A coarse classification of Z_{2}^{k} actions

Anthony Weaver

City University of New York (BCC)

Automorphisms and Related Topics
Loyola University Chicago
October, 2015

This is joint work with Mariela Carvacho (U. Tecnica F. Santa Maria, Chile).

Let $Z_{2}^{k} \equiv$ the elementary abelian 2-group of rank $k>2$.
We consider Z_{2}^{k} actions on surfaces of genus $g>1$, having branch data $(0 ; 2, . R, 2)=(0 ; R)$, that is:

- the quotient surface is a sphere (genus 0);
- there are $R \geq k+1$ branch points (all branch indices $=2$), on the quotient sphere.
- the action takes place in genus $g=2^{k-2}(R-4)+1$.

Equivalently, we consider surface-kernel epimorphisms

$$
\rho: \Gamma(0 ; R) \rightarrow Z_{2}^{k}
$$

specified by sets of R elements of Z_{2}^{k} which

- generate the group;
- whose sum is the identity element.
(a.k.a. 'generating vectors.')
ρ may be pre- or post-composed with group automorphisms; the generating vectors so obtained constitute a topological equivalence class of action.

We represent Z_{2}^{k} as the vector space of dimension k over the field with two elements $(0,1)$, hence:

- Elements are $(0,1)$ column vectors with k entries;
- the identity $\overline{0}$ (or $\overline{0}_{k}$) is the column of all zeroes;
- a generating vector is a $k \times R$ matrix M of rank k with rowsum $\overline{0}$.

Here,

- 'rowsum' = the column vector obtained by summing (mod 2) across the rows;
- 'matrix' means an unordered collection of columns; multiplicities are allowed.

It is convenient to compress a generating matrix M into a dependent set \mathcal{D}_{M} in the matroid $Z_{2}^{k}-\{\overline{0}\}$, by retaining only columns of odd multiplicity, listed once each.

- if there are no columns of odd multiplicity, $\mathcal{D}_{M}=\emptyset$;
- if not empty, \mathcal{D}_{M} has at least 3 columns;
- rowsum $\mathcal{D}_{M}=$ rowsum $M=\overline{0}$ because $(\bmod 2)$:
- columns of even multiplicity in M do not contribute to the rowsum;
- columns of odd multiplicity contribute as if they occurred only once.

Up to change of basis and columnwise reordering, \mathcal{D}_{M}, if not empty, is a $k \times k_{0}$ matrix of rank r of the form

$$
\mathcal{D}_{M} \approx \underbrace{\left[\begin{array}{ll}
I_{r} & A \\
\mathbf{0} & \mathbf{0}
\end{array}\right]}_{k_{0}} \quad 2 \leq r \leq \min \left\{k, k_{0}-1\right\}
$$

where

- $k_{0} \neq 1,2$ is the number of distinct columns of M with odd multiplicity;
- A is an $r \times\left(k_{0}-r\right)$ matrix with rowsum $=\overline{1}_{r}$.

The two parameters

- $k_{0}=\#$ columns of odd multiplicity in M;
- $k_{1}=\#$ columns of even multiplicity in M; must satisfy
- $k_{0} \neq 1,2$ (for dependence of \mathcal{D}_{M});
- $k_{0}+k_{1} \geq k+1$ (for generation of Z_{2}^{k}).

A further necessary condition (if $\mathcal{D}_{M} \neq \emptyset$):

- existence of a $r \times\left(k_{0}-r\right)$ matrix A with rowsum $\overline{1}_{r}$ where $2 \leq r \leq \min \left\{k_{0}-1, k\right\}$ (if $r \neq 0$).

Main Theorem (Carvacho, W.)

There is a Z_{2}^{k} action, $k>2$, with branch data $(0 ; R)$ if and only if R admits an additive partition into positive integers, with k_{0} odd parts and k_{1} even parts, satisfying the following conditions:

N1 $k \leq k_{0}+k_{1} \leq 2^{k}-1$;
N 2 if $k_{0}+k_{1}=k$, then $k_{0}=0$;
N3 $k_{0} \neq 1,2,2^{k}-3,2^{k}-2$.
N.B.: the actual partition (hence R, hence the genus of the action) is not specified - only the partition type
$\left\{k_{0}\right.$ odd parts, $\quad k_{1}$ even parts $\}$.

