Kulkarni's Theorem and finite groups acting on a surface of genus g with $g-1$ prime.

Thomas Tucker
Colgate University, Hamilton, New York, 13346

Which groups acts on which surfaces

Throughout this talk, surfaces are closed and orientable, all groups are finite, and all group actions preserve orientation.

Which groups acts on which surfaces

Throughout this talk, surfaces are closed and orientable, all groups are finite, and all group actions preserve orientation. This talk motivated by work done with Conder and Širà ň (2010, JEMS on regular maps on surfaces of genus $p+1$.

Groups actions on surfaces are governed by the Riemann-Hurwitz equation.

Which groups acts on which surfaces

Throughout this talk, surfaces are closed and orientable, all groups are finite, and all group actions preserve orientation. This talk motivated by work done with Conder and Širà ň (2010, $J E M S$ on regular maps on surfaces of genus $p+1$.

Groups actions on surfaces are governed by the Riemann-Hurwitz equation. If G acts on the surface of genus g with quotient surface of genus h, containing branch points of order r_{1}, r_{2}, \ldots then

Which groups acts on which surfaces

Throughout this talk, surfaces are closed and orientable, all groups are finite, and all group actions preserve orientation. This talk motivated by work done with Conder and Širà ň (2010, $J E M S$ on regular maps on surfaces of genus $p+1$.

Groups actions on surfaces are governed by the Riemann-Hurwitz equation. If G acts on the surface of genus g with quotient surface of genus h, containing branch points of order r_{1}, r_{2}, \ldots then

$$
2 g-2=|G|\left(2 h-2+\Sigma\left(1-1 / r_{i}\right)\right)
$$

Which groups acts on which surfaces

Throughout this talk, surfaces are closed and orientable, all groups are finite, and all group actions preserve orientation. This talk motivated by work done with Conder and Širà ň (2010, $J E M S$ on regular maps on surfaces of genus $p+1$.

Groups actions on surfaces are governed by the Riemann-Hurwitz equation. If G acts on the surface of genus g with quotient surface of genus h, containing branch points of order r_{1}, r_{2}, \ldots then

$$
2 g-2=|G|\left(2 h-2+\Sigma\left(1-1 / r_{i}\right)\right)
$$

Kulkarni's Theorem

Given G with Sylow p-subgroups G_{p} of exponent $p^{e_{p}}$, let

$$
D^{\prime}=|G| \Pi_{p| | G \mid} \frac{1}{p^{e_{p}}}
$$

Kulkarni's Theorem

Given G with Sylow p-subgroups G_{p} of exponent $p^{e_{p}}$, let

$$
D^{\prime}=|G| \Pi_{p \||G|} \frac{1}{p^{e_{p}}}
$$

If $\left|G_{2}\right|>1$ and the elements of G_{2} of order less than $2^{e_{2}}$ do not form an index two subgroup, let $D_{G}=D^{\prime} / 2$. Otherwise, let $D_{G}=D^{\prime}$.

Kulkarni's Theorem

Given G with Sylow p-subgroups G_{p} of exponent $p^{e_{p}}$, let

$$
D^{\prime}=|G| \Pi_{p \||G|} \frac{1}{p^{e_{p}}}
$$

If $\left|G_{2}\right|>1$ and the elements of G_{2} of order less than $2^{e_{2}}$ do not form an index two subgroup, let $D_{G}=D^{\prime} / 2$. Otherwise, let $D_{G}=D^{\prime}$.
Then we have:
Theorem (Kulkarni, Topology, 1987). If G acts on the surface of genus g, then $g \equiv 1\left(\bmod D_{G}\right)$. The converse also holds for all but finitely many g.

Kulkarni's Theorem

Given G with Sylow p-subgroups G_{p} of exponent $p^{e_{p}}$, let

$$
D^{\prime}=|G| \Pi_{p \||G|} \frac{1}{p^{e_{p}}}
$$

If $\left|G_{2}\right|>1$ and the elements of G_{2} of order less than $2^{e_{2}}$ do not form an index two subgroup, let $D_{G}=D^{\prime} / 2$. Otherwise, let $D_{G}=D^{\prime}$.
Then we have:
Theorem (Kulkarni, Topology, 1987). If G acts on the surface of genus g, then $g \equiv 1\left(\bmod D_{G}\right)$. The converse also holds for all but finitely many g.
Proof of necessity for odd G :

