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Which groups acts on which surfaces

Throughout this talk, surfaces are closed and orientable, all groups
are finite, and all group actions preserve orientation.

This talk motivated by work done with Conder and Širà ň (2010,
JEMS on regular maps on surfaces of genus p + 1.

Groups actions on surfaces are governed by the Riemann-Hurwitz
equation. If G acts on the surface of genus g with quotient surface
of genus h, containing branch points of order r1, r2, . . . then

2g − 2 = |G | (2h − 2 + Σ(1− 1/ri ))
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Kulkarni’s Theorem
Given G with Sylow p-subgroups Gp of exponent pep , let

D ′ = |G |Πp||G |
1

pep

If |G2| > 1 and the elements of G2 of order less than 2e2 do not
form an index two subgroup, let DG = D ′/2. Otherwise, let
DG = D ′.
Then we have:
Theorem (Kulkarni, Topology, 1987). If G acts on the surface of
genus g , then g ≡ 1 (mod DG ). The converse also holds for all
but finitely many g .
Proof of necessity for odd G : Rewrite RH as:

2g − 2 = |G |(2h − 2) + Σ(|G | − |G |/ri )

Note that highest power of p dividing ri is ep Thus all terms on
right are divisible by DG making 2g − 2 ≡ 0 mod(DG ) Since DG is
odd, we can divide congruence by 2.
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Almost Sylow cyclic groups

The group G is called almost Sylow cyclic if Gp is cyclic for odd p
and G2 contains a subgroup of index two.

Corollary to Kulkarni’s Theorem G acts on almost all surfaces if
and only if G is almost Sylow cyclic and does not contain C2 × C4.
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Main Theorem

Theorem Suppose that p is an odd prime. If G acts on the
surface of genus p + 1 with p > 5, then G acts on almost all
surfaces.

On the other hand, C3 × C3 acts on the surface of genus
3 + 1 and C5 × C5 acts on the surface of genus 5 + 1 and in both
cases the only surfaces G acts on have genus g ≡ 1 (mod p)

Proof. By Kulkarni, we have g − 1 = p ≡ 0 mod (DG ).
Thus either DG = 1 and hence G acts on almost all surfaces
Or DG = p. That means |Gp| ≥ p2.
We have that Gp also acts, so we discard G and only consider Gp.
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p-groups acting on surface of genus p + 1

We have for RH applied to the p group Gp;

2p = pn (2h − 2 + Σ(1− 1/ri ))

where each ri is a power of p and n > 1.

With h = 1, there must be branch points, so right side is at least
pn(1− 1/3) so 3 ≥ pn−1 forcing p = 3, n = 2. (there is none with
only one branch point)
With h = 0 and p > 3, since there must be at least 3 branch
points, right side is at least (−2 + 3(1− 1/5)) = 2/5.
Thus 2p ≥ pn(2/5) so 5 ≥ pn−1 pause forcing n = 2 and p = 5.
(there is one with C5 × C5)
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Case where p = 3 and h = 0

There cannot be just three branch points of order 3 (or else right
side is 0),

so either three with at least one of order 9 or four or
more each of order at least 3.

For first we get 6 ≥ 3n(−2/3 + 1− 1/9), so 27 ≥ 3n. But there is
no group of order 27 or 9 generated by two elements of order 3
whose product has order 9.
For second, we have 6 ≥ 3n(−2/3) so n = 2 and this works with
C3 × C3.
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