(q, n)-gonal pseudo-real Riemann surfaces

Ewa Kozlowska-Walania and Ewa Tyszkowska University of Gdansk

3-4 October 2015

NEC groups and Fuchsian groups

 $\mathcal{H}=$ hyperbolic plane $\mathcal{G}=$ group of isometries of \mathcal{H} including those reversing orientation $\mathcal{G}^+=$ subgroup of \mathcal{G} consisting of orientationpreserving isometries

 $\mathcal{G} = PGL(2,\mathbb{R})$ and $\mathcal{G}^+ = PSL(2,\mathbb{R})$

Non-euclidean crystallographic group (NEC-group) is a discrete in the topology of \mathbb{R}^4 subgroup of \mathcal{G} with compact orbit space

An NEC-group is called a **Fuchsian group** if it is contained in \mathcal{G}^+ and a **proper** NEC-group otherwise.

Macbeath and **Wilkie** associated with an NECgroup Λ a **signature** of the form

$$\sigma(\Lambda) = (g; \pm; [m_1, \dots, m_r]; \{(n_{11}, \dots, n_{1s_1}), \dots, \dots, (n_{k1}, \dots, n_{ks_k})\})$$

which determines the presentation of Λ by generators:

$$egin{aligned} x_i, & 1 \leq i \leq r, \ c_{ij}, & 1 \leq i \leq k; 0 \leq j \leq s_i, \ e_i, & 1 \leq i \leq k, \ a_i, b_i, & 1 \leq i \leq g, & ext{if } +, \ d_i, & 1 \leq i \leq g, & ext{if } -, \end{aligned}$$

elliptic reflections boundary hyperbolic glide reflections

and relations:

$$\begin{aligned} x_i^{m_i} &= 1, & 1 \leq i \leq r, \\ c_{is_i} &= e_i^{-1} c_{i0} e_i, & 1 \leq i \leq k, \\ c_{ij-1}^2 &= c_{ij}^2 = (c_{ij-1} c_{ij})^{n_{ij}} = 1, & 1 \leq i \leq k, \\ & 1 \leq i \leq k, \\ & 1 \leq j \leq s_i, \\ x_1 \dots x_r e_1 \dots e_k [a_1, b_1] \dots [a_g, b_g] = 1, & \text{if } + \\ x_1 \dots x_r e_1 \dots e_k d_i^2 \dots d_g^2 = 1, & \text{if } -. \end{aligned}$$

The orbit space \mathcal{H}/Λ is a surface of topological genus g having k boundary components and orientable or not according to the sign being + or -.

A Fuchsian group can be regarded as an NECgroup with the signature

$$(g; +; [m_1, \ldots, m_r]; \{-\}).$$

Every NEC-group has a **fundamental region**, whose hyperbolic area $\mu(\Lambda)$ is given by

$$\mu(\Lambda) = 2\pi(\alpha g + k - 2 + \sum_{i=1}^{r} (1 - 1/m_i) + \frac{1}{2\sum_{i=1}^{k} \sum_{i=1}^{s_i} (1 - 1/n_{ij})},$$

where $\alpha = 2$ if the sign is + and $\alpha = 1$ otherwise.

If Γ is a subgroup of finite index in an NECgroup Λ then it is an NEC-group itself and there is the **Riemann-Hurwitz formula** which says that

$$[\Lambda : \Gamma] = \mu(\Gamma)/\mu(\Lambda).$$

[Preston] Every compact Riemann surface Xof genus $g \ge 2$ can be represented as the orbit space \mathcal{H}/Γ of the hyperbolic plane \mathcal{H} under the action of a torsion-free Fuchsian group Γ called **surface group** with the signature

$$(g; +; [-]; \{-\}).$$

A finite group G is a group of automorphisms of $X = \mathcal{H}/\Gamma$ if and only if $G \cong \Lambda/\Gamma$ for some NEC-group Λ normalizing Γ .