Kulkarni's Theorem

Given G with Sylow p-subgroups G_{p} of exponent $p^{e_{p}}$, let

$$
D^{\prime}=|G| \Pi_{p \||G|} \frac{1}{p^{e_{p}}}
$$

If $\left|G_{2}\right|>1$ and the elements of G_{2} of order less than $2^{e_{2}}$ do not form an index two subgroup, let $D_{G}=D^{\prime} / 2$. Otherwise, let
$D_{G}=D^{\prime}$.
Then we have:
Theorem (Kulkarni, Topology, 1987). If G acts on the surface of genus g, then $g \equiv 1\left(\bmod D_{G}\right)$. The converse also holds for all but finitely many g.
Proof of necessity for odd G : Rewrite RH as:

$$
2 g-2=|G|(2 h-2)+\Sigma\left(|G|-|G| / r_{i}\right)
$$

Kulkarni's Theorem

Given G with Sylow p-subgroups G_{p} of exponent $p^{e_{p}}$, let

$$
D^{\prime}=|G| \Pi_{p \||G|} \frac{1}{p^{e_{p}}}
$$

If $\left|G_{2}\right|>1$ and the elements of G_{2} of order less than $2^{e_{2}}$ do not form an index two subgroup, let $D_{G}=D^{\prime} / 2$. Otherwise, let
$D_{G}=D^{\prime}$.
Then we have:
Theorem (Kulkarni, Topology, 1987). If G acts on the surface of genus g, then $g \equiv 1\left(\bmod D_{G}\right)$. The converse also holds for all but finitely many g.
Proof of necessity for odd G : Rewrite RH as:

$$
2 g-2=|G|(2 h-2)+\Sigma\left(|G|-|G| / r_{i}\right)
$$

Note that highest power of p dividing r_{i} is e_{p}

Kulkarni's Theorem

Given G with Sylow p-subgroups G_{p} of exponent $p^{e_{p}}$, let

$$
D^{\prime}=|G| \Pi_{p \||G|} \frac{1}{p^{e_{p}}}
$$

If $\left|G_{2}\right|>1$ and the elements of G_{2} of order less than $2^{e_{2}}$ do not form an index two subgroup, let $D_{G}=D^{\prime} / 2$. Otherwise, let
$D_{G}=D^{\prime}$.
Then we have:
Theorem (Kulkarni, Topology, 1987). If G acts on the surface of genus g, then $g \equiv 1\left(\bmod D_{G}\right)$. The converse also holds for all but finitely many g.
Proof of necessity for odd G: Rewrite RH as:

$$
2 g-2=|G|(2 h-2)+\Sigma\left(|G|-|G| / r_{i}\right)
$$

Note that highest power of p dividing r_{i} is e_{p} Thus all terms on right are divisible by D_{G} making $2 g-2 \equiv 0 \bmod \left(D_{G}\right)$

Kulkarni's Theorem

Given G with Sylow p-subgroups G_{p} of exponent $p^{e_{p}}$, let

$$
D^{\prime}=|G| \Pi_{p \||G|} \frac{1}{p^{e_{p}}}
$$

If $\left|G_{2}\right|>1$ and the elements of G_{2} of order less than $2^{e_{2}}$ do not form an index two subgroup, let $D_{G}=D^{\prime} / 2$. Otherwise, let
$D_{G}=D^{\prime}$.
Then we have:
Theorem (Kulkarni, Topology, 1987). If G acts on the surface of genus g, then $g \equiv 1\left(\bmod D_{G}\right)$. The converse also holds for all but finitely many g.
Proof of necessity for odd G: Rewrite RH as:

$$
2 g-2=|G|(2 h-2)+\Sigma\left(|G|-|G| / r_{i}\right)
$$

Note that highest power of p dividing r_{i} is e_{p} Thus all terms on right are divisible by D_{G} making $2 g-2 \equiv 0 \bmod \left(D_{G}\right)$ Since D_{G} is odd, we can divide congruence by 2 .

Kulkarni's Theorem

Given G with Sylow p-subgroups G_{p} of exponent $p^{e_{p}}$, let

$$
D^{\prime}=|G| \Pi_{p \||G|} \frac{1}{p^{e_{p}}}
$$

If $\left|G_{2}\right|>1$ and the elements of G_{2} of order less than $2^{e_{2}}$ do not form an index two subgroup, let $D_{G}=D^{\prime} / 2$. Otherwise, let
$D_{G}=D^{\prime}$.
Then we have:
Theorem (Kulkarni, Topology, 1987). If G acts on the surface of genus g, then $g \equiv 1\left(\bmod D_{G}\right)$. The converse also holds for all but finitely many g.
Proof of necessity for odd G: Rewrite RH as:

$$
2 g-2=|G|(2 h-2)+\Sigma\left(|G|-|G| / r_{i}\right)
$$

Note that highest power of p dividing r_{i} is e_{p} Thus all terms on right are divisible by D_{G} making $2 g-2 \equiv 0 \bmod \left(D_{G}\right)$ Since D_{G} is odd, we can divide congruence by 2 .

Almost Sylow cyclic groups

The group G is called almost Sylow cyclic if G_{p} is cyclic for odd p and G_{2} contains a subgroup of index two.