Comments on the Theorem

- The number of partition types which satisfy the Theorem's conditions (for fixed k) is finite, in fact, equal to

$$
2^{2 k-1}-3\left(2^{k-1}-1\right)-\frac{k(k-1)}{2}
$$

- Actions of the same partition type occur in infinitely many genera (since infinitely many R admit a partition of a given type.)
- topologically equivalent actions have the same partition; in particular the same partition type;
- hence partition types define a coarse topological equivalence with finitely many equivalence classes.

Comments on the PROOF

1. Why do partitions arise at all?
(1) Each of the R branch points on the quotient sphere has 2^{k-1} preimages, each fixed by a Z_{2} subgroup;
(2) such a subgroup has $2 g+2-4 \gamma=i\left(2^{k-1}\right)$ for some i;
(3) the total number of fixed points is

$$
R\left(2^{k-1}\right)=\sum_{i=0} m_{i}(2 g+2-4 \gamma(i))
$$

where m_{i} is the number of Z_{2} subgroups acting with quotient genus $\gamma(i)$;
(4) cancelling 2^{k-1} yields the finite partition

$$
R=\sum_{i \geq 1} m_{i} \cdot i
$$

into positive parts i, where m_{i} is the multiplicity of the part i.
2. NECESSITY of conditions N1-N3 on the partition type is rather easy to see;
3. SUFFICIENCY:

- one has to exhibit at least one compression of the form

$$
\mathcal{D}_{M} \approx \underbrace{\left[\begin{array}{ll}
I_{r} & A \\
0 & 0
\end{array}\right]}_{k_{0}}
$$

for each admissible partition type $\left\{k_{0}, k_{1}\right\}\left(k_{0} \neq 0\right)$;

- the trickiest construction is A (which must have rowsum = $\overline{1}_{r}$ and column weights ≥ 2).
'column weight' $=\#$ of ONES in the column.

Consider again

$$
\mathcal{D}_{M} \approx \underbrace{\left[\begin{array}{ll}
I_{r} & A \\
\mathbf{0} & \mathbf{0}
\end{array}\right]}_{k_{0}} \quad 2 \leq r \leq \min \left\{k, k_{0}-1\right\}
$$

- If $r<k, k_{0} \leq 2^{r}-1$. Moreover, $k_{0} \neq 2^{r}-2,2^{r}-3$ (since Z_{2}^{r} contains no dependent sets of complementary size 1, 2 , resp.)
- It suffices to assume $r=k$.
- if $k_{0}=2^{k}-1, \mathcal{D}_{M}=Z_{2}^{k}-\{\overline{0}\}$ and A is determined;
- $k_{0} \neq 2^{k}-2,2^{k}-3$ (as above).

Thus we may assume $k+1 \leq k_{0} \leq 2^{k}-4$, that is,

$$
\mathcal{D}_{M} \approx \underbrace{\left[\begin{array}{l|l}
\left.I_{k} \mid A\right]
\end{array}\right.}_{k+1 \leq k_{0} \leq 2^{k}-4}
$$

(In particular, $k \geq 4$).
CLAIM: A, with rowsum $=\overline{1}_{k}$, and column weights ≥ 2, can always be constructed.

