obtain X use the cycle decomposition of hi to
compactify X op

4. More specifically if λi is a branch point then :

4.1 Use the cycle decomposition of hi to find the number of
pre-images of hi

4.2 For each pre-image point the local mapping will be
x 7→ x ri where ri is the length of the cycle corresponding
to this pre-image
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Proof of the theorem picture
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The Fundamental group of π1(X )

The classical Van Kampen theorem enables us to obtain
π1(X ) :

Theorem
Assume that hi =

∏j
i=1 ci and ci are permutation cycles each

one has length li . Then if π1(X
op) is the fundamental group of

the topological cover CP1 \ (λ1, ...λr ) we have that

π1(X ) = π1(X
op)/N (2)

N is the subgroup of π1 (X
op) generated by σli

i if

σli
i ∈ π1(X

op) or: δσ
lj
i δ

−1 ∈ π1 (X
op)
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Generators for π1(X
op)

1. From the previous theorem to get π1(X ) we need first to
get generators π1 (X

op) .

2. Recall that π1(X
op) is associated with the permutation

representation of the open surface which is induced by
h1, ...hr .

Theorem
π1(X

op) is the stabilizer of 1 ( or any other number) in this
permutation representation
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Schrier representatives of π1(X
op)

Theorem
Regard {1, ..., n} as co-sets of π1(CP1 − {λ1, ...λr})/π1(X )op.
There are co-set representative R in with the following
properties :

1. The representative has the minimal length expressed
through generators of π1(CP1 − {λ1, ...λr}) in all the
words belonging to this co-set.

2. If w =
∏

1≤ik≤r σik is a representative, than
∏
σi1 ...σil are

representatives il ≤ r
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Scrhrier Generators

Theorem
Let r1, ...rk be the representatives from the theorem above For
each riσl we have a unique rm such that
hil = riσl rm

−1 ∈ π1(X
op, c1) than hil are the generators for

π1(X
op, c1)
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The case of (n, s) curves

1. These are curves that have at least one σr as a cyclic
permutation of order n

2. An example is an equation f (x , y) of the form:

f (x , y) = yn − x s − p(x , y) (3)

and degxp(x , y) < s and degyp(x , y) < n.
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The relations σki , i < r

Theorem
Consider the relation σk

i or δσj
i δ

−1. We can choose δ to be
from R . Then we have the following theorem:

σj
i =

j∏
i=1

hki (4)

such that the following is satisfied:

1. Each generator appears exactly once in this product.

2. For two relations the intersection between the set of
generators appearing in these relations is empty.

Hence for each relation we can eliminate one generator using
the relation

∏
hki = 1.
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The relation σnr

What about the last relation? In the case we look on σn
r can

be replaced by σ1...σr−1 and hence we can write this relation
as :

σ1σ2...σr−1σ1...σr−1... = 1 (5)

Lemma
The last relation can be written uniquely as :

σ1σ2...σr−1σ1...σr−1... =
∏

hki (6)

where the product runs on all the generators of π1 (X
op) .
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the Commutation word problem

Using the relations σl
i from previous slide we arrive to the

following result:

Lemma
The relation

σ1σ2...σr−1σ1...σr−1... =
∏

hki (7)

is equivalent to a relation of the form:

2g∏
i=1

s1...s2g s
−1
i1
....s−1

i2g
= 1
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The commutation relation -part I

The last problem in the commutation word problem that was
solved in an obscure paper by R.Goldstein and Turner (1979)
using topological arguments. I modified their argumentation
omitting the topology. I present the algorithm below:

1. First we can assume that our word is of the form:

x1Rx2Sx
−1
1 Tx−1

2 U .

where R , S ,T ,U don’t contain the generators x1, x2. We
perform the following operations:
1.1 Write :

x1Rx2Sx
−1
1 Tx−1

2 U = x1Rx2T
−1TSRR−1x−1

1 Tx−1
2 U

(8)
1.2 call x1R = a,and x2T

−1 = b to rewrite the last
expression as:

abTSRa−1b−1U = abTSRa−1b−1(TSR)−1TSRU (9)
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Commutation relation part II

In the previous slide define: z = TSR and rewrite it as:

abza−1b−1z−1zU (10)

Then

abza−1b−1z−1

= abb−1z−1za[za−1, b−1z−1]zU

=
[
za−1, b−1z−1

]
zU (11)

Continue by induction eliminating the next pair of generators
in zU using the same procedure.
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The Intersection Form

While I have not shown it directly the last slide gives us a
natural way to define the intersection form. For two generators
we have the following combination of words:

1. Yx1Rx2Sx
−1
1 Tx−1

2 H - intersection 1

2. Yx1Rx2Sx
−1
2 Tx−1

1 H - intersection 0

Note: This is a speculation still requires proof
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Example

Consider the curve given by the permutations
(12345)...(12345) 5 times.