[Macbeath] Let

 $X = \mathcal{H}/\Gamma,$ $G = \Lambda/\Gamma = \operatorname{Aut}^+(X),$

 $x_1, \ldots, x_r \in \Lambda$ -elliptic generators of orders m_1, \ldots, m_r , $\theta : \Lambda \to G$ -the canonical epimorphism.

Then the number of fixed points of $g \in G$ is equal to

$$m = |N_G(\langle g \rangle)| \sum 1/m_i,$$

where the sum is taken over those i for which g is conjugate to a power of $\theta(x_i)$.

The canonical Fuchsian subgroup

Let Λ be an NEC group with the signature $\sigma(\Lambda) = (h; \pm; [m_1, \dots, m_r]; \{(n_{11}, \dots, n_{1s_1}), \dots, \dots, (n_{k1}, \dots, n_{ks_k})\}).$

The subgroup Λ^+ of Λ consisting of all orientation preserving elements is called the **canonical Fuchsian subgroup** of Λ

[Singerman] The signature of Λ^+ has proper periods:

 $n_{11}, \ldots, n_{1s_1}, \ldots, n_{k1}, \ldots, n_{ks_k}, m_1, m_1, \ldots, m_r, m_r$ and orbit genus $h' = \varepsilon h + k - 1$, where $\varepsilon = 2$ or 1 according to if the sign in $\sigma(\Lambda)$ is + or -.

Maximal signatures

A signature σ is said to be **maximal**, if for every NEC group Λ' with signature σ' containing an NEC group Λ with signature σ such that the Teichmüller spaces of Λ and Λ' have the same dimensions, the equality $\Lambda = \Lambda'$ holds.

Otherwise the pair (σ, σ') is called a **normal** or **non-normal pair** according to if Λ is a normal subgroup of Λ' or not.

The complete lists of normal and non-normal pairs were given by [Bujalance, Singermann, Estevez, Izquierdo, Conder].

If σ is a maximal signature, then there exists a **maximal NEC group** with signature σ which is not properly contained in any other NEC group.

The full automorphism group

If $G = \Lambda/\Gamma$ acts on a Riemann surface $X = \mathcal{H}/\Gamma$ with maximal signature, then G is the full automorphism group of X. In other case, Λ is properly contained with finite index in another NEC group Λ' , which normalizes Γ .

If for any epimorphism $\theta : \Lambda \to G$, there exists a group G' and group embeddings $i : \Lambda \to \Lambda'$, $j : G \to G'$ and θ extends to $\theta' : \Lambda' \to G'$ such that $\theta' \cdot i = j \cdot \theta$

Λ	$\stackrel{i}{\rightarrow}$	\wedge'	
$\downarrow \theta$		$\downarrow heta'$	
G	\xrightarrow{j}	G'	

then

$$G = \Lambda / \Gamma \subset \Lambda' / \Gamma = G' \subseteq \operatorname{Aut}(X)$$

and so G is not the full automorphism group.

An example

 $\sigma(\Lambda) = (2; -; [k]; \{-\}) : d_1, d_2, x_1,$ $\sigma(\Lambda') = (0; +; [2, 2]; \{(k)\}) : x'_1, x'_2, c'_{10}, c'_{11}, e'_1$ $G = Z_{4k} = \langle \delta \rangle$ $G' = D_{4k} = \langle \tau, a : a^2 = \tau^2 = (\tau a)^{4k} = 1 \rangle$

A smooth epimorphism $\theta : \Lambda \to G$ is given by

$$\theta(x_1) = \delta^{4p}, \ \theta(d_1) = \delta^{t_1}, \ \theta(d_2) = \delta^{t_2}$$

for some integers t_1, t_2 and p such that t_1, t_2 are odd, (p, k) = 1 and $2p + t_1 + t_2 \equiv 0$ (2k).

