(q, n)-gonal pseudo-real Riemann surfaces

Ewa Kozlowska-Walania and Ewa Tyszkowska University of Gdansk

NEC groups and Fuchsian groups
$\mathcal{H}=$ hyperbolic plane
$\mathcal{G}=$ group of isometries of \mathcal{H} including those reversing orientation
$\mathcal{G}^{+}=$subgroup of \mathcal{G} consisting of orientationpreserving isometries
$\mathcal{G}=P G L(2, \mathbb{R})$ and $\mathcal{G}^{+}=\operatorname{PSL}(2, \mathbb{R})$

Non-euclidean crystallographic group
(NEC-group) is a discrete in the topology of \mathbb{R}^{4} subgroup of \mathcal{G} with compact orbit space

An NEC-group is called a Fuchsian group if it is contained in \mathcal{G}^{+}and a proper NEC-group otherwise.

Macbeath and Wilkie associated with an NECgroup \wedge a signature of the form

$$
\begin{aligned}
& \sigma(\wedge)=(g ; \pm {\left[m_{1}, \ldots, m_{r}\right] ;\left\{\left(n_{11}, \ldots, n_{1 s_{1}}\right), \ldots\right.} \\
&\left.\left.\ldots,\left(n_{k 1}, \ldots, n_{k s_{k}}\right)\right\}\right)
\end{aligned}
$$

which determines the presentation of \wedge by generators:

$$
\begin{array}{ll}
x_{i}, \quad 1 \leq i \leq r, & \text { elliptic } \\
c_{i j}, 1 \leq i \leq k ; 0 \leq j \leq s_{i}, & \text { reflections } \\
e_{i}, 1 \leq i \leq k, & \text { boundary } \\
a_{i}, b_{i}, \quad 1 \leq i \leq g, \quad \text { if }+, & \text { hyperbolic } \\
d_{i}, 1 \leq i \leq g, \quad \text { if }-, & \text { glide reflections }
\end{array}
$$

and relations:

$$
\begin{array}{ll}
x_{i}^{m_{i}}=1, & 1 \leq i \leq r, \\
c_{i s_{i}}=e_{i}^{-1} c_{i 0} e_{i}, & 1 \leq i \leq k, \\
c_{i j-1}^{2}=c_{i j}^{2}=\left(c_{i j-1} c_{i j}\right)^{n_{i j}}=1, & 1 \leq i \leq k, \\
& 1 \leq j \leq s_{i}, \\
x_{1} \ldots x_{r} e_{1} \ldots e_{k}\left[a_{1}, b_{1}\right] \ldots\left[a_{g}, b_{g}\right]=1, & \text { if }+ \\
x_{1} \ldots x_{r} e_{1} \ldots e_{k} d_{i}^{2} \ldots d_{g}^{2}=1, & \text { if }-.
\end{array}
$$

The orbit space \mathcal{H} / \wedge is a surface of topological genus g having k boundary components and orientable or not according to the sign being + or -.

A Fuchsian group can be regarded as an NECgroup with the signature

$$
\left(g ;+;\left[m_{1}, \ldots, m_{r}\right] ;\{-\}\right)
$$

Every NEC-group has a fundamental region, whose hyperbolic area $\mu(\Lambda)$ is given by

$$
\begin{aligned}
\mu(\wedge)= & 2 \pi\left(\alpha g+k-2+\sum_{i=1}^{r}\left(1-1 / m_{i}\right)+\right. \\
& \left.+1 / 2 \sum_{i=1}^{k} \sum_{i=1}^{s_{i}}\left(1-1 / n_{i j}\right)\right),
\end{aligned}
$$

where $\alpha=2$ if the sign is + and $\alpha=1$ otherwise.

If Γ is a subgroup of finite index in an NECgroup \wedge then it is an NEC-group itself and there is the Riemann-Hurwitz formula which says that

$$
[\wedge: \Gamma]=\mu(\ulcorner) / \mu(\wedge)
$$

[Preston] Every compact Riemann surface X of genus $g \geq 2$ can be represented as the orbit space \mathcal{H} / Γ of the hyperbolic plane \mathcal{H} under the action of a torsion-free Fuchsian group Γ called surface group with the signature

$$
(g ;+;[-] ;\{-\}) .
$$

A finite group G is a group of automorphisms of $X=\mathcal{H} / \Gamma$ if and only if $G \cong \Lambda / \Gamma$ for some NEC-group \wedge normalizing Γ.

