The number of real ovals of a cyclic cover of the sphere

 joint work with Javier CirreAssume $f(x)$ is a real polynomial and

$$
y^{n}-f(x)=0
$$

defines a Riemann surface. How many ovals are fixed by complex conjugation?

Assume $f(x)$ is a real polynomial and

$$
y^{n}-f(x)=0
$$

defines a Riemann surface. How many ovals are fixed by complex conjugation?

References:

Costa and Izquierdo: Determined the topological features of all possible symmetries of p-cyclic covers of the Riemann sphere for p prime.

Izquierdo and Shaska have recently studied covers of this type.

$$
F(x, y)=y^{n}-f(x)=0
$$

If $F(a, b)=0$, and either $\frac{\partial F}{\partial x}(a, b) \neq 0$ or $\frac{\partial F}{\partial y}(a, b) \neq 0$, then

1. (a, b) is a nonsingular point.
2. there is one point on the Riemann surface corresponding to (a, b)
3. either $x-a$ or $y-b$ is a local parameter.

If $F(a, b)=\frac{\partial F}{\partial x}(a, b)=\frac{\partial F}{\partial y}(a, b)=0$, then (a, b) is a singular point and there may be one or more points lying over it. Note that $d F / d y=n y^{n-1}$, so the singular points lie among the roots of $f(x)$.

So assume
$f(x)=c g(x)\left(x-a_{1}\right)^{d_{1} m_{1}} \ldots\left(x-a_{k}\right)^{d_{k} m_{k}}$
where $c= \pm 1, g(x)$ is a product of terms of the form $(x-\alpha)(x-\bar{\alpha})$ with non-real α, each a_{i} is real and $\operatorname{gcd}\left(n, d_{i} m_{i}\right)=d_{i}$.

$$
\begin{gathered}
y^{n}-f(x)=0 \\
f(x)=c g(x)\left(x-a_{1}\right)^{d_{1} m_{1}} \ldots\left(x-a_{k}\right)^{d_{k} m_{k}}
\end{gathered}
$$

If n is odd, there is one fixed oval. Assume n is even.

For each real r with $f(r)>0$, there are s^{+}and s^{-}, positive and negative respectively, such that $(x, y)=\left(r, s^{ \pm}\right)$ are solutions to $y^{n}-f(x)=0$. How do the branches (r, s^{+}) and (r, s^{-}) join over the points $\left(a_{1}, 0\right), \ldots,\left(a_{k}, 0\right)$?

Fix i. Let $y^{n}-(x-a)^{d m} h(x)=0$, where $d=\operatorname{gcd}(n, d m)$ and $h(x)$ is a polynomial that is relatively prime to $x-a$. Note that $y^{n} /(x-a)^{d m}-h(x)=0$ and that $h(a) \neq 0$. Define

$$
w:=\frac{y^{n / d}}{(x-a)^{m}}, \text { so } w^{d}-h(x)=0
$$

Let P be any point of X that lies over $(a, 0)$, then $w^{d}(P)=h(a) \neq 0$, so w has d values when $x=a$, namely $\zeta e^{2 \pi i k / d}$ where $\zeta>0, \zeta^{d}=h(a)$ and $k=0,1, \ldots, d-$

1. Therefore there must be d different points of X at which w takes on these values.

Since

$$
w=\frac{y^{n / d}}{(x-a)^{m}}, \text { and } w(P) \neq 0
$$

$\frac{n}{d} \operatorname{ord}_{P}(y)=\operatorname{mord}_{P}(x-a)$, combined with $\operatorname{gcd}\left(\frac{n}{d}, m\right)=1$, yield there are exactly d points lying over $(a, 0)$, that $x-a$ has order n / d at each of them, and y has order m at each of them.

Local parameter at P : First note that if $m=1$, then y is a local parameter. For the general case, let u and v be integers such that $m u+v n / d=1$. Then $t:=y^{u}(x-a)^{v}$ has order $m u+v n / d=1$.

Change of coordinates:

$$
\begin{gathered}
w=\frac{y^{\frac{n}{d}}}{(x-a)^{m}}, t=y^{u}(x-a)^{v} \\
x-a=\frac{t^{\frac{n}{d}}}{w^{u}}, y=t^{m} w^{v}
\end{gathered}
$$

This is a real change of coordinates. If P lies over $(a, 0)$, recall $w(P)=\zeta e^{2 \pi i k / d}$.
If d is odd, there exists a unique real point P over $(a, 0), f(x)=(x-a)^{d m} h(x)$ changes sign at $x=a$; if $f(x)>0$, the two branches of solutions $\left(r, s^{+}\right)$and $\left(r, s^{-}\right)$of $y^{n}-f(x)=0$ meet at the real point lying over $x=a$. There are no fixed points in a neighborhood of the other side of $x=a$.