$$\begin{array}{cccc} & & & & & & & \\ & & & & & & \\ & & \downarrow \theta & & & \downarrow \theta' \\ & & & & & & \\ \mathbb{Z}_{4k} & \xrightarrow{j} & & D_{4k} \end{array}$$

$$j: \quad \delta \mapsto \tau a$$

$$i: \quad d_1 \mapsto e'_1 c'_{10} x'_1, \ d_2 \mapsto x'_1 c'_{10}, \ x_1 \mapsto c'_{10} c'_{11}$$

$$\theta': \quad c'_{10} \mapsto \tau, c'_{11} \mapsto \tau(\tau a)^{4p},$$

$$x'_1 \mapsto \tau(a\tau)^{t_2}, e'_1 \mapsto (\tau a)^{t_1+t_2}.$$

$$\theta' \cdot i = j \cdot \theta.$$

8

(q, n)-gonal Riemann surfaces

A compact Riemann surface X of genus g > 1is said to be (q, n)-gonal if X admits a conformal automorphism ρ of prime order n such that $X/\langle \rho \rangle$ has genus q. This automorphism is called a (q, n)-gonal automorphism.

If n = 2 then (q, n)-gonal automorphism is called a q-hyperelliptic involution. For (q, n) = (0, 2) and (1, 2), X is called hyperelliptic and elliptic-hyperelliptic, respectively.

Pseudo-real Riemann surfaces

A **symmetry** of a Riemann surface is an antiholomorphic involution. A surface is **symmetric** if it admits a symmetry.

Projective complex algebraic curves correspond to compact Riemann surfaces. A surface X is symmetric if the corresponding curve C_X is definable over \mathbb{R} .

A Riemann surface is called **pseudo-real** if it admits an anticonformal automorphism but no anticonformal involution. An anticonformal automorphism of order 4 is called a **pseudosymmetry** and in this case the surface is called **pseudo-symmetric**.

Complex algebraic curves with real moduli

There is an antiholomorphic involution

 $\iota: \mathcal{M}_g \to \mathcal{M}_g$

of the moduli space \mathcal{M}_g of complex algebraic curves of genus g which maps the class of a complex curve to its conjugate.

The fixed points of ι are called **complex algebraic curves with real moduli**. The corresponding to them Riemann surfaces admit an antiholomorphic automorphism and they are either symmetric or pseudo-real. **Etayo Gordejuela** studied pseudo-real surfaces with cyclic automorphism groups.

Bujalance, Conder, Costa gave many general properties of pseudo-real surfaces, such as for example existence of an asymmetric surface in any genus $g \ge 2$, description of such surfaces in genera 2 and 3 and the sharp bound on the order of the automorphism group.

The case of hyperelliptic pseudo-real surfaces was studied by **Singerman**, whilst **Bujalance, Turbek** determined defining equations for such surfaces and the special case of hyperelliptic asymmetric pseudo-symmetric surfaces is also treated.

The minimal genus problem for pseudo-real Riemann surfaces with cyclic automorphism groups was solved by **Baginski** and **Gromadzki**.

Remarks:

(i) If $G = \Lambda/\Gamma$ is an automorphism group of a pseudo-real Riemann surface $X = \mathcal{H}/\Gamma$, then Λ has signature

$$(h+1; -[m_1, \ldots, m_r]; \{-\})$$

for $h \ge 0$ and m_1, \ldots, m_r dividing |G| while the canonical Fuchsiam subgroup Λ^+ of Λ has signature

$$(h; +; [m_1, m_1, \dots, m_r, m_r]; \{-\}).$$

(*ii*) The order of an anticonformal automorphism δ of X is divisible by 4. Any conformal automorphism in $\langle \delta \rangle$ has an even number of fixed points.