[Macbeath] Let

$X=\mathcal{H} / \Gamma$,
$G=\wedge / \Gamma=\operatorname{Aut}^{+}(X)$,
$x_{1}, \ldots, x_{r} \in \wedge$-elliptic generators of orders $m_{1}, \ldots m_{r}$, $\theta: \wedge \rightarrow G$-the canonical epimorphism.
Then the number of fixed points of $g \in G$ is equal to

$$
m=\left|N_{G}(\langle g\rangle)\right| \sum 1 / m_{i},
$$

where the sum is taken over those i for which g is conjugate to a power of $\theta\left(x_{i}\right)$.

The canonical Fuchsian subgroup

Let \wedge be an NEC group with the signature

$$
\begin{aligned}
& \sigma(\Lambda)=(h ; \pm ; {\left[m_{1}, \ldots, m_{r}\right] ;\left\{\left(n_{11}, \ldots, n_{1 s_{1}}\right), \ldots\right.} \\
&\left.\left.\ldots,\left(n_{k 1}, \ldots, n_{k s_{k}}\right)\right\}\right)
\end{aligned}
$$

The subgroup \wedge^{+}of \wedge consisting of all orientation preserving elements is called the canonical Fuchsian subgroup of \wedge
[Singerman] The signature of Λ^{+}has proper periods:
$n_{11}, \ldots, n_{1 s_{1}}, \ldots n_{k 1}, \ldots, n_{k s_{k}}, m_{1}, m_{1}, \ldots, m_{r}, m_{r}$ and orbit genus $h^{\prime}=\varepsilon h+k-1$, where $\varepsilon=2$ or 1 according to if the sign in $\sigma(\Lambda)$ is + or - .

Maximal signatures

A signature σ is said to be maximal, if for every NEC group Λ^{\prime} with signature σ^{\prime} containing an NEC group \wedge with signature σ such that the Teichmüller spaces of Λ and Λ^{\prime} have the same dimensions, the equality $\Lambda=\Lambda^{\prime}$ holds.

Otherwise the pair (σ, σ^{\prime}) is called a normal or non-normal pair according to if Λ is a normal subgroup of Λ^{\prime} or not.

The complete lists of normal and non-normal pairs were given by [Bujalance, Singermann, Estevez, Izquierdo, Conder].

If σ is a maximal signature, then there exists a maximal NEC group with signature σ which is not properly contained in any other NEC group.

The full automorphism group

If $G=\Lambda / \Gamma$ acts on a Riemann surface $X=$ \mathcal{H} / Γ with maximal signature, then G is the full automorphism group of X. In other case, Λ is properly contained with finite index in another NEC group Λ^{\prime}, which normalizes Γ.

If for any epimorphism $\theta: \wedge \rightarrow G$, there exists a group G^{\prime} and group embeddings $i: \Lambda \rightarrow \Lambda^{\prime}$, $j: G \rightarrow G^{\prime}$ and θ extends to $\theta^{\prime}: \Lambda^{\prime} \rightarrow G^{\prime}$ such that $\theta^{\prime} \cdot i=j \cdot \theta$

$$
\begin{array}{lll}
\wedge & \xrightarrow{i} & \wedge^{\prime} \\
\downarrow \theta & & \downarrow \theta^{\prime} \\
G & \xrightarrow{j} & G^{\prime}
\end{array}
$$

then

$$
G=\wedge /\left\ulcorner\subset \wedge^{\prime} / \Gamma=G^{\prime} \subseteq \operatorname{Aut}(X)\right.
$$

and so G is not the full automorphism group.

An example

$$
\begin{aligned}
& \sigma(\wedge)=(2 ;-;[k] ;\{-\}): d_{1}, d_{2}, x_{1}, \\
& \sigma\left(\wedge^{\prime}\right)=(0 ;+;[2,2] ;\{(k)\}): x_{1}^{\prime}, x_{2}^{\prime}, c_{10}^{\prime}, c_{11}^{\prime}, e_{1}^{\prime} \\
& G=Z_{4 k}=\langle\delta\rangle \\
& G^{\prime}=D_{4 k}=\left\langle\tau, a: a^{2}=\tau^{2}=(\tau a)^{4 k}=1\right\rangle
\end{aligned}
$$

