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NEC groups and Fuchsian groups

H=hyperbolic plane
g=group of isometries of H including those
reversing orientation
Gt=subgroup of G consisting of orientation-
preserving isometries

G = PGL(2,R) and GT = PSL(2,R)

Non-euclidean crystallographic group
(NEC-group) is a discrete in the topology of
R4 subgroup of G with compact orbit space

An NEC-group is called a Fuchsian group if
it is contained in T and a proper NEC-group
otherwise.



Macbeath and Wilkie associated with an NEC-
group A a signature of the form

o(N\) = (g;L; [m1,...,m¢]; {(n11, ... ,nlsl), .

o (N1, sy ) )

which determines the presentation of A by
generators:

x;, 1 <1<, elliptic

Cij 1 <1<k, 0L 7 < s;, reflections

e;, 1 <1<k, boundary

a;, b, 1<1<g, if 4, hyperbolic

di, 1<:1<g, if —, glide reflections

and relations:

z,' =1, 1<i<r,
Cis; = e;zcioez-, 1<i<k,
i1 = ¢ = (cij—16i5)"0 = 1, 1 <i<k,

1 S .] S Si9

Ty...xr€1...€exla1,b1]. .. [lag,bgl =1, if +
:I:l...:crel...ekdg...dg:l, if —.



The orbit space H/A is a surface of topological
genus g having k£ boundary components and
orientable or not according to the sign being

+ or —.

A Fuchsian group can be regarded as an NEC-
group with the signature

Every NEC-group has a fundamental region,
whose hyperbolic area u(A) is given by

p(N) = 2mn(ag+k—24+37_1(1—1/m;)+
+1/2 55 Y1 (1 = 1/ng5)),
where o« = 2 if the sign is + and o« = 1 other-
wise.

If T is a subgroup of finite index in an NEC-
group A then it is an NEC-group itself and
there is the Riemann-Hurwitz formula which
says that

AT = pu(T)/p(N).



[Preston] Every compact Riemann surface X
of genus g > 2 can be represented as the orbit
space H /I of the hyperbolic plane H under the
action of a torsion-free Fuchsian group I called
surface group with the signature

(g;+: [ {—})-

A finite group G is a group of automorphisms
of X = H/I if and only if G = A/I" for some
NEC-group A normalizing I.

[Macbeath] Let
X =H/T,
G =N/ = AutT(X),

x1,...,xr € N\-€elliptic generators of orders m1q, ...

0 : A\ — G-the canonical epimorphism.
Then the number of fixed points of g € GG is
equal to

m = |[Ng((g))| > _ 1/my,
where the sum is taken over those ¢ for which
g is conjugate to a power of 6(x;).



The canonical Fuchsian subgroup

Let A be an NEC group with the signature
o(N) = (hi+; [my, . ..,mei {(n11, -, m14y)s - -

ceey (nkl, “ e 7n]€8k)})'

The subgroup AT of A consisting of all orien-
tation preserving elements is called the cano-
nical Fuchsian subgroup of A

[Singerman ] The signature of At has proper
periods:

nll?'"7n1817"'nklﬂ‘"7nk3k7m17m17"'7m7“7m7“

and orbit genus k' =eh+k—1, where e = 2 or
1 according to if the sign in o(A) is + or —.



Maximal signatures

A signature o is said to be maximal, if for every
NEC group A/ with signature ¢’ containing an
NEC group A with signature o such that the
Teichmiller spaces of A and A’ have the same
dimensions, the equality A = A’ holds.

Otherwise the pair (o, 0’) is called a normal or
non-normal pair according to if A is a normal
subgroup of A’ or not.

The complete lists of normal and non-normal
pairs were given by [Bujalance, Singermann,
Estevez, Izquierdo, Conder].

If o is @ maximal signature, then there exists a
maximal NEC group with signature o which
IS not properly contained in any other NEC
group.