- If A has up to $k-1$ columns a 'sparse’ ($=$ fewest ONES) matrix A can be obtained by 'telescoping' $k \times(k-1)$ matrices of the form(s):

(k even, resp., odd: here 6, resp. 7)
'Telescoping' = successively adding the last two columns.
- For an A with $n \geq k$ columns, let

$$
n=m k+t, \quad 0 \leq t<r
$$

and put

$$
A=\underbrace{\left[\begin{array}{llllll|}
\left(A^{\prime}\right)_{t} & \mid & B_{1} & \mid \ldots & B_{m}
\end{array}\right]}_{n},
$$

where

- $\left(A^{\prime}\right)_{t}=A^{\prime}$ telescoped to t columns (or $=\emptyset$ if $t=0$);
- each B_{j} 's is a distinct ' k -block' $=k$-set of cyclic permutations of a non-periodic column (of weight >2).
- It suffices to consider k_{0} 's of approximately half the maximum value:

$$
k_{0} \leq \frac{2^{k}-2}{2}=2^{k-1}-1
$$

(REASON: the complement of a dependent set in $\left.Z_{2}^{k}-\overline{\{ } 0\right\}$ is also a dependent set.)

- In constructing

$$
\mathcal{D}_{M}=\left[\begin{array}{l|l|l|l|l}
I_{k} & \left(A^{\prime}\right)_{t} & \mid & B_{1} & \ldots \\
l_{m}
\end{array}\right],
$$

the total rowsum of the B_{j} 's must be $\overline{0}$ if $t \neq 0$, or $\overline{1}$ if $t=0$.

- CLAIM: there are enough k-blocks for the construction to succeed for all $k_{0} \leq 2^{k-1}-1$.
- Example $(k=4): 3 \leq k_{0} \leq 15, \quad$ e.g., $k_{0}=7$:

$$
\mathcal{D}_{M}=\left[I_{4} \mid A\right] \quad A=A^{\prime}=\left[\begin{array}{lll}
1 & & \\
& 1 & \\
& & 1 \\
1 & 1 & 1
\end{array}\right]
$$

- For larger k_{0}, take complementary sets with a change of basis:

In $Z_{2}^{4}-\{\overline{0}\}$, let
$C_{0,2}=\left[\begin{array}{llll}1 & & & 1 \\ 1 & 1 & & \\ & 1 & 1 & \\ & & 1 & 1\end{array}\right] \quad C_{1,1}=\left[\begin{array}{ll}1 & \\ & 1 \\ 1 & \\ & 1\end{array}\right] \quad C_{0,0,1}=\left[\begin{array}{llll} & 1 & 1 & 1 \\ 1 & & 1 & 1 \\ 1 & 1 & & 1 \\ 1 & 1 & 1 & \end{array}\right]$

In general: $C_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{t}} \subseteq Z_{2}^{k}$ is the set of cyclic permutations of a weight t column with α_{i} ZEROES between the i th and ($i+1$)st ONES (counting cyclically).

Using this notation,

$$
Z_{2}^{4}-\{\overline{0}\}=\left[\begin{array}{l|l|l|l|l}
I_{4} & & C_{0,2} & C_{1,1} & C_{0,0,1}
\end{array} \overline{1}\right]
$$

Continuing our example, the complement of $\underbrace{\left[I_{4} \mid A^{\prime}\right]}_{k_{0}=7}$ is

$$
\left[\begin{array}{ll|l}
A^{\prime \prime} & \left|C_{0,0,1}\right| & \overline{1}
\end{array}\right] \text { where } A^{\prime \prime}=C_{0,2} \cup C_{1,1}-A^{\prime} .
$$

With the change of basis $I_{4} \leftrightarrow C_{0,0,1}$ (and columnwise reordering), we obtain a dependent set for $k_{0}=15-7=8$, namely

In this way, we obtain dependent sets of all remaining larger sizes

$$
8=2^{k-1} \leq k_{0} \leq 2^{k}-4=12
$$

Concluding claims:

- the foregoing constructions can be systematized to produce canonical, sparse generating matrices for every partition type;
- they can be adapted to actions with positive orbit-genus, i.e., branch data ($h ; R^{\prime}$), $h>0$;
- they can be extended to Z_{p}^{k} actions, for arbitrary primes p; the key is to consider dependent sets in the projective geometries

$$
\mathrm{PG}_{k-1}\left(F_{p}\right),
$$

where F_{p} is the field with p elements.

Thanks for your attention!