A smooth epimorphism $\theta: \wedge \rightarrow G$ is given by

$$
\theta\left(x_{1}\right)=\delta^{4 p}, \theta\left(d_{1}\right)=\delta^{t_{1}}, \theta\left(d_{2}\right)=\delta^{t_{2}}
$$

for some integers t_{1}, t_{2} and p such that t_{1}, t_{2} are odd, $(p, k)=1$ and $2 p+t_{1}+t_{2} \equiv 0(2 k)$.

$$
\begin{array}{ccc}
\wedge & \xrightarrow{i} & \wedge^{\prime} \\
\downarrow \theta & & \downarrow \theta^{\prime} \\
\mathbb{Z}_{4 k} & \xrightarrow{j} & D_{4 k}
\end{array}
$$

$j: \quad \delta \mapsto \tau a$
$i: \quad d_{1} \mapsto e_{1}^{\prime} c_{10}^{\prime} x_{1}^{\prime}, d_{2} \mapsto x_{1}^{\prime} c_{10}^{\prime}, x_{1} \mapsto c_{10}^{\prime} c_{11}^{\prime}$
$\theta^{\prime}: \quad c_{10}^{\prime} \mapsto \tau, c_{11}^{\prime} \mapsto \tau(\tau a)^{4 p}$,
$x_{1}^{\prime} \mapsto \tau(a \tau)^{t_{2}}, e_{1}^{\prime} \mapsto(\tau a)^{t_{1}+t_{2}}$.
$\theta^{\prime} \cdot i=j \cdot \theta$.

(q, n)-gonal Riemann surfaces

A compact Riemann surface X of genus $g>1$ is said to be (q, n)-gonal if X admits a conformal automorphism ρ of prime order n such that $X /\langle\rho\rangle$ has genus q. This automorphism is called a (q, n)-gonal automorphism.

If $n=2$ then (q, n)-gonal automorphism is called a q-hyperelliptic involution. For $(q, n)=$ $(0,2)$ and $(1,2), X$ is called hyperelliptic and elliptic-hyperelliptic, respectively.

Pseudo-real Riemann surfaces

A symmetry of a Riemann surface is an antiholomorphic involution. A surface is symmetric if it admits a symmetry.

Projective complex algebraic curves correspond to compact Riemann surfaces. A surface X is symmetric if the corresponding curve \mathcal{C}_{X} is definable over \mathbb{R}.

A Riemann surface is called pseudo-real if it admits an anticonformal automorphism but no anticonformal involution. An anticonformal automorphism of order 4 is called a pseudosymmetry and in this case the surface is called pseudo-symmetric.

Complex algebraic curves with real moduli

There is an antiholomorphic involution

$$
\iota: \mathcal{M}_{g} \rightarrow \mathcal{M}_{g}
$$

of the moduli space \mathcal{M}_{g} of complex algebraic curves of genus g which maps the class of a complex curve to its conjugate.

The fixed points of ι are called complex algebraic curves with real moduli. The corresponding to them Riemann surfaces admit an antiholomorphic automorphism and they are either symmetric or pseudo-real.

Etayo Gordejuela studied pseudo-real surfaces with cyclic automorphism groups.

Bujalance, Conder, Costa gave many general properties of pseudo-real surfaces, such as for example existence of an asymmetric surface in any genus $g \geq 2$, description of such surfaces in genera 2 and 3 and the sharp bound on the order of the automorphism group.

The case of hyperelliptic pseudo-real surfaces was studied by Singerman, whilst Bujalance, Turbek determined defining equations for such surfaces and the special case of hyperelliptic asymmetric pseudo-symmetric surfaces is also treated.

The minimal genus problem for pseudo-real Riemann surfaces with cyclic automorphism groups was solved by Baginski and Gromadzki.

Remarks:
(i) If $G=\Lambda / \Gamma$ is an automorphism group of a pseudo-real Riemann surface $X=\mathcal{H} / \Gamma$, then \wedge has signature

$$
\left(h+1 ;-\left[m_{1}, \ldots, m_{r}\right] ;\{-\}\right)
$$

for $h \geq 0$ and m_{1}, \ldots, m_{r} dividing $|G|$ while the canonical Fuchsiam subgroup \wedge^{+}of \wedge has signature

$$
\left(h ;+;\left[m_{1}, m_{1}, \ldots m_{r}, m_{r}\right] ;\{-\}\right)
$$

(ii) The order of an anticonformal automorphism δ of X is divisible by 4. Any conformal automorphism in $\langle\delta\rangle$ has an even number of fixed points.