Theorem 1: The cyclic group $\mathbb{Z}_{4k} = \Lambda/\Gamma$ generated by an anticonformal automorphism δ acts on a pseudo-real Riemann surface $X = \mathcal{H}/\Gamma$ of genus g with signature

$$(h + 1; -; [m_1, ..., m_s, 2k, .l., 2k]; \{-\})$$
, where
 $(i) g = 2k[h + \sum_{i=1}^{s} (1 - \frac{1}{m_i})] + (l - 1)(2k - 1),$
 $(ii) h \equiv g$ (2),
 $(iii) \text{ if } h = 0 \text{ then } l \neq 0 \text{ or there exists a subset}$
 $\{i_1, ..., i_{s'}\} \subset \{1, ..., s\} \text{ such that}$
 $(m_{i_1} \cdot ... \cdot m_{i_{s'}})/g.c.d(m_{i_1}, ..., m_{i'_s}) = 2k.$
 $(iv) (h, s, l) \neq (1, 1, 0), (0, 1, 1) \text{ and } (0, 2, 0).$
proof:

(*i*) the Riemann-Hurwith formula for (Λ, Γ) ; (*ii*) the necessary condition for the existence of $\theta : \Lambda \to \mathbb{Z}_{4k}$; (*iii*) $\mathbb{Z}_{2k} = \Lambda^+ / \Gamma$ acts with signature

$$(h; m_1, m_1, \dots, m_s, m_s, 2k, .2l, .2k)$$

and so for h = 0 it is generated by θ -images of elliptic generators of Λ^+ ;

(iv) if the signature is non-maximal, then X is symmetric(see Example 1).

Lemma 1: If a (q, n)-gonal automorphism of a Riemann surface X of genus g has an even number of fixed points on X, then there exists an integer β in the range

$$-1 \leq eta \leq g/(n-1)$$

such that n divides $g + \beta$ and

$$q = (g + \beta)/n - \beta.$$
 (1)

proof: The group generated by a (q, n)-gonal automorphism ρ of a Riemann surface X of genus g acts with the signature $(q; n, \underline{m}, n)$ for

$$m = 2 + 2(g - nq)/(n - 1).$$

By Macbeath's Theorem ρ has m fixed points. If m is even then for $\beta = m/2 - 1$ we get (1). **Theorem 2:** A pseudo-real Riemann surface X of genus g with automorphism group \mathbb{Z}_{4k} is (q, n)-gonal for any prime n > 2 dividing k and

$$q = 1 + \frac{g - g_{(n)}}{n} - [(n - g_{(n)}) + (n - 1)(d - 1)], \quad (2)$$

where $g_{(n)} = g \mod n$ and d is an integer in the range

$$(g_{(n)}-1)/n \le d \le [g+g_{(n)}(n-1)]/[n(n-1)].$$

proof: The element $\rho = \delta^{\frac{4k}{n}} \in \mathbb{Z}_{2k}$ has an even number of fixed points. So by Lemma 1, the genus q of $X/\langle \rho \rangle$ is equal to

$$q = (g + \beta)/n - \beta$$

for some integer β in the range

$$-1 \leq eta \leq g/(n-1)$$

for which $g + \beta$ is divisible by n. Such β must be $\beta = dn - g_n$ for $g_{(n)} = g \mod n$ and some integer d. Thus we get (2). **Theorem 3:** For given $g \ge 2$ and prime n > 2, the upper sharp bound for an integer q such that there exists a (q, n)-gonal pseudo-real Riemann surface of genus g is equal to

$$q_{\max} = \begin{cases} g_{(n)} + \frac{g - g_{(n)}}{n}, & \text{if } g_{(n)} = 0 \text{ or } 1, \\ g_{(n)} + \frac{g - g_{(n)}}{n} - (n - 1), & \text{if } g_{(n)} \ge 2. \end{cases}$$

Conditions on g for which q_{max} is attained:

(i) If $g_n = 0$ or 1, then q_{\max} is attained for any g such that

$$g - g_{(2)} \equiv 0 \ (n)$$

and the surface can be pseudo-symmetric or not.

(*ii*) If $g_n \ge 2$, then q_{max} is attained in pseudosymmetric case for any g > (n+1)(n-2), and in not pseudo-symmetric case for any g such that

$$g \ge (n-2)(4n-1)$$
 and $g + n - g_{(n)} \equiv 0$ (4).

