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F (x, y) = yn − f(x) = 0

If F (a, b) = 0, and either ∂F
∂x(a, b) 6= 0

or ∂F
∂y (a, b) 6= 0, then

1. (a, b) is a nonsingular point.

2. there is one point on the Riemann

surface corresponding to (a, b)

3. either x−a or y− b is a local param-

eter.



If F (a, b) = ∂F
∂x(a, b) = ∂F

∂y (a, b) = 0,

then (a, b) is a singular point and there

may be one or more points lying over

it. Note that dF/dy = nyn−1, so the

singular points lie among the roots of

f(x).

So assume

f(x) = cg(x)(x−a1)d1m1 . . . (x−ak)dkmk

where c = ±1, g(x) is a product of

terms of the form (x − α)(x − α) with

non-real α, each ai is real and

gcd(n, dimi) = di.



yn − f(x) = 0,

f(x) = cg(x)(x− a1)d1m1 . . . (x− ak)dkmk

If n is odd, there is one fixed oval. As-

sume n is even.

For each real r with f(r) > 0, there

are s+ and s−, positive and negative

respectively, such that (x, y) = (r, s±)

are solutions to yn − f(x) = 0. How

do the branches (r, s+) and (r, s−) join

over the points (a1,0), . . . , (ak,0)?



Fix i. Let yn−(x−a)dmh(x) = 0, where

d = gcd(n, dm) and h(x) is a polyno-

mial that is relatively prime to x − a.

Note that yn/(x− a)dm − h(x) = 0 and

that h(a) 6= 0. Define

w :=
yn/d

(x− a)m
, so wd − h(x) = 0.

Let P be any point of X that lies over

(a,0), then wd(P ) = h(a) 6= 0, so w has

d values when x = a, namely ζe2πik/d

where ζ > 0, ζd = h(a) and k = 0,1, . . . , d−

1. Therefore there must be d different

points of X at which w takes on these

values.



Since

w =
yn/d

(x− a)m
, and w(P ) 6= 0,

n
dordP(y) = mordP(x − a), combined

with gcd(nd ,m) = 1, yield there are ex-

actly d points lying over (a,0), that

x − a has order n/d at each of them,

and y has order m at each of them.

Local parameter at P : First note that

if m = 1, then y is a local parameter.

For the general case, let u and v be in-

tegers such that mu+ vn/d = 1. Then

t := yu(x−a)v has order mu+vn/d = 1.



Change of coordinates:

w =
y
n
d

(x− a)m
, t = yu(x− a)v

x− a =
t
n
d

wu
, y = tmwv

This is a real change of coordinates. If

P lies over (a,0), recall w(P ) = ζe2πik/d.

If d is odd, there exists a unique real

point P over (a,0), f(x) = (x−a)dmh(x)

changes sign at x = a; if f(x) > 0 , the

two branches of solutions (r, s+) and

(r, s−) of yn − f(x) = 0 meet at the

real point lying over x = a. There are

no fixed points in a neighborhood of

the other side of x = a.



The interesting case is when d is even.

Then there are two real points Q+ and

Q−, where w is positive and negative,

respectively, lying over (a,0). We now

prove that the behavior of the fixed

ovals depends entirely on the parity of

m, and n/d and the signs of y and x−a.

Define sign(c) to be + if c > 0 and −

if c < 0 . Near (a,0),

(t, w) =

(x− a)vyu,
y
n
d

(x− a)m

 .



Therefore, t and w have the signs

(sign(t), sign(w)) =sign(x− a)vsign(y)u,
sign(y)

n
d

sign(x− a)m

 .
Define λ = sign(x − a)msign(y)n/d and

note that the fixed oval goes through

Qλ. When an oval reaches Qλ, t changes

sign, but in a neighborhood, the sign

of w remains the same.



The picture in the x, y plane is this.
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We translate this into the t, w plane.

Consider (a,0) and assume d is even,

so Q+ and Q− lie over (a,0).

Recall that mu + vnd = 1. We have

three cases. 1. m is odd and n/d is

odd. 2. m is even and n/d is odd. 3.

m is odd and n/d is even.



λ = sign(x− a)msign(y)n/d

m is odd and n/d is odd: The branches

x > a, y > 0, and x < a, y < 0 go

through Q+. The branches x > a, y <

0 and x < a, y > 0 go through Q−.
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λ = sign(x− a)msign(y)n/d

m is even and n/d is odd: The branches

x > a, y > 0 and x < a, y > 0, go

through Q+. The branches x > a, y <

0 and x < a and y < 0 go through Q−.
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λ = sign(x− a)msign(y)n/d

m is odd and n/d is even: The branches

x > a, y > 0 and x > a, y < 0 go

through Q+. The branches x < a, y >

0 and x < a, y < 0 go through Q−.
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Figure 1: d and n/d even: a bi-oval root of f.
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We say that a is a bi-oval root of f .



A similar result holds when x =∞ where

md, instead of referring to the degree

of (x− a), is the degree of f(x).



Summary: If d is odd, (a,0) marks the

end of one oval or the beginning of one

oval, but not both.

If d is even and n/d is even, the (a,0) is

a bi-oval root of f ; it marks the end of

one oval and the beginning of another

oval.

If d is even and n/d is odd, then (a,0)

does not mark the beginning or end of

an oval.



Theorem: Let yn = f(x) be a defin-

ing equation of an n-cyclic cover of the

Riemann sphere with n an even divisor

of deg(f) and f monic with real co-

efficients. Let us assume that f does

not change sign. Let b be the number

of bi-oval roots of f. Then the number

‖σ‖ of ovals fixed by complex conjuga-

tion σ is

‖σ‖ =


b if b > 0;
1 if b = 0 and deg(f)/n is odd;
2 if b = 0 and deg(f)/n is even.



Theorem: Let yn = f(x) be a defin-

ing equation where n even, n|deg(f)

and f is monic. Let a1<a2< · · · < a2s

be the real roots of f with odd multi-

plicity, (s > 0) and let bj be the number

of bi-oval roots of f which lie in the in-

terval (a2j, a2j+1) for j = 1, . . . , s − 1.

Let also b0 and bs be the number of

bi-oval roots of f which lie in the in-

tervals (−∞, a1) and (a2s,∞), respec-

tively. Then the number ‖σ‖ of ovals

fixed by complex conjugation σ is

‖σ‖ = s+
s∑

j=0
bj.