Theorem 1: The cyclic group $\mathbb{Z}_{4 k}=\wedge / \Gamma$ generated by an anticonformal automorphism δ acts on a pseudo-real Riemann surface $X=$ \mathcal{H} / Γ of genus g with signature
$\left(h+1 ;-;\left[m_{1}, \ldots, m_{s}, 2 k, . l ., 2 k\right] ;\{-\}\right)$, where
(i) $g=2 k\left[h+\sum_{i=1}^{s}\left(1-\frac{1}{m_{i}}\right)\right]+(l-1)(2 k-1)$,
(ii) $h \equiv g(2)$,
(iii) if $h=0$ then $l \neq 0$ or there exists a subset
$\left\{i_{1}, \ldots, i_{s^{\prime}}\right\} \subset\{1, \ldots, s\}$ such that
$\left(m_{i_{1}} \cdot \ldots \cdot m_{i_{s^{\prime}}}\right) /$ g.c.d $\left(m_{i_{1}}, \ldots, m_{i_{s}^{\prime}}\right)=2 k$.
(iv) $(h, s, l) \neq(1,1,0),(0,1,1)$ and $(0,2,0)$.
proof:
(i) the Riemann-Hurwith formula for (\wedge,\ulcorner);
(ii) the necessary condition for the existence of $\theta: \wedge \rightarrow \mathbb{Z}_{4 k}$;
(iii) $\mathbb{Z}_{2 k}=\wedge^{+} / \Gamma$ acts with signature

$$
\left(h ; m_{1}, m_{1} \ldots, m_{s}, m_{s}, 2 k, .2 l, 2 k\right)
$$

and so for $h=0$ it is generated by θ-images of elliptic generators of Λ^{+};
(iv) if the signature is non-maximal, then X is symmetric(see Example 1).

Lemma 1: If a (q, n)-gonal automorphism of a Riemann surface X of genus g has an even number of fixed points on X, then there exists an integer β in the range

$$
-1 \leq \beta \leq g /(n-1)
$$

such that n divides $g+\beta$ and

$$
\begin{equation*}
q=(g+\beta) / n-\beta \tag{1}
\end{equation*}
$$

proof: The group generated by a (q, n)-gonal automorphism ρ of a Riemann surface X of genus g acts with the signature ($q ; n, . \underline{m} ., n$) for

$$
m=2+2(g-n q) /(n-1) .
$$

By Macbeath's Theorem ρ has m fixed points. If m is even then for $\beta=m / 2-1$ we get (1).

Theorem 2: A pseudo-real Riemann surface X of genus g with automorphism group $\mathbb{Z}_{4 k}$ is (q, n)-gonal for any prime $n>2$ dividing k and

$$
\begin{equation*}
q=1+\frac{g-g_{(n)}}{n}-\left[\left(n-g_{(n)}\right)+(n-1)(d-1)\right], \tag{2}
\end{equation*}
$$

where $g_{(n)}=g \bmod n$ and d is an integer in the range

$$
\left(g_{(n)}-1\right) / n \leq d \leq\left[g+g_{(n)}(n-1)\right] /[n(n-1)]
$$

proof: The element $\rho=\delta^{\frac{4 k}{n}} \in \mathbb{Z}_{2 k}$ has an even number of fixed points. So by Lemma 1, the genus q of $X /\langle\rho\rangle$ is equal to

$$
q=(g+\beta) / n-\beta
$$

for some integer β in the range

$$
-1 \leq \beta \leq g /(n-1)
$$

for which $g+\beta$ is divisible by n. Such β must be $\beta=d n-g_{n}$ for $g_{(n)}=g \bmod n$ and some integer d. Thus we get (2).