Lemma
The Schreier representatives are easy to find they are:
1, σ1, σ

2
1, σ

−1
1 , σ−2

1 .

Using the recipe for the generators we have:

Lemma
The generators for π1(X

op) are:

1. s1i = σiσ
−1
1 for i = 2, 3, 4

2. s2i = σ1σiσ
−2
1 for i = 2, 3, 4

3. s3i = σ2
1σiσ

2
1 for i = 1, 2, 3, 4

4. s4i = σ−1
1 σi for i = 2, 3, 4

5. s5i = σ−2
1 σiσ1 for i = 2, 3, 4
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The relations σ5i

We can easily write the relations σ5
i , i = 2, 3, 4 in the following

manner:

Lemma
For i = 2, 3, 4 we have that:

σ5
i = s1is2is3is5is4i (12)

and σ5
1 = 1 kills the generator s31

Theorem
Given the equation y 5 =

∏5
i=1(x − λi) the non-normalized

homology basis is: sij , i = 1, 2, 3, 5, and j = 2, 3, 4

Thus the genus is 6 as required ( I hope)
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The relation is (σ1...σ4)
5

We can break this into the following words and write each one
separately:

1. σ1σ2σ3σ4σ1 = s22s33s54

2. σ2σ3σ4σ1σ2 = s12s23s34s42

3. σ3σ4σ1σ2σ3 = s13s24s31s52s43 = s13s24s52s43

4. σ4σ1σ2σ3σ4 = s14s32s53s44

and therefore we can write:

s22s33s53s12s23s34s42s13s24s52s43s14s32s53s44 = 1 (13)

Now we use the relation: σ5
i = 1, i = 2, 3, 4 to write:

1. s44 = s−1
54 s

−1
34 s

−1
24 s

−1
14

2. s53 = s−1
33 s

−1
23 s

−1
13 s

−1
43

3. s32 = s−1
22 s

−1
12 s

−1
42 s

−1
52
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The Commutation Relations

Thus we rewrite the last relation as:

s22s33s54s12s23s34s42s13s24s52s43s14

s−1
22 s

−1
12 s

−1
42 s

−1
52 s

−1
33 s

−1
23 s

−1
13 s

−1
43 s

−1
54 s

−1
34 s

−1
24 s

−1
14 = 1 (14)
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The Intersection form

Note that we can read the intersection form. For example s22
with any other generator will be 1 however s54 with s12 will be
0. This is because we have the following word:
Xs54Ys12Zs

−1
12 Hs

−1
54 U
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The normalized fundamental generators

We apply the technique developed to normalize the homology
basis. In our case we have that:

1. R1 = 1,T1 = s54s12s23s34s42s13s24s52s43s14

2. S1 = s−1
12 s

−1
42 s

−1
52 ,U1 = s−1

23 s
−1
13 s

−1
43 s

−1
54 s

−1
34 s

−1
24 s

−1
14

if z1 = s54s12s23s34s42s13s24s52s43s14s
−1
12 s

−1
42 s

−1
52 We have that

the relation can be written as:

[zx−1
1 , x2T

−1
1 ]s54s12s23s34s42s13s24s52s43s14

s−1
12 s

−1
42 s

−1
52 s

−1
23 s

−1
13 s

−1
43 s

−1
54 s

−1
34 s

−1
24 s

−1
14 (15)

... Continue in the same fashion
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Conclusion and Discussion

1. The last slide gives an inductive algorithm to produce
ai , bi such that

∏g
i=1[a,bi ] = 1

2. I haven’t found this treatment in the literature.

3. This method enables us to define the intersection form in
a purely formal way ( no pictures like it’s done usually)
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