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Introduction

The underlying question behind much of my work is the following:

Question
For a fixed genus � � 2, can we describe all the possible finite group
actions on a compact Riemann surface of genus � � 2?

Current results include:

I Classification for “small” genera (Condor, Breuer, Broughton)
I Classification for certain special families (Harvey, Breuer)

Not too much else is known as this is a hard problem!!!
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What makes it di�cult?

To prove the existence of a group action on a surface X of genus �, there
are two conditions that need verifying:

1 A number theoretic condition (the Riemann-Hurwitz formula)

2 A group theoretic condition (the existence of a generating vector)

The di�culty comes mainly in the second step. Naively speaking, as genus
increases, there are more potential groups, and these groups have
increasingly complicated structures.
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A di↵erent approach

Rather than try to solve the classification of group actions in one step,
consider the two conditions separately, starting with the more amenable
problem. Specifically:

1 Try to completely understand the number theoretic condition first
(the “easy” step)

2 Consider the group theoretic condition afterward (the “di�cult” step)

This leads to my primary topic of discussion:

Question
Is there a big di↵erence between the number of things satisfying the
“easy” condition, but not the “hard” condition?

In order to answer this question, we must first formalize things.
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Determining Group Actions
Signatures

Suppose that a finite group G acts on a surface X of genus �.

Definition

We say that G has signature (h;m1, . . . ,mr

), m1  m2  · · ·  m
r

if the
following are true:

1 The quotient space X/G has genus h.

2 The quotient map ⇡ : X ! X/G is branched over r points with
branching orders m1, . . . ,mr

.

• We call the numbers m1, . . . ,mr

the periods of the signature.
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Determining Group Actions
Generating Vectors

Suppose that G is a finite group and S = (h;m1, . . . ,mr

) is a signature.

Definition

We say the vector V = (a1, b1, a2, b2, . . . , a
h

, b
h

, g1, . . . , gr ) of elements of
G is an S-generating vector for G if the following hold:

1 O(g
i

) = m
i

(where O denotes order).

2 G = ha1, b1, a2, b2, . . . , a
h

, b
h

, g1, . . . , gr i.
3 ⇧h

i=1[ai , bi ]⇧
r

j=1gj = e, the identity in G where [a
i

, b
i

] = a
i

b
i

a�1
i

b�1
i

.
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Determining Group Actions
Existence of Actions

The following are the two conditions necessary for the existence of a group
action on a surface of genus �:

Theorem
A group G acts on a surface X of genus � with signature
S = (h;m1, . . . ,mr

) if and only if the following hold:

1 The Riemann Hurwitz formula holds:

� � 1 = |G |(h � 1) +
|G |
2

rX

i=1

✓
1� 1

m
i

◆
.

2 G admits an S-generating vector.
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Reformulating the Question

We can now state our problem more formally:

Question
For a given � and G , how many signatures satisfy the Riemann-Hurwitz
formula but do not have generating vectors?
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Potential Signatures

For a given G and � we define two di↵erent sets of signatures.

Definition

We define A�(G ) to be the set of signatures for which there exists an
action of G on a surface of genus � with that signature. We call these
actual signatures.

Definition

We define P�(G ) to be the set of signatures which satisfy the following:

1 Each period is the order of an element of G

2 They satisfy the Riemann-Hurwitz formula for genus �.

We call these potential signatures.

Question

So our question is: what is the size of A�(G ) relative to P�(G )?
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Examples

Example

P6(C6) =

8
<

:

(0; 3, 3, 3, 6, 6) (0; 2, 3, 6, 6, 6) (0; 2, 2, 3, 3, 3, 3)
(0; 2, 2, 2, 3, 3, 6) (0; 2, 2, 2, 2, 6, 6) (0; 2, 2, 2, 2, 2, 2, 3)

(1; 6, 6) (1; 2, 2, 3)

9
=

;

A6(C6) =

⇢
(0; 3, 3, 3, 6, 6) (0; 2, 3, 6, 6, 6) (0; 2, 2, 3, 3, 3, 3)
(0; 2, 2, 2, 3, 3, 6) (0; 2, 2, 2, 2, 6, 6) (1; 6, 6)