Theorem 3: For given $g \geq 2$ and prime $n>2$, the upper sharp bound for an integer q such that there exists a (q, n)-gonal pseudo-real Riemann surface of genus g is equal to

$$
q_{\max }=\left\{\begin{array}{l}
g_{(n)}+\frac{g-g_{(n)}}{n}, \text { if } g_{(n)}=0 \text { or } 1, \\
g_{(n)}+\frac{g-g_{(n)}}{n}-(n-1), \text { if } g_{(n)} \geq 2
\end{array}\right.
$$

Conditions on g for which $q_{\max }$ is attained:

(i) If $g_{n}=0$ or 1 , then $q_{\text {max }}$ is attained for any g such that

$$
g-g_{(2)} \equiv 0(n)
$$

and the surface can be pseudo-symmetric or not.
(ii) If $g_{n} \geq 2$, then $q_{\max }$ is attained in pseudosymmetric case for any $g>(n+1)(n-2)$, and in not pseudo-symmetric case for any g such that

$$
g \geq(n-2)(4 n-1) \text { and } g+n-g_{(n)} \equiv 0(4) .
$$

Theorem 4: If the group $G=\mathbb{Z}_{4 k}=\langle\delta\rangle$ acts on a Riemann surface X with signature

$$
\left(h+1 ;-;\left[m_{1}, \ldots, m_{s}, 2 k, . l ., 2 k\right] ;\{-\}\right),
$$

then X is (q, n)-gonal for any prime n dividing $4 k$ and

$$
\begin{equation*}
q=1+\frac{2 k}{n}(h+s+l-1)-\left(\sum_{i=1}^{s} \frac{2 k}{\beta_{i} m_{i}}+l\right) \tag{3}
\end{equation*}
$$

where $\beta_{i}=1$ or $\beta_{i}=n$ depending on whether n divides m_{i} or not. In particular, X is p-hyperelliptic for

$$
p=1+k(h+s+l-1)-\left(\sum_{i=1}^{s} \frac{\gamma_{i} k}{m_{i}}+l\right)
$$

where $\gamma_{i}=2$ or 1 according to if m_{i} is even or odd.
proof: $\rho=\delta^{4 k / n}$ has $m=2+(2 g-2 n q) /(n-1)$ fixed points, where q is the genus of $X /\langle\rho\rangle$. Compering number m with Macbeath's formula and using the condition (i) of Theorem 1, we get (3).

Theorem 5: Let $c, r \geq 0$ and $k \geq 2$ be integers such that

$$
g=c(2 k-1)+r \geq 2
$$

and $(c, r, k) \neq(0, k, 1),(0, k+1,1)$ when k is odd. Let $r_{(k)}=r \bmod k$.

Then for any integer γ in the range

$$
\begin{gathered}
0 \leq \gamma \leq\left(r-r_{(k)}\right) / k, \text { such that } \\
\beta=c-r+\gamma k \geq-1
\end{gathered}
$$

there exists a complex algebraic curve \mathcal{C} of genus g with real moduli such that the corresponding Riemann surface $X_{\mathcal{C}}$ is (q, n)-gonal for any prime $n>2$ dividing k and

$$
q=\frac{g+\beta}{n}-\beta .
$$

The surface $X_{\mathcal{C}}$ is symmetric if $(c, r, \gamma)=(1,0,0)$ or $(0, k+1,1),(0, k, 1)$ for even k, and is pseudoreal otherwise.

Corollary: For any integers

$$
k \geq 3 \text { and } g \geq(k-2)(2 k-1)
$$

there exists a pseudo-real Riemann surface of genus g with automorphism group $\mathbb{Z}_{4 k}$.

The surface is (q, n)-gonal for any prime $n>2$ dividing k and

$$
q=\frac{g+\beta}{n}-\beta
$$

where $\beta=(g-r) /(2 k-1)-r_{(k)}$ for

$$
r=g \quad \bmod (2 k-1) \text { and } r^{\prime}=r \quad \bmod k
$$

Theorem 6: For given $g \geq 4$, let $g_{(2)}=g$ mod 2 , and let ε be an integer in the range

$$
0 \leq \varepsilon \leq\left(g+3 g_{(2)}\right) / 6
$$

Then for any c in the range

$$
2 \varepsilon-g_{(2)} \leq c \leq\left(g-g_{(2)}+2 \varepsilon\right) / 4
$$

such that c divides $\frac{g-g_{(2)}}{2}+\varepsilon$ and

$$
c \neq 1 \text { if }\left(g_{(2)}, \varepsilon\right)=(1,1)
$$

there exists a pseudo-real Riemann surface of genus g with automorphism group $\mathbb{Z}_{4 k}$ for