Almost Sylow cyclic groups

The group G is called almost Sylow cyclic if G_{p} is cyclic for odd p and G_{2} contains a subgroup of index two.

Corollary to Kulkarni's Theorem G acts on almost all surfaces if and only if G is almost Sylow cyclic and does not contain $C_{2} \times C_{4}$.

Main Theorem

Theorem Suppose that p is an odd prime. If G acts on the surface of genus $p+1$ with $p>5$, then G acts on almost all surfaces.

Main Theorem

Theorem Suppose that p is an odd prime. If G acts on the surface of genus $p+1$ with $p>5$, then G acts on almost all surfaces. On the other hand, $C_{3} \times C_{3}$ acts on the surface of genus $3+1$ and $C_{5} \times C_{5}$ acts on the surface of genus $5+1$

Main Theorem

Theorem Suppose that p is an odd prime. If G acts on the surface of genus $p+1$ with $p>5$, then G acts on almost all surfaces. On the other hand, $C_{3} \times C_{3}$ acts on the surface of genus $3+1$ and $C_{5} \times C_{5}$ acts on the surface of genus $5+1$ and in both cases the only surfaces G acts on have genus $g \equiv 1(\bmod p)$

Main Theorem

Theorem Suppose that p is an odd prime. If G acts on the surface of genus $p+1$ with $p>5$, then G acts on almost all surfaces. On the other hand, $C_{3} \times C_{3}$ acts on the surface of genus $3+1$ and $C_{5} \times C_{5}$ acts on the surface of genus $5+1$ and in both cases the only surfaces G acts on have genus $g \equiv 1(\bmod p)$
Proof. By Kulkarni, we have $g-1=p \equiv 0 \bmod \left(D_{G}\right)$.

Main Theorem

Theorem Suppose that p is an odd prime. If G acts on the surface of genus $p+1$ with $p>5$, then G acts on almost all surfaces. On the other hand, $C_{3} \times C_{3}$ acts on the surface of genus $3+1$ and $C_{5} \times C_{5}$ acts on the surface of genus $5+1$ and in both cases the only surfaces G acts on have genus $g \equiv 1(\bmod p)$
Proof. By Kulkarni, we have $g-1=p \equiv 0 \bmod \left(D_{G}\right)$.
Thus either $D_{G}=1$ and hence G acts on almost all surfaces

Main Theorem

Theorem Suppose that p is an odd prime. If G acts on the surface of genus $p+1$ with $p>5$, then G acts on almost all surfaces. On the other hand, $C_{3} \times C_{3}$ acts on the surface of genus $3+1$ and $C_{5} \times C_{5}$ acts on the surface of genus $5+1$ and in both cases the only surfaces G acts on have genus $g \equiv 1(\bmod p)$
Proof. By Kulkarni, we have $g-1=p \equiv 0 \bmod \left(D_{G}\right)$.
Thus either $D_{G}=1$ and hence G acts on almost all surfaces Or $D_{G}=p$.

Main Theorem

Theorem Suppose that p is an odd prime. If G acts on the surface of genus $p+1$ with $p>5$, then G acts on almost all surfaces. On the other hand, $C_{3} \times C_{3}$ acts on the surface of genus $3+1$ and $C_{5} \times C_{5}$ acts on the surface of genus $5+1$ and in both cases the only surfaces G acts on have genus $g \equiv 1(\bmod p)$
Proof. By Kulkarni, we have $g-1=p \equiv 0 \bmod \left(D_{G}\right)$.
Thus either $D_{G}=1$ and hence G acts on almost all surfaces Or $D_{G}=p$. That means $\left|G_{p}\right| \geq p^{2}$.

Main Theorem

Theorem Suppose that p is an odd prime. If G acts on the surface of genus $p+1$ with $p>5$, then G acts on almost all surfaces. On the other hand, $C_{3} \times C_{3}$ acts on the surface of genus $3+1$ and $C_{5} \times C_{5}$ acts on the surface of genus $5+1$ and in both cases the only surfaces G acts on have genus $g \equiv 1(\bmod p)$
Proof. By Kulkarni, we have $g-1=p \equiv 0 \bmod \left(D_{G}\right)$.
Thus either $D_{G}=1$ and hence G acts on almost all surfaces
Or $D_{G}=p$. That means $\left|G_{p}\right| \geq p^{2}$.
We have that G_{p} also acts, so we discard G and only consider G_{p}.

