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Introduction - Motivation

We all know how the fundamental group of a Riemann surface
looks like:
Theorem

Let X be a Riemann surface. Then 71(X) is given by 2g
generators subject to one relation:

H[ai’ bl =1 (1)

1. This theorem is a classical well known result for X
Riemann surface so why am | interested in that?

2. ... because usually when we think about algebraic curves

f(x,y) = 0 we think in terms of cuts and analytic
continuation
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The Problem

1. How do you get from cuts to the theorem above?

2. Of course we show this through topological arguments
but | am looking for a direct proof.

3. | like to capture the Non Abelian part of the fundamental
group as well.
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Problem Formalizing

1. Given an equation f(x,y) = 0 it's well known that every
x has n roots counting multiplicity

2. There is a finite number of points in \;...\, € CP* where
we have less points on the fiber

3. A1,...A, are the ramification points.
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Ramification Map

1. For each ramification point \; we have the preimages :
(A1, 1), o (A1, )

2. Each pre-image is given locally by the mapping z — 2/
and Y j=n

Example

Let y*> = [];_,(x — Aj). In this case the ramification points are
1

A; and the local coordinate is given by: t = (x — \;)3 or
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Analytic Continuation

1. For a general equation f(x,y) = 0 the analytic
continuation isn't as easy

2. The analytic continuation is encoded by picking a base
point b on CP* which has exactly n pre-images

s 1 ()
C e ) o e

cP*
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Analytic Continuation |l

1. Create a loop surrounding the branch points and
analytically continue across it

2. For the base point b select a pre-image b; and lift o; to a
pre-image starting with b;

3. The loop o; will end on another pre-image of b, b, and
this induces a permutation representation for each o;.
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The Loops on the CP* — {\;, ...\, }

1. Schematic view of the loops is given below

2. oj rotates around the branch point and goes back to the
base point on the CP!

3. [I—,0i = 1 and 7 (CP* — {\;,...\,}, b) can be
regarded as a free group in generators oy...0,_1

(Demy >
/ A7)
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Riemann Existence Theorem

It turns out that the converse is also true and you can encode
Algebraic curves via the permutation representation. We have
the following theorem:

Theorem
Let hq,...h, be permutation in S, satisfying the following 2
properties:

L[, hi=1

2. h; acts transitively on the set {1...n}

Then there exists a compact algebraic curve X and a mapping
f : X — CP' such that the permutation representation
associated with X is precisely h

N2 T S RN IG—?@
S
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Proof of the theorem (sketch)

1. m (CP1 \ (A1, ...)\,)) is a group on r generators oy, ...0,
subject to the relation []'_; 0; = 1..

2. By covering theory h;,,...h, corresponds to a cover of
m1 (CP'\ (A1,...A,)) . Call this cover X

3. To obtain X use the cycle decomposition of h; to
compactify X°P
4. More specifically if \; is a branch point then :
4.1 Use the cycle decomposition of h; to find the number of
pre-images of h;
4.2 For each pre-image point the local mapping will be
x — x"i where r; is the length of the cycle corresponding
to this pre-image

6¢'=( )( N)
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Proof of the theorem picture

0 [0
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The Fundamental group of 71(X)

The classical Van Kampen theorem enables us to obtain
m(X) :

Theorem _

Assume that h; = Hj,':l ¢; and c; are permutation cycles each

one has length I;. Then if m1(X°P) is the fundamental group of
the topological cover CP \ ()1, ...\,) we have that

m(X) =mX)/n (2)
N is the subgroup of y (X°P) generated by a,{" if )
ol € 1 (X%) or: 50?(5—1 € m (X°P) U'I.‘?)‘ 43
—_—

-V ) ~— - Y
bo_\’\) 7, C ’ °
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Generators for 1 (XP)

1, U < e 7@? J RN 58
- ~

1. From the previous theorem to get 7r1(X) we need first to
get generators my (X°P).
2. Recall that 71 (X°P) is associated with the permutation

representation of the open surface which is induced by
hy,...h,.

Theorem
m1(X°P) is the stabilizer of 1 (or any other number) in this

permutation repres x@‘(at/on g\,\ )“\\ _j? 0’ Cs\_\
7@ r D) 2 S
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Schrier representatives of m1(X°P)

Theorem
Regard {1, ...,n} as co-sets of m1(CP* — {\1,..\,})/m1(X)%.
There are co-set representative R in with the following
properties :

1. The representative has the minimal length expressed
through generators of m1(CP* — {\1,...\,}) in all the
words belonging to this co-set.

2. Ifw=1lic; <, 0i is a representative, than []oj,...0; are
representatives iy < r

g O .0 T
(12 ‘7'9 1) T x
SN ()
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Scrhrier Generators

Theorem

Let ry,...ry be the representatives from the theorem above For
each rio; we have a unique r,, such that

hy = riormt € (X, c1) than hy are the generators for
7T1(X0p, Cl)
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The case of (n,s) curves

1. These are curves that have at least one o, as a cyclic
permutation of order n

2. An example is an equation f(x, y) of the form:

f(x,y) =y" —x* = p(x,y) (3)

and deg,p(x,y) < s and deg,p(x,y) < n.
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The relations o

k

|

1 <r

Theorem _
Consider the relation o or §c%5~t. We can choose ¢ to be
from R. Then we have the following theorem:

J

ol =] hwi (4)

such that the following is satisfied:
1. Each generator appears exactly once in this product.