$$
k=\left(g-g_{(2)}+2 \varepsilon\right) / 2 c
$$

The surface X is (q, n)-gonal for any prime $n>$ 2 dividing k and

$$
q=\left(g-g_{(2)}+2 \varepsilon\right) / n+g_{(2)}-2 \varepsilon
$$

Corollary : Let $g_{(2)}=g \bmod 2$ for $g \geq 4$. Then for any prime $n>2$ dividing $\left(g-g_{(2)}\right) / 2$ and any integer α in the range

$$
0 \leq \alpha \leq\left(g-g_{(2)}\right) / 4 n
$$

there exists a pseudo-real (q, n) - gonal and p - hyperelliptic Riemann surface of genus g, where

$$
q=\frac{g-g_{(2)}}{n}+g_{(2)}
$$

and

$$
p=\left(2 n \alpha+g_{(2)}\right) .
$$

Theorem 7: A pseudo-real Riemann surface of genus g is p-hyperelliptic for some integer p having the same parity as g in the range

$$
g_{(2)} \leq p \leq p_{\text {max }},
$$

where $g_{(2)}=g \bmod 2$ and
$p_{\text {max }}= \begin{cases}\left(g+g_{(2)}\right) / 2 & \text { if } g-g_{(2)} \equiv 0(4), \\ \left(g+g_{(2)}\right) / 2-1 & \text { if } g-g_{(2)} \equiv 2(4)\end{cases}$

Conversely, for any such p and $g \geq 12$, there exists a p-hyperelliptic pseudo-real Riemann surface X of genus g, and it can be pseudosymmetric or not.

Pseudo-real Riemann surfaces with automorphism group $\mathbb{Z}_{4 n}$ for prime $n>2$.

Theorem 8: A pseudo-real Riemann surface X of genus g has an aconformal automorphism δ of order $4 n$ iff $g \notin\{2 n-1, n-1,2 n-2\}$ and there is an integer q in the range

$$
0 \leq q \leq(g-1) / n+1 \text { such that }
$$

(i) $q \equiv g(n-1)$,
(ii) $q \neq 2$ if $g=n+1$,
(iii) $q \neq 1$ if $(g-n) /(n-1)$ is even.

The element $\rho=\delta^{4}$ is a (q, n)-gonal automorphism of X with $2 \beta+2$ fixed points, where $\beta=(g-n q) /(n-1)$.

Theorem 9: The group $\mathbb{Z}_{4 n}$ acts on a pseudoreal Riemann surface X with signature

$$
\left(h, 1+\alpha ; n, \frac{\beta-\alpha}{2 .}, n, 2,{ }^{q-(\alpha+2 h)}, 2\right),
$$

where q satisfies the conditions of Theorem 8, $\beta=(g-n q) /(n-1)$,
$h \equiv q(2), 0 \leq h \leq(q+1) / 2$
$\alpha \equiv \beta$ (2) and $-1 \leq \alpha \leq \min (\beta, q-2 h)$.
The surface X is (q, n)-gonal and p-hyperelliptic for $p=n h+(\beta+\alpha)(n-1) / 2$.

Table 1: The values of p for $q \in\{0,1,2\}$.

q	h	α	p	Conditions
0	0	0	$\beta(n-1) / 2$	$\beta \geq 0$ even
	0	-1	$(\beta-1)(n-1) / 2$	$\beta \geq 1$ odd
1	1	-1	$(\beta+1)(n-1) / 2$	$\beta \geq 1$ odd
2	0	0	$\beta(n-1) / 2$	$\beta \geq 0$ even
	0	-1	$(\beta-1)(n-1) / 2$	$\beta \geq 1$ odd
	0	1	$(\beta+1)(n-1) / 2$	$\beta \geq 1$ odd
	0	2	$(\beta+2)(n-1) / 2$	$\beta \geq 0$ even

Table 2: The values of p for $\beta \in\{-1,0,1,2\}$.