T he full automorphism group

If G = A/I" acts on a Riemann surface X =
H /I with maximal sighature, then G is the full
automorphism group of X. In other case, A is
properly contained with finite index in another
NEC group A/, which normalizes I".

If for any epimorphism 0 : A — G, there exists
a group G’ and group embeddings i : A — A/,
j G —= G" and 0 extends to 6 : N’ — G’ such
that 0/ -i=35-0

A LN
10 10
G L

then
G=A/ITc N/ =G CAut(X)
and so G is not the full automorphism group.
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An example

o(N) = (2; = [k]; {—1}) 1 d1,d2, %1,

U(A/) — (O, +1 [272]' {(k)}) : CB&,%’Q,C,]_O,C/]_]_,G,]_
G = Zyy, = (9)

G' = Dy = (1,0 : a® = 72 = (1a)* = 1)

A smooth epimorphism 6 : A — G is given by
0(x1) = 6, 6(dy) = &', 0(dp) = 5"
for some integers t1,t> and p such that tq1,t»
are odd, (p,k) =1 and 2p+t1 + t> =0 (2k).
AL N
10 10

La = Dy

d— Ta
., ! ./ / ! ] / /
Z/. d/l —> 6161/O$1, d2 —> ﬁlc].O’ ml —> C].OC].].
9 Clo —> T, Cll —> T(Ta) p’

Ty = 7(at)t2, el — (ra)t1tt2,

0 -i=7-0.



(g, n)-gonal Riemann surfaces

A compact Riemann surface X of genus g > 1
is said to be (¢g,n)-gonal if X admits a con-
formal automorphism p of prime order n such
that X/{p) has genus ¢. This automorphism is
called a (g, n)-gonal automorphism.

If n = 2 then (gq,n)-gonal automorphism is cal-
led a g-hyperelliptic involution. For (¢g,n) =
(0,2) and (1,2), X is called hyperelliptic and
elliptic-hyperelliptic, respectively.



Pseudo-real Riemann surfaces

A symmetry of a Riemann surface is an anti-
holomorphic involution. A surface is symme-
tric if it admits a symmetry.

Projective complex algebraic curves correspond
to compact Riemann surfaces. A surface X is
symmetric if the corresponding curve Cy is de-
finable over R.

A Riemann surface is called pseudo-real if
it admits an anticonformal automorphism but
no anticonformal involution. An anticonformal
automorphism of order 4 is called a pseudo-
symmetry and in this case the surface is called
pseudo-symmetric.
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Complex algebraic curves with real moduli

There is an antiholomorphic involution

L:Mg—>Mg

of the moduli space M, of complex algebraic
curves of genus g which maps the class of a
complex curve to its conjugate.

The fixed points of + are called complex al-
gebraic curves with real moduli. The corre-
sponding to them Riemann surfaces admit an
antiholomorphic automorphism and they are
either symmetric or pseudo-real.
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Etayo Gordejuela studied pseudo-real surfa-
ces with cyclic automorphism groups.

Bujalance, Conder, Costa gave many gene-
ral properties of pseudo-real surfaces, such as
for example existence of an asymmetric surface
in any genus g > 2, description of such surfa-
ces in genera 2 and 3 and the sharp bound on
the order of the automorphism group.

The case of hyperelliptic pseudo-real surfaces
was studied by Singerman, whilst Bujalan-
ce, Turbek determined defining equations for
such surfaces and the special case of hyperel-
liptic asymmetric pseudo-symmetric surfaces is
also treated.

