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Assume f(x) is a real polynomial and

y"' — f(x) =0

defines a Riemann surface. How many

ovals are fixed by complex conjugation?
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metries of p-cyclic covers of the Rie-

mann sphere for p prime.

Izquierdo and Shaska have recently stud-

ied covers of this type.



F(z,y) =y" — f(z) =0

If Fa’](:a,b) = 0, and either 2 (a,b) # 0
or (’9—y(a’ b) = 0, then

1. (a,b) is a nonsingular point.

2. there is one point on the Riemann
surface corresponding to (a,b)

3. either x —a or y—>b is a local param-
eter.



If Fa,b) = 35(a,b) = $(a,b) = 0,
then (a,b) is a singular point and there
may be one or more points lying over
it. Note that dF/dy = ny™ !, so the

singular points lie among the roots of

/().

SO assume

[ (@) = cg(@)(@—ap)™ ... (z—ap) ™™

where ¢ = =£1, ¢g(x) is a product of
terms of the form (x — a)(x — @) with
non-real «, each a; is real and

ng(n, dzmz) = dz'.



F(@) = cg(a)(z — ay) ™ ... (& — a) %™

If n is odd, there is one fixed oval. As-

sume n is even.

For each real r with f(r) > 0, there
are st and s~ , positive and negative
respectively, such that (z,y) = (r,s%)
are solutions to y™* — f(x) = 0. How
do the branches (r,s1) and (r,s™) join

over the points (a1,0),...,(az,0)7



Fix i. Let y"—(z—a)¥h(z) = 0, where
d = gcd(n,dm) and h(x) is a polyno-
mial that is relatively prime to =z — a.
Note that y"/(z — a)¥™ — h(z) = 0 and
that h(a) # 0. Define

n/d
so w? — h(z) = 0.

w = Y
- (z—a)™

Let P be any point of X that lies over
(a,0), then w¥(P) = h(a) # 0, so w has
d values when z = a, namely (e27ik/d
where ¢ >0, ¢¢=h(a) and k =0,1,...,d—
1. Therefore there must be d different

points of X at which w takes on these

values.



Since

yn/d
w = (@ — )™ and w(P) #= 0,
Jordp(y) = mordp(z — a), combined

with gcd(%, m) = 1, yield there are ex-
actly d points lying over (a,0), that
x — a has order n/d at each of them,

and y has order m at each of them.

Local parameter at P: First note that
if m = 1, then y is a local parameter.
For the general case, let v and v be In-
tegers such that mu+wvn/d = 1. Then
t .= y“(x—a)’ has order mu—+vn/d = 1.



Change of coordinates:

w = t=y"(z—a)’
x—a)m
( )ﬂ
td m_. .U
r—a=—y=1t"w
wu

This is a real change of coordinates. If
P lies over (a,0), recall w(P) = (e2mik/d
If d is odd, there exists a unique real
point P over (a,0), f(z) = (z—a)¥h(x)
changes sign at ¢ = a; if f(x) > 0, the
two branches of solutions (r,sT) and
(r,s7) of y"* — f(z) = 0 meet at the
real point lying over x = a. There are
no fixed points in a neighborhood of

the other side of z = a.



The interesting case is when d is even.
Then there are two real points Q+ and
Q—, where w is positive and negative,
respectively, lying over (a,0). We now
prove that the behavior of the fixed
ovals depends entirely on the parity of
m, and n/d and the signs of y and z—a.
Define sign(c) to be + if ¢ > 0 and —
if c< 0. Near (a,0),

(t,w):((aza)v T )

(x —a)™



Therefore, t and w have the signs

(sign(t),sign(w)) =
sign(y)d )

sign(x — a)™

(sign (x —a)"sign(y)",

Define A = sign(z — a)™sign(y)™ % and
note that the fixed oval goes through
Q?. When an oval reaches Q*, ¢t changes
sign, but in a neighborhood, the sign

of w remains the same.



The picture in the z,y plane is this.

(x>a, y>0)

(byO) (x<a, y<0) 1\ (x< yO)

(x>a, y<0)

We translate this into the t,w plane.
Consider (a,0) and assume d is even,
so Q1 and Q lie over (a,0).

Recall that mu + v; = 1. We have
three cases. 1. m is odd and n/d is
odd. 2. m is even and n/d is odd. 3.

m is odd and n/d is even.



A = sign(z — a)™sign(y)"/@

m is odd and n/d is odd: The branches
x >a, y >0, and z < a, y < 0 go
through Q1. The branches z > a, y <
O and z < a, y> 0 go through Q.

(z <a, y>0) (z>a, y>0)
QT x
O-

(r <a, y<o0) (x>a, y<0)

m odd, n/d odd




A = sign(z — a)™sign(y)"/@

m is even and n/d is odd: The branches
x >a, y>0and z < a, y > 0, go
through QT. The branches z > a, y <
O and x < a and y < 0 go through Q.

Yy
(z < G’M y>0)
Q-l—

(r<a, y<0) (z>a, y<0)

T

m even, n/d odd



A = sign(z — a)™sign(y)™/4

m is odd and n/d is even: The branches
x > a, y>0and z > a, y < 0 go
through Q1. The branches z < a, y >
O and z < a, y <0 go through Q.

Figure 1: d and n/d even: a bi-oval root of f.

We say that a is a bi-oval root of f.



A similar result holds when x = oo where
md, instead of referring to the degree
of (x —a), is the degree of f(x).



Summary: If d is odd, (a,0) marks the
end of one oval or the beginning of one

oval, but not both.

If d is even and n/d is even, the (a,0) is
a bi-oval root of f; it marks the end of
one oval and the beginning of another

oval.

If d is even and n/d is odd, then (a,0)
does not mark the beginning or end of

an oval.



Theorem: Let ¢y = f(x) be a defin-
ing equation of an n-cyclic cover of the
Riemann sphere with n an even divisor
of deg(f) and f monic with real co-
efficients. Let us assume that f does
not change sign. Let b be the number
of bi-oval roots of f. Then the number

|o|| of ovals fixed by complex conjuga-

tion o is
(b ifb>0;

|lo|]l =4 1 if b=0 and deg(f)/n is odd;
|2 if b=0 and deg(f)/n is even.



Theorem: Let y" = f(x) be a defin-
ing equation where n even, n|deg(f)
and f is monic. Let a1 <an < - < ang
be the real roots of f with odd multi-
plicity, (s > 0) and let b; be the number
of bi-oval roots of f which lie in the in-
terval (apj,ap;41) for j =1,...,5 - 1.
Let also bg and bs be the number of
bi-oval roots of f which lie in the in-
tervals (—oo,a1) and (ang, 00), respec-
tively. Then the number ||o|| of ovals
fixed by complex conjugation o is

S
ol =5+ % by

J