β	α	p	Conditions
-1	-1	$n(h-1) n+1$	$1 \leq h \leq(q+1) / 2$,
0	0	$n h$	$0 \leq h \leq q / 2$
1	-1	$n h$	$0 \leq h \leq(q+1) / 2$
1	1	$n(h+1)-1$	$0 \leq h \leq(q-1) / 2$
2	0	$n(h+1)-1$	$0 \leq h \leq q / 2$
2	2	$n h+2(n-1)$	$0 \leq h \leq(q-2) / 2$

Theorem 10: Let $g=q n+\beta(n-1)$ for $\beta, q \geq 3$, and let $q_{(4)}=q \bmod 4$ and $\beta_{(2)}=\beta \bmod 2$. Then an asymmetric Riemann surface X of genus g with automorphism group $G=\mathbb{Z}_{4 n}$ is p-hyperelliptic, and the sharp bounds on p are equal to

$$
p_{\min }= \begin{cases}\frac{g+n(2-q)}{2}, & \beta \text { even, } q \text { odd }, \\ \frac{g+1+n(1-q)}{2}, & \beta \text { odd, } q \text { odd }, \\ \frac{g-n q}{2}, & \beta \text { even, } q \text { even }, \\ \frac{g+1-n(1+q)}{2}, & \beta \text { odd, } q \text { even },\end{cases}
$$

and

$$
p_{\max }= \begin{cases}\frac{g-\beta_{(2)}(n-1)-q_{(4)}}{2}, & q_{(4)}=0,2, \\ \frac{g+1}{2}, & q_{(4)}=1, \beta \text { odd }, \\ \frac{g-\beta_{(2)}(n-1)-4+q_{(4)}}{2}, & \text { other cases. }\end{cases}
$$

Theorem 11: For given integers $q, \beta \geq 3$, there exists a pseudo-real p-hyperelliptic Riemann surface of genus $g=q n+\beta(n-1)$ for

$$
p=p_{\max }-2 r-s(n-1),
$$

where r and s are nonnegative integers satisfying the following conditions:

Table 3: Conditions on r and s

$q_{(4)}=0$	$r \leq \frac{q}{4}$	$2 r-\frac{\beta+\varepsilon}{2} \leq s \leq 2 r$
$q_{(4)}=2$	$r \leq \frac{q-2}{4}$	$2 r+1-\frac{\beta+\varepsilon}{2} \leq s \leq 2 r+1$
$q_{(4)}=3$	$r \leq \frac{q-3}{4}$	$2 r-\frac{\beta-\varepsilon}{2} \leq s \leq 2 r$
$q_{(4)}=1, \beta$ even	$r \leq \frac{q-5}{4}$	$2 r+1-\frac{\beta}{2} \leq s \leq 2 r+1$
$q_{(4)}=1, \beta$ odd	$r \leq \frac{q-1}{4}$	$2 r-1-\frac{\beta+1}{2} \leq s \leq 2 r-1$

The action of \mathbb{Z}_{8} on pseudo-real Riemann surfaces

Theorem 12:The cyclic group $G=\mathbb{Z}_{8}$ acts on an asymmetric Riemann surface X of genus $g \geq 2$ with signature

$$
(h+1 ;-;[2,(g-1-3 l) / 2-4 h, 2,4, . l ., 4] ;\{-\})
$$

for some pair $(l, h) \neq(0,0)$ of nonnegative integers such that $(l, h) \neq(0,1)$ for $g=11$, $(l, h) \neq(1,0)$ for $g=6$,
l has parity different from g,
h has the same parity as g,
$g-1-3 l \geq 8 h$.

The surface X is p-hyperelliptic for

$$
p=4 h+1+l .
$$

Corollary: There are five genera less than 13 of pseudo-real Riemann surfaces with full automorphism group Z_{8}, namely $4,8,9,10,12$, and the degrees of hyperellipticity of such surfaces are listed below:

p	g
2	$4,8,10,12$
4	10,12
5	9
6	12

Theorem 13: For given $g \geq 13$, let

$$
\varepsilon=g \quad \bmod 2 \text { and } \gamma=g \quad \bmod 6
$$

Let $l_{\text {max }}$ and s_{k} be integers given in Table below for k in the range $0 \leq k \leq l_{\text {max }} / 2$. Then for every such k and s in the range $0 \leq s \leq s_{k}$, there exists an asymmetric p-hyperelliptic Riemann surface of genus g with full automorphism group Z_{8}, where

$$
p=4 \varepsilon+8 s+l_{\max }-2 k+1
$$

	$l_{\max }$	s_{k}
$\beta=1$	$(g-1) / 3-4$,	$(2+3 k) / 8$
$\beta=4$	$(g-1) / 3$,	$3 k / 8$
$\beta \neq 1 \quad \bmod 3$	$(g-\beta) / 3-(1+\varepsilon)$,	$(6 l+2+\beta-5 \varepsilon) / 16$.