The minimal genus problem for pseudo-real
Riemann surfaces with cyclic automorphism gro-
ups was solved by Baginski and Gromadzki.
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Remarks:

() If G = A/T is an automorphism group of a
pseudo-real Riemann surface X = H/I", then
/A has signature

(h+ 1, —[my,...,me]; {—})

for h > 0 and mq,...,m, dividing |G| while the
canonical Fuchsiam subgroup AT of A has si-
gnature

(h; -I-; [ml,ml, .. .mr,mq"]; {—})

(72) The order of an anticonformal automor-
phism ¢ of X is divisible by 4. Any conformal
automorphism in (§) has an even number of
fixed points.
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Theorem 1: The cyclic group Zg4, = N\/T" ge-
nerated by an anticonformal automorphism ¢
acts on a pseudo-real Riemann surface X =
H/IT of genus g with signature

(h+1;—;[m1,...,ms, 2k,. ., 2k]; {—}), where

(i) g = 2k[h + 51 (1 — )]+ (1= 1)(2k - 1),
(71) h =g (2),

(493) if h = 0 then [ %= 0 or there exists a subset
{i1,...,ig} C {1,...,s} such that

(mil o misl)/g.c.d(mil, ce ,ng) = 2k.
(i) (h,s,1) #(1,1,0),(0,1,1) and (0, 2,0).
proof:

(7) the Riemann-Hurwith formula for (A, IN);
(71) the necessary condition for the existence
of 0 : N\ — Zgyy,

(#i1) Zor = AT /I acts with signature

(h; m1,m1...,ms, ms, 2k, 2l 2k)

and so for h = 0 it is generated by 6-images of
elliptic generators of AT:

(iv) if the signature is non-maximal, then X is
symmetric(see Example 1).
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Lemma 1: If a (g,n)-gonal automorphism of
a Riemann surface X of genus g has an even
number of fixed points on X, then there exists
an integer B in the range

-1<8<g/(n—1)
such that n divides g 4+ 8 and

q=(g+B)/n—p. (1)

proof: The group generated by a (g,n)-gonal
automorphism p of a Riemann surface X of
genus g acts with the signature (q; n, ™., n) for

m =2+ 2(g9 —ng)/(n—1).

By Macbeath’s Theorem p has m fixed points.
If m is even then for B =m/2 — 1 we get (1).
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Theorem 2: A pseudo-real Riemann surface
X of genus g with automorphism group Zg4;. is
(g,n)-gonal for any prime n > 2 dividing k£ and

g — 9(n
¢=1+4"—""

—[(n—g@) +(n—=1)d-1)], (2)

where I9n) = 9 mod n and d is an integer in
the range

(my — 1)/ < d < [g + gey(n — )]/ In(n — 1)].

4k
proof: The element p =9Jn € Zy;. has an even
number of fixed points. So by Lemma 1, the
genus g of X/(p) is equal to

q=(g+8)/n—p

for some integer B in the range

-1<p<g/(n—1)
for which g 4 3 is divisible by n. Such 8 must
be 8 = dn — gy foOr 9n) = 9 mod n and some
integer d. Thus we get (2).
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Theorem 3: For given g > 2 and prime n > 2,
the upper sharp bound for an integer g such
that there exists a (¢, n)-gonal pseudo-real Rie-
mann surface of genus g is equal to

{ 9y + T if g(ny =00r 1,
qmax — g—g(n) '
9(n) + —n (n—1), if 9(n) > 2.

Conditions on g for which gmax Is attained:

(2) If g = 0 or 1, then gmax is attained for any
g such that

g—9) =0(n)
and the surface can be pseudo-symmetric or
Not.

(43) If gn > 2, then gmax is attained in pseudo-
symmetric case for any g > (n+1)(n—2), and
in not pseudo-symmetric case for any g such
that

g>(n—-—2)(4n—-1) andg+n—g(n)50(4).
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Theorem 4: If the group G = Z4;, = () acts
on a Riemann surface X with signature

(h+1;—;[m1,...,ms, 2k,. ., 2k]; {-}),

then X is (g,n)-gonal for any prime n dividing
4k and

q—1+—(h+s+Z—1>—(ZB
1=1 i

where B, = 1 or B; = n depending on whe-

ther n divides m; or not. In particular, X is
p-hyperelliptic for

+1), (3)

p=1+k(h+s+1-1)- (> 4,

i=1 "
where ~v; = 2 or 1 according to if m; is even or
odd.

proof: p = §**/" has m = 24 (2g—2nq)/(n—1)
fixed points, where ¢ is the genus of X/(p).
Compering number m with Macbeath's formu-
la and using the condition (¢) of Theorem 1,
we get (3).
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Theorem 5: Let ¢, r > 0 and k£ > 2 be integers
such that

g=cRk—-1)4+r>2

and (¢,7, k) #= (0,k,1),(0,k+ 1,1) when k is
odd. Let r¢y =7 mod k.