Theorem 4: If the group $G = \mathbb{Z}_{4k} = \langle \delta \rangle$ acts on a Riemann surface X with signature

$$(h+1; -; [m_1, \ldots, m_s, 2k, .l., 2k]; \{-\}),$$

then X is (q, n)-gonal for any prime n dividing 4k and

$$q = 1 + \frac{2k}{n}(h+s+l-1) - (\sum_{i=1}^{s} \frac{2k}{\beta_i m_i} + l), \quad (3)$$

where $\beta_i = 1$ or $\beta_i = n$ depending on whether n divides m_i or not. In particular, X is p-hyperelliptic for

$$p = 1 + k(h + s + l - 1) - (\sum_{i=1}^{s} \frac{\gamma_i k}{m_i} + l),$$

where $\gamma_i = 2$ or 1 according to if m_i is even or odd.

proof: $\rho = \delta^{4k/n}$ has m = 2 + (2g - 2nq)/(n-1) fixed points, where q is the genus of $X/\langle \rho \rangle$. Compering number m with Macbeath's formula and using the condition (i) of Theorem 1, we get (3). **Theorem 5:** Let $c, r \ge 0$ and $k \ge 2$ be integers such that

$$g = c(2k-1) + r \ge 2$$

and $(c, r, k) \neq (0, k, 1), (0, k + 1, 1)$ when k is odd. Let $r_{(k)} = r \mod k$.

Then for any integer γ in the range

$$0 \leq \gamma \leq (r - r_{(k)})/k$$
, such that $eta = c - r + \gamma k \geq -1$

there exists a complex algebraic curve C of genus g with real moduli such that the corresponding Riemann surface X_C is (q, n)-gonal for any prime n > 2 dividing k and

$$q = \frac{g+\beta}{n} - \beta.$$

The surface $X_{\mathcal{C}}$ is symmetric if $(c, r, \gamma) = (1, 0, 0)$ or (0, k+1, 1), (0, k, 1) for even k, and is pseudoreal otherwise. Corollary: For any integers

$$k \ge 3 \text{ and } g \ge (k-2)(2k-1),$$

there exists a pseudo-real Riemann surface of genus g with automorphism group \mathbb{Z}_{4k} .

The surface is (q, n)-gonal for any prime n > 2 dividing k and

$$q = \frac{g+\beta}{n} - \beta,$$

where $\beta = (g-r)/(2k-1) - r_{(k)}$ for

 $r = g \mod (2k-1)$ and $r' = r \mod k$.

Theorem 6: For given $g \ge 4$, let $g_{(2)} = g$ mod 2, and let ε be an integer in the range

$$0 \le \varepsilon \le (g + 3g_{(2)})/6.$$

Then for any c in the range

$$2\varepsilon - g_{(2)} \le c \le (g - g_{(2)} + 2\varepsilon)/4$$

such that c divides $\frac{g-g_{(2)}}{2}+\varepsilon$ and

$$c \neq 1$$
 if $(g_{(2)}, \varepsilon) = (1, 1),$

there exists a pseudo-real Riemann surface of genus g with automorphism group \mathbb{Z}_{4k} for

$$k = (g - g_{(2)} + 2\varepsilon)/2c.$$

The surface X is (q, n)-gonal for any prime n > 2 dividing k and

$$q = (g - g_{(2)} + 2\varepsilon)/n + g_{(2)} - 2\varepsilon.$$

Corollary: Let $g_{(2)} = g \mod 2$ for $g \ge 4$. Then for any prime n > 2 dividing $(g - g_{(2)})/2$ and any integer α in the range

$$0 \leq lpha \leq (g - g_{(2)})/4n$$

there exists a pseudo-real (q, n) – gonal and p – hyperelliptic Riemann surface of genus g, where