Main Theorem

Theorem Suppose that p is an odd prime. If G acts on the surface of genus $p+1$ with $p>5$, then G acts on almost all surfaces. On the other hand, $C_{3} \times C_{3}$ acts on the surface of genus $3+1$ and $C_{5} \times C_{5}$ acts on the surface of genus $5+1$ and in both cases the only surfaces G acts on have genus $g \equiv 1(\bmod p)$
Proof. By Kulkarni, we have $g-1=p \equiv 0 \bmod \left(D_{G}\right)$.
Thus either $D_{G}=1$ and hence G acts on almost all surfaces
Or $D_{G}=p$. That means $\left|G_{p}\right| \geq p^{2}$.
We have that G_{p} also acts, so we discard G and only consider G_{p}.

p-groups acting on surface of genus $p+1$

We have for RH applied to the p group G_{p};

$$
2 p=p^{n}\left(2 h-2+\Sigma\left(1-1 / r_{i}\right)\right)
$$

where each r_{i} is a power of p and $n>1$.

p-groups acting on surface of genus $p+1$

We have for RH applied to the p group G_{p};

$$
2 p=p^{n}\left(2 h-2+\Sigma\left(1-1 / r_{i}\right)\right)
$$

where each r_{i} is a power of p and $n>1$.
With $h=1$, there must be branch points, so right side is at least $p^{n}(1-1 / 3)$ so $3 \geq p^{n-1}$ forcing $p=3, n=2$. (there is none with only one branch point)

p-groups acting on surface of genus $p+1$

We have for RH applied to the p group G_{p};

$$
2 p=p^{n}\left(2 h-2+\Sigma\left(1-1 / r_{i}\right)\right)
$$

where each r_{i} is a power of p and $n>1$.
With $h=1$, there must be branch points, so right side is at least $p^{n}(1-1 / 3)$ so $3 \geq p^{n-1}$ forcing $p=3, n=2$. (there is none with only one branch point)
With $h=0$ and $p>3$, since there must be at least 3 branch points, right side is at least $(-2+3(1-1 / 5))=2 / 5$.

p-groups acting on surface of genus $p+1$

We have for RH applied to the p group G_{p};

$$
2 p=p^{n}\left(2 h-2+\Sigma\left(1-1 / r_{i}\right)\right)
$$

where each r_{i} is a power of p and $n>1$.
With $h=1$, there must be branch points, so right side is at least $p^{n}(1-1 / 3)$ so $3 \geq p^{n-1}$ forcing $p=3, n=2$. (there is none with only one branch point)
With $h=0$ and $p>3$, since there must be at least 3 branch points, right side is at least $(-2+3(1-1 / 5))=2 / 5$.
Thus $2 p \geq p^{n}(2 / 5)$ so $5 \geq p^{n-1}$ pause forcing $n=2$ and $p=5$.
(there is one with $C_{5} \times C_{5}$)

p-groups acting on surface of genus $p+1$

We have for RH applied to the p group G_{p};

$$
2 p=p^{n}\left(2 h-2+\Sigma\left(1-1 / r_{i}\right)\right)
$$

where each r_{i} is a power of p and $n>1$.
With $h=1$, there must be branch points, so right side is at least $p^{n}(1-1 / 3)$ so $3 \geq p^{n-1}$ forcing $p=3, n=2$. (there is none with only one branch point)
With $h=0$ and $p>3$, since there must be at least 3 branch points, right side is at least $(-2+3(1-1 / 5))=2 / 5$.
Thus $2 p \geq p^{n}(2 / 5)$ so $5 \geq p^{n-1}$ pause forcing $n=2$ and $p=5$.
(there is one with $C_{5} \times C_{5}$)

Case where $p=3$ and $h=0$

There cannot be just three branch points of order 3 (or else right side is 0),

Case where $p=3$ and $h=0$

There cannot be just three branch points of order 3 (or else right side is 0), so either three with at least one of order 9 or four or more each of order at least 3 .

Case where $p=3$ and $h=0$

There cannot be just three branch points of order 3 (or else right side is 0), so either three with at least one of order 9 or four or more each of order at least 3 .

For first we get $6 \geq 3^{n}(-2 / 3+1-1 / 9)$, so $27 \geq 3^{n}$.

Case where $p=3$ and $h=0$

There cannot be just three branch points of order 3 (or else right side is 0), so either three with at least one of order 9 or four or more each of order at least 3 .

For first we get $6 \geq 3^{n}(-2 / 3+1-1 / 9)$, so $27 \geq 3^{n}$. But there is no group of order 27 or 9 generated by two elements of order 3 whose product has order 9 .

Case where $p=3$ and $h=0$

There cannot be just three branch points of order 3 (or else right side is 0), so either three with at least one of order 9 or four or more each of order at least 3 .

For first we get $6 \geq 3^{n}(-2 / 3+1-1 / 9)$, so $27 \geq 3^{n}$. But there is no group of order 27 or 9 generated by two elements of order 3 whose product has order 9 .
For second, we have $6 \geq 3^{n}(-2 / 3)$ so $n=2$ and this works with $C_{3} \times C_{3}$.