Then for any integer ~ in the range

0 <~ < (r—r())/k, such that

B=c—r+~vyk>-1

there exists a complex algebraic curve C of ge-
nus g with real moduli such that the correspon-
ding Riemann surface X is (¢,n)-gonal for any
prime n > 2 dividing k£ and

q:giﬁ_ﬁ
The surface X¢ is symmetric if (¢,r,v) = (1,0,0)
or (0,k4+1,1), (0,k,1) for even k, and is pseudo-
real otherwise.
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Corollary: For any integers
k>3andg> (k—2)(2k—-1),

there exists a pseudo-real Riemann surface of
genus g with automorphism group Zga;..

The surface is (g,n)-gonal for any prime n > 2
dividing k£ and

n
where B =(g—1r)/(2k—1) — ) for

r=¢g mod (2k—1)andr =r mod k.
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Theorem 6: For given g > 4, let gy = g
mod 2, and let £ be an integer in the range

0 <e < (g9+3g¢2))/6.
Then for any ¢ in the range
2e —gp) S ¢ < (9 — ge2) + 2¢e)/4
such that ¢ divides 252 + ¢ and

& # 1if (9(2)78) — (17 1)7

there exists a pseudo-real Riemann surface of
genus g with automorphism group Zg,; for

k= (9 —g¢2) + 2¢)/2c.

The surface X is (¢g,n)-gonal for any prime n >
2 dividing k and

q=(9— 9(2) + 26)/n —I—g(2) — 2e.
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Corollary : Let gy = 9 mod 2 for g > 4.
Then for any prime n > 2 dividing (g — 9(2))/2
and any integer « in the range

0<a<(g—y9gep)/4n

there exists a pseudo-real (g,n) — gonal and
p — hyperelliptic Riemann surface of genus g,
where

g—4g
q = (2) + 9(2)
n
and

p = (2na+ ge2))-
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Theorem 7: A pseudo-real Riemann surface
of genus g is p-hyperelliptic for some integer p
having the same parity as g in the range

9(2) < P < Pmax;,
where g2y =49 mod 2 and

:{ (9+ 9(2))/2 if 9—9g(2) =0 (4),
pmax (9+9(2))/2 -1 if g—g)y=2(4)

Conversely, for any such p and g > 12, the-
re exists a p-hyperelliptic pseudo-real Riemann
surface X of genus g, and it can be pseudo-
symmetric or not.
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Pseudo-real Riemann surfaces with auto-
morphism group Z,,, for prime n > 2.

Theorem 8: A pseudo-real Riemann surface X
of genus g has an aconformal automorphism 9o
of order 4n iff g & {2n —1,n — 1,2n — 2} and
there is an integer q in the range

0<g<(9g—1)/n+ 1such that

(1) g=g(n—1),
(i) g 7#=2if g=n—+1,
(iit1) g#= 1 if (9—n)/(n—1) is even.

The element p = 6% is a (q,n)-gonal automor-
phism of X with 238 4+ 2 fixed points, where

B=(g—ng)/(n—1).
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Theorem 9: The group Zg,, acts on a pseudo-
real Riemann surface X with signature

B—a

(h,1 4+ a;n, .2.,n,2 9 (@f2h) o)
where ¢ satisfies the conditions of Theorem 8,

B=(g—nq)/(n—1),

h=q(2), 0<h<(g+1)/2

a=p£(2)and -1 <a<min(B,q — 2h).