�

So |A6(C6)| = 6 and |P6(C6)| = 8

Example

In genus � = 2, there are 33 potential signatures and 19 actual signatures.
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An Asymptotic Bound for A�(G )

For a given finite group G , we define the order set of G to be:

O(G ) = {|x | : x 2 G\hei} = {n1, . . . , nr}

Maclachlan and Miller gave the following asymptotic bound on actual
signatures:

|A�(G )| ⇠
✓

A2r�1

|G |exp(G )r !
Q

r

i=1 (1� 1/n
i

)

◆
�r

exp(G ) denotes the exponent of G

A = 2 if |G | is odd and A = 1 else
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An Asymptotic Bound for P�(G )

We determine an asymptotic bound on P�(G ) as follows:

Any potential signature can be written (h; [n1, t1], [n2, t2], . . . , [nr , tr ])
where the pair [n

i

, t
i

] denotes t
i

copies of n
i

(note that t
i

� 0).

In this form, the Riemann-Hurwitz formula becomes

2� � 2 + 2|G | = 2|G |h +
rX

i=1

|G |
n
i

(n
i

� 1)t
i

|P�(G )| is the number of tuples of non-negative integers
(h, t1, . . . , tr ) satisfying this formula.
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An Example

Example

When G = C6, we have:

O(G ) = {2, 3, 6}.

Therefore, for P6(C6), we are looking for all solutions (h, t1, t2, t3) to:

22 = 12h + 3t1 + 4t2 + 5t3

Since |G | and the n
i

are fixed, we can think of this problem as:

For a fixed K and a, a1, . . . ar , find all non-negative integer solutions
(h, t1, . . . , tr ) to the equation:

K = ah + a1t1 + a2t2 + . . . a
r

t
r
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Schur’s Theorem

As it turns out, we have a result to solve precisely this problem:

Theorem

(Schur’s Theorem) If {a1, . . . , an} is a set of integers such that
gcd(a1, . . . , an) = 1 and S

x

is the number of di↵erent tuples of
non-negative integers (c1, . . . , cn) such that x = c1a1 + · · ·+ c

n

a
n

then

S
x

⇠ xn�1

(n � 1)!a1 . . . an
.
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An Asymptotic Bound for P�(G )

We cannot directly apply Schur’s theorem as the coe�cients, 2|G |
and |G |

n1
(n1 � 1), . . . , |G |

n

r

(n
r

� 1) may not be relatively prime.

However, letting A = 2 if |G | is odd and A = 1 if |G | is even, we can
show:

gcd

✓
2|G |, |G |

n1
(n1 � 1),

|G |
n2

(n2 � 1), . . . ,
|G |
n
r

(n
r

� 1)

◆
=

A|G |
exp(G )

Rewriting the Riemann-Hurwitz formula:

2g � 2 + 2|G |
A|G |/ exp(G )

=

✓
2|G |

A|G |/ exp(G )

◆
h +

rX

i=1

✓ |G |(n
i

� 1)/n
i

A|G |/ exp(G )

◆
t
i

The number of solutions to this equation will be the same as the
number to the original equation. In this case however, the coe�cients
are now relatively prime, so we may use Schur’s Theorem
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An Asymptotic Bound for P�(G )

Applying Schur’s Theorem, we get:

P�(G ) ⇠
⇣

2��2+2|G |
A|G |/ exp(G)

⌘
r

r !
h

2|G |
A|G |/ exp(G)

iQ
r

i=1

h
|G |(1�1/n

i

)
(A|G |/ exp(G)

i

⇠ 2rA|G |/ exp(G )

r !2|G |r+1
Q

r

i=1 (1� 1/n
i

)
�r

=
A2r�1

|G |r exp(G )r !
Q

r

i=1 (1� 1/n
i

)
�r

This looks awfully familiar!!!!
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Asymptotic Equivalence

Theorem
For a fixed group G , for � within the genus spectrum of G , we have

lim
�!1

|A�(G )|
|P�(G )| = 1.

Equivalently:

In the long run, all possible potential signatures are actual signatures
for a group action.

Or, eventually, satisfaction of the RH formula is su�cient for the
existence of an action!

So it makes sense to consider the “easy” problem first.
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