$$q = \frac{g - g_{(2)}}{n} + g_{(2)}$$

and

$$p = (2n\alpha + g_{(2)}).$$

Theorem 7: A pseudo-real Riemann surface of genus g is p-hyperelliptic for some integer phaving the same parity as g in the range

$$g_{(2)} \le p \le p_{\max},$$

where $g_{(2)} = g \mod 2$ and

$$p_{\max} = \begin{cases} (g + g_{(2)})/2 & \text{if } g - g_{(2)} \equiv 0 \ (4), \\ (g + g_{(2)})/2 - 1 & \text{if } g - g_{(2)} \equiv 2 \ (4) \end{cases}$$

Conversely, for any such p and $g \ge 12$, there exists a p-hyperelliptic pseudo-real Riemann surface X of genus g, and it can be pseudo-symmetric or not.

Pseudo-real Riemann surfaces with automorphism group \mathbb{Z}_{4n} for prime n > 2.

Theorem 8: A pseudo-real Riemann surface Xof genus g has an aconformal automorphism δ of order 4n iff $g \notin \{2n - 1, n - 1, 2n - 2\}$ and there is an integer q in the range

 $0 \le q \le (g-1)/n + 1$ such that (i) $q \equiv g \ (n-1)$, (ii) $q \ne 2$ if g = n + 1, (iii) $q \ne 1$ if (g-n)/(n-1) is even.

The element $\rho = \delta^4$ is a (q, n)-gonal automorphism of X with $2\beta + 2$ fixed points, where $\beta = (g - nq)/(n - 1)$.

Theorem 9: The group \mathbb{Z}_{4n} acts on a pseudoreal Riemann surface X with signature

$$(h, 1 + \alpha; n, \frac{\beta - \alpha}{2}, n, 2, q - (\alpha + 2h), 2),$$

where q satisfies the conditions of Theorem 8, $\beta = (g - nq)/(n - 1),$ $h \equiv q$ (2), $0 \le h \le (q + 1)/2$ $\alpha \equiv \beta$ (2) and $-1 \le \alpha \le \min(\beta, q - 2h).$ The surface X is (q, n)-gonal and p-hyperelliptic for $p = nh + (\beta + \alpha)(n - 1)/2.$

Table 1:	The	values	of p	for	$q \in \{$	[0, 1, 2]	}.
----------	-----	--------	------	-----	------------	-----------	----

q	h	α	p	Conditions
0	0	0	eta(n-1)/2	$\beta \geq 0$ even
	0	-1	(eta-1)(n-1)/2	$eta \geq$ 1 odd
1	1	-1	$(\beta + 1)(n - 1)/2$	$eta \geq$ 1 odd
2	0	0	eta(n-1)/2	$\beta \geq 0$ even
	0	-1	(eta-1)(n-1)/2	$eta \geq$ 1 odd
	0	1	$(\beta + 1)(n - 1)/2$	$eta \geq$ 1 odd
	0	2	$(\beta + 2)(n - 1)/2$	$eta \geq$ 0 even

Table 2: The values of *p* **for** $\beta \in \{-1, 0, 1, 2\}$.

β	α	p	Conditions
-1	-1	n(h-1)n+1	$1 \le h \le (q+1)/2,$
0	0	nh	$0 \leq h \leq q/2$
1	-1	nh	$0 \le h \le (q+1)/2$
1	1	n(h + 1) - 1	$0\leq h\leq (q-1)/2$
2	0	n(h + 1) - 1	$0 \leq h \leq q/2$
2	2	nh + 2(n - 1)	$0 \leq h \leq (q-2)/2$

Theorem 10: Let $g = qn + \beta(n-1)$ for $\beta, q \ge 3$, and let $q_{(4)} = q \mod 4$ and $\beta_{(2)} = \beta \mod 2$. Then an asymmetric Riemann surface X of genus g with automorphism group $G = \mathbb{Z}_{4n}$ is p-hyperelliptic, and the sharp bounds on p are equal to

$$p_{\min} = \begin{cases} \frac{g + n(2-q)}{2}, \\ \frac{g + 1 + n(1-q)}{2}, \\ \frac{g - nq}{2}, \\ \frac{g + 1 - n(1+q)}{2}, \end{cases}$$