The interesting case is when d is even. Then there are two real points Q^{+}and Q^{-}, where w is positive and negative, respectively, lying over ($a, 0$). We now prove that the behavior of the fixed ovals depends entirely on the parity of m, and n / d and the signs of y and $x-a$. Define $\operatorname{sign}(c)$ to be + if $c>0$ and if $c<0$. Near $(a, 0)$,

$$
(t, w)=\left((x-a)^{v} y^{u}, \frac{y^{\frac{n}{d}}}{(x-a)^{m}}\right)
$$

Therefore, t and w have the signs
$(\operatorname{sign}(t), \operatorname{sign}(w))=$
$\left(\operatorname{sign}(x-a)^{v} \operatorname{sign}(y)^{u}, \frac{\operatorname{sign}(y)^{\frac{n}{d}}}{\operatorname{sign}(x-a)^{m}}\right)$.
Define $\lambda=\operatorname{sign}(x-a)^{m} \operatorname{sign}(y)^{n / d}$ and note that the fixed oval goes through Q^{λ}. When an oval reaches Q^{λ}, t changes sign, but in a neighborhood, the sign of w remains the same.

The picture in the x, y plane is this.

We translate this into the t, w plane. Consider ($a, 0$) and assume d is even, so Q^{+}and Q^{-}lie over $(a, 0)$.

Recall that $m u+v \frac{n}{d}=1$. We have three cases. $1 . m$ is odd and n / d is odd. 2. m is even and n / d is odd. 3 . m is odd and n / d is even.

$$
\lambda=\operatorname{sign}(x-a)^{m} \operatorname{sign}(y)^{n / d}
$$

m is odd and n / d is odd: The branches $x>a, y>0$, and $x<a, y<0$ go through Q^{+}. The branches $x>a, y<$ 0 and $x<a, y>0$ go through Q^{-}.

$$
\lambda=\operatorname{sign}(x-a)^{m} \operatorname{sign}(y)^{n / d}
$$

m is even and n / d is odd: The branches $x>a, y>0$ and $x<a, y>0$, go through Q^{+}. The branches $x>a, y<$ 0 and $x<a$ and $y<0$ go through Q^{-}.

$$
\lambda=\operatorname{sign}(x-a)^{m} \operatorname{sign}(y)^{n / d}
$$

m is odd and n / d is even: The branches
$x>a, y>0$ and $x>a, y<0$ go through Q^{+}. The branches $x<a, y>$ 0 and $x<a, y<0$ go through Q^{-}.

Figure 1: d and n / d even: a bi-oval root of f.

We say that a is a bi-oval root of f.

A similar result holds when $x=\infty$ where $m d$, instead of referring to the degree of $(x-a)$, is the degree of $f(x)$.

Summary: If d is odd, ($a, 0$) marks the end of one oval or the beginning of one oval, but not both.

If d is even and n / d is even, the $(a, 0)$ is a bi-oval root of f; it marks the end of one oval and the beginning of another oval.

If d is even and n / d is odd, then ($a, 0$) does not mark the beginning or end of an oval.

Theorem: Let $y^{n}=f(x)$ be a defining equation of an n-cyclic cover of the Riemann sphere with n an even divisor of $\operatorname{deg}(f)$ and f monic with real coefficients. Let us assume that f does not change sign. Let b be the number of bi-oval roots of f. Then the number $\|\sigma\|$ of ovals fixed by complex conjugation σ is

$$
\|\sigma\|= \begin{cases}b & \text { if } b>0 \\ 1 & \text { if } b=0 \text { and } \operatorname{deg}(f) / n \text { is odd } \\ 2 & \text { if } b=0 \text { and } \operatorname{deg}(f) / n \text { is even }\end{cases}
$$

Theorem: Let $y^{n}=f(x)$ be a defining equation where n even, $n \mid \operatorname{deg}(f)$ and f is monic. Let $a_{1}<a_{2}<\cdots<a_{2 s}$ be the real roots of f with odd multiplicity, $(s>0)$ and let b_{j} be the number of bi-oval roots of f which lie in the interval $\left(a_{2 j}, a_{2 j+1}\right)$ for $j=1, \ldots, s-1$. Let also b_{0} and b_{s} be the number of bi-oval roots of f which lie in the intervals $\left(-\infty, a_{1}\right)$ and $\left(a_{2 s}, \infty\right)$, respectively. Then the number $\|\sigma\|$ of ovals fixed by complex conjugation σ is

$$
\|\sigma\|=s+\sum_{j=0}^{s} b_{j}
$$