2. For two relations the intersection between the set of
generators appearing in these relations is empty.

Hence for each relation we can eliminate one generator using
the relation [] hy = 1.
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The relation o/

What about the last relation? In the case we look on ¢ can

be replaced by ;...0,_1 and hence we can write this relation
as :

0102...0,-.101...0p_1... = 1 (5)

Lemma
The last relation can be written uniquely as :

0102...0,-.101...0p_1... :Hhk,' (6)

where the product runs on all the generators of mp (X°P).
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the Commutation word problem

Using the relations o! from previous slide we arrive to the
following result:

Lemma
The relation

0102...0,-101...0p_1... :Hhk,‘ (7)

is equivalent to a relation of the form:

2g

-1 —1 _
| |51...52gs,.1 S = 1
i=1

—_—
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The commutation relation -part |

The last problem in the commutation word problem that was
solved in an obscure paper by R.Goldstein and Turner (1979)
using topological arguments. | modified their argumentation
omitting the topology. | present the algorithm below:

1. First we can assume that our word is of the form:

X1 R Sx t Txy HU.

where R, S, T, U don't contain the generators x, x,. We
perform the following operations: q k

1.1 Write :
x1Rx2Sxg 1 Ty LU TLTSRR™ U T T U
—1

1.2 call x;R = a,and x> T—1 = b to rewrite the last
expression as:

abTSRa=*b™1U = abTSRa b~ (TSR) 1 TSRU (9)
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Commutation relation part |l

In the previous slide define: z = TSR and rewrite it as:

abza th7lz™ zU (10)

Then Qo \O b_/

abza ‘b~ 'z
= abb 'z za[za7t b1z zU

iy —l,b— z @(11)

Continue by induction eliminating the next pair of generators
in zU using the same procedure.
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The Intersection Form

While | have not shown it directly the last slide gives us a
natural way to define the intersection form. For two generators

we have the following combination of words: VA ) ol
1. Ylexzsxl—l Tx2—1H - intersection 1 ﬁ&l‘—}‘— )

2. Yx1RxySx; ' Tx; ' H - intersection 0

L %K
zhc)

Note: This is a speculation still requires proof
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Consider the curve given by the permutations
(12345)...(12345) 5 times.

Lemma

The Schreier representatives are easy to find they are:

2 -1 _-2
1,01,07,01 ,01".

Using the recipe for the generators we have:
Lemma
The generators for w1 (X°P) are:

1. s =o0i0," fori =2,3,4

2. sy = oy0j0,° fori =234

3. 53,-201001 fori=1,2,34

4. s4i =07 Yo fori=2,3,4

5. S5 = 0f20;01 fori =2,3,4
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The relations o

We can easily write the relations 0?2,/ = 2,3, 4 in the following
manner:

Lemma
For i =2,3,4 we have that:

U? = S51i52i53i55i54i (12)
and o2 = 1 kills the generator s3;

Theorem
Given the equation y® = [[>_,(x — \;) the non-normalized
homology basis is: sj,i =1,2,3,5, and j = 2,3,4

Thus the genus is 6 as required ( | hope)
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The relation is (07...04)°

We can break this into the following words and write each one
separately:

1. 0102030401 = 92533554

2. 0203040102 = 512523534542

3. 0304010203 = 513524531552543 = 513524552543
4. 0401020304 = 514532553544

and therefore we can write:

522533553512523534542513524 552543514532 553544 = 1 (13)

Now we use the relation: 02 =1,/ = 2,3, 4 to write:
L 544 = 554 534 524151_41
2. S53 = 533533 513 Su3-
3. S3 = S5, 515 545 Sep-
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The Commutation Relations

Thus we rewrite the last relation as:

@’- @ 523534542513524 552543514
— -1 _-1f~1)-1_-1_—f—1})-1_-1_-1 _
522 42 552 23 513 54@34 Sa s =1 (14)
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The Intersection form

Note that we can read the intersection form. For example s,
with any other generator will be 1 however ss4 with s;» will be
0. This is because we have the following word:

Xssq Ys12Z5, Hsgpt U
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The normalized fundamental generators

We apply the technique developed to normalize the homology
basis. In our case we have that:

1. Ry =1, T} = 55451253534542513524 552543514

-1 _-1_-1 -1 _-1_-1 -1_-1

2. S1= 51550 5525 Ur = 351513153 554 534 524 S
. —1
if 21 = S54512523534542513524 552543514515 s42 552 We have that
the relation can be written as:

-1 -1
[ZX1 y X2 T1 ]554512523534542513524552543514
—1_-1_-1
512 542 552 523 513 543 554 S34 Sos S1a (15)

. Continue in the same fashion
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Conclusion and Discussion

1. The last slide gives an inductive algorithm to produce
a;, b; such that [[%_;[a b] =1
2. | haven't found this treatment in the literature.

3. This method enables us to define the intersection form in
a purely formal way ( no pictures like it's done usually)
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