 $\begin{array}{l} \beta \text{ even}, q \text{ odd}, \\ \beta \text{ odd}, q \text{ odd}, \\ \beta \text{ even}, q \text{ even}, \\ \beta \text{ odd}, q \text{ even}, \end{array}$

and

$$p_{\max} = \begin{cases} \frac{g - \beta_{(2)}(n-1) - q_{(4)}}{2}, \\ \frac{g+1}{2}, \\ \frac{g - \beta_{(2)}(n-1) - 4 + q_{(4)}}{2}, \end{cases}$$

 $q_{(4)} = 0, 2,$ $q_{(4)} = 1, \beta \text{ odd},$ other cases. **Theorem 11:** For given integers $q, \beta \ge 3$, there exists a pseudo-real *p*-hyperelliptic Riemann surface of genus $g = qn + \beta(n-1)$ for

$$p = p_{\max} - 2r - s(n-1),$$

where r and s are nonnegative integers satisfying the following conditions:

Table 3: Conditions on r and s

$q_{(4)} = 0$	$r \leq rac{q}{4}$	$2r - \frac{\beta + \varepsilon}{2} \le s \le 2r$
$q_{(4)} = 2$	$r \leq \frac{q-2}{4}$	$2r+1 - \frac{\beta+\varepsilon}{2} \le s \le 2r+1$
$q_{(4)} = 3$	$r \leq \frac{q-3}{4}$	$2r - \frac{\beta - \varepsilon}{2} \le s \le 2r$
$q_{(4)} = 1, \beta$ even	$r \leq \frac{q-5}{4}$	$2r+1-\frac{\beta}{2} \le s \le 2r+1$
$q_{(4)} = 1, \beta \text{ odd}$	$r \leq \frac{q-1}{4}$	$2r-1-\frac{\beta+1}{2} \le s \le 2r-1$

The action of \mathbb{Z}_8 on pseudo-real Riemann surfaces

Theorem 12: The cyclic group $G = \mathbb{Z}_8$ acts on an asymmetric Riemann surface X of genus $g \ge 2$ with signature

$$(h+1; -; [2, \frac{(g-1-3l)}{2}, 2, 4, \frac{l}{2}, 4]; \{-\})$$

for some pair $(l,h) \neq (0,0)$ of nonnegative integers such that $(l,h) \neq (0,1)$ for g = 11, $(l,h) \neq (1,0)$ for g = 6, l has parity different from g, h has the same parity as g, $g-1-3l \geq 8h$.

The surface X is p-hyperelliptic for

$$p = 4h + 1 + l.$$

Corollary: There are five genera less than 13 of pseudo-real Riemann surfaces with full automorphism group Z_8 , namely 4, 8, 9, 10, 12, and the degrees of hyperellipticity of such surfaces are listed below:

$\mid p$	g
2	4, 8, 10, 12
4	10,12
5	9
6	12

Theorem 13: For given $g \ge 13$, let

 $\varepsilon = g \mod 2$ and $\gamma = g \mod 6$.

Let l_{max} and s_k be integers given in Table below for k in the range $0 \le k \le l_{\text{max}}/2$. Then for every such k and s in the range $0 \le s \le s_k$, there exists an asymmetric p-hyperelliptic Riemann surface of genus g with full automorphism group Z_8 , where

$$p = 4\varepsilon + 8s + l_{\max} - 2k + 1.$$

β		l _{max}	s_k
$\beta = 1$		(g-1)/3-4,	(2+3k)/8
$\beta = 4$		(g-1)/3,	3k/8
$\beta \not\equiv 1$	mod 3	(g-eta)/3-(1+arepsilon),	$(6l + 2 + \beta - 5\varepsilon)/16.$