The surface X is (¢,n)-gonal and p-hyperelliptic
forp=nh+ B+ a)(n—1)/2.

Table 1: The values of p for g € {0,1,2}.

P Conditions
0|B(n—1)/2 B >0 even
~1|(8-1)(n—1)/2 | 8> 1 odd
-1/ (B+1)(n—-1)/2|B>1 odd
B(n—1)/2 B >0 even
~1|(8-1)(n—-1)/2 | 8> 1 odd
1| (84+1)(n—1)/2|8>1 odd
21 (B+2)(n—1)/2 | 8> 0 even

q
O

-t

N
ol olololl ooy
)
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Table 2: The values of p for g € {—1,0,1,2}.

P Conditions
11 nth-m+1[1<h<(¢+1)/2

nh 0< h<gq/2

nh 0<h<(¢g+1)/2

n(h+1)—1 |0<h<(g—1)/2
n(h4+1)—1 |0< h<gq/2
nh+2(n—-1) |0<h<(¢g—2)/2

N NNER R O R
|
N O, R, O R|Q
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Theorem 10: Let g = gn+58(n—1) for 3,q > 3,
and let 94y = 4 mod 4 and [3(2) = £ mod 2.
Then an asymmetric Riemann surface X of ge-
nus g with automorphism group G = Zg,, IS
p-hyperelliptic, and the sharp bounds on p are
equal to

( g-l-n(2 9. B even, q odd,
—|—1—|—n(1 Q) £ odd, g odd ,
Pmin = g—ngq nq £ even, g even ,
g—|—1—g(1‘|‘CI)’ £ odd, g even

and
( g—ﬁ 2 (n—l)—q 4
Sz aw =02
pmax — < %, q(4) pu— 1,5 Odd7
9—/3(2)(”_21>_4+q(4), other cases.
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Theorem 11: For given integers ¢, > 3, the-
re exists a pseudo-real p-hyperelliptic Riemann
surface of genus g =gn + B(n — 1) for

p = pmax — 2r — s(n — 1),

where r and s are nonnegative integers satis-
fying the following conditions:

Table 3: Conditions on r and s

qa) =0
qa)y = 2
qa) =3

N

QDI

Q|
121 ]
oW

qa) = 1,5 even
q4) = 1,8 odd

(I

IA TN IA TN TA

S 3 O3 303

&S
a

2r—ﬁ—2|_€§s§2r

or+1- e <s<or41
27“—/3;€§8§27“
2r+1-5<s<2r+1
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The action of Zg on pseudo-real Riemann
surfaces

Theorem 12:The cyclic group G = Zg acts
on an asymmetric Riemann surface X of genus
g > 2 with signature

(h+1;—;[2,971=3D)/2=4h 5> 4 1 4];{-})

for some pair (I,h) #= (0,0) of nonnegative in-
tegers such that (I,h) = (0,1) for g = 11,
(I,h) = (1,0) for g = 6,

[ has parity different from g,

h has the same parity as g,

g—1—3l> 8h.

The surface X is p-hyperelliptic for

p=4h+ 141
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Corollary: There are five genera less than 13
of pseudo-real Riemann surfaces with full auto-
morphism group Zg, namely 4,8,9,10,12, and
the degrees of hyperellipticity of such surfaces
are listed below:

plyg
21 4,8,10, 12
410,12
59

6| 12
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Theorem 13: For given g > 13, let

e=g mod2and~y=g mod 6.

Let Imax and s be integers given in Table be-
low for k£ in the range 0 < k < Imax/2. Then
for every such k and s in the range 0 < s < s,
there exists an asymmetric p-hyperelliptic Rie-
mann surface of genus g with full automor-
phism group Zg, where

p:4€+88—|—lmax—2]€—|—1.

/B lmax S
F=1 (G=1)/3 -4, CESEOYE
=4 (9—1)/3, 3k/8
B#1 mod3 | (g—8)/3— (1+e), | (6l+2+5—5:)/16.
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