
Jacobi type formulas for cyclic covers of CP1



Preliminaries

My goal is to investigate generalizations of the following
relations for elliptic curves: K = π

2
θ3(τ). θ is one of the theta

functions. K can be considered as the a period of the
non-vanishing holomorphic differential dx

y
. (Recall that elliptic

curves are given in the form : y 2 = x(x − 1)(x − λ). so dx
y

is

non-vanishing) In general if a1...ag , b1...bg is the normalized
homology and v1...vg are certain non-normalized set of
holomorphic differentials can we express

∫
ai
vj through theta

functions and normalized periods?



Motivation

There is a method to this madness: We like to find effective
expressions to these as these formulas should give us better
grasps on the connection between KDV of integrable PDEs
and theta functions. As we will see below they should also
lead to generalizations of the following identity:

θ′1(τ) = θ2(τ)θ3(τ)θ4(τ) (1)

That was a topic of continuous fascination since it was
discovered by Jacobi 200 years ago.



How do we get such formulas

Rather than to go through tedious explanations and definitions
of theta function properties I like to explain how such formulas
can be obtained. The key to think about theta functions as
uniformzers of functions on Riemann surface. That is just as
any function of CP1 can be expressed through

∏
(z−ai )∏
(z−bi )

any
function on a general Riemann surface X can be written as a
rational product of theta functions.
z lives on CP1 itself but θ lives on a g dimensional variety
associated with X It was Riemann’s greatest contribution to
invent such functions and to provide a parametrization of any
other function on the surface through a quotient of θ and its
translates.



Main idea

The main idea of getting relations between θ and its
derivatives is very simple. Assume for a moment that you
know that f (x)

g(x)
= p(x) Now for a point x0 further assume that

g(x0) 6= 0 but g ′(x0) = 0. Taking the quotient derivative on
both sides we get that:

f ′(x0)

g(x0)
= p′(x0) (2)

Or:
f ′(x0) = p′(x0)g(x0) (3)

And we are done provided we have a nice expression for p(x).



Riemann Surface Case

Of course for Algebraic curves ( Riemann surfaces) life isn’t
that simple. Because the LHS is a transcendental crazy
expressions in theta functions while the LHS is an algebraic
expression on a curve. But it becomes just a book keeping
exercise using a repetitive definition of the chain rule to
connect all the quantities involved.



N=2 case

This mechanism works nicely in the most straightforward
generalization of elliptic curves namely the hyper-elliptic case (
These have some application in cryptography though I am not
an expert) In this case we have that : y 2 =

∏2g+1
i=1 (x − λi).

This is a curve of genus g (one of the branch points is ∞ )

The basis for holomorphic differentials are: dui(P) = x idx
y

and

i = 1...g . For any homology basis define ρij =
∫
ai
duj(P) Then

vi = ρ−1dui(P) are the holomorphic normalized differentials.
(ρ is the matrix of a periods of dui .)



Expression for the Jacobi Inverse Problem

If w1...wg are components of a vector in Cg we can write the

Jacobi inverse problem as:
∑g

i=1

∫ Pi

∞ vj = wj Assuming that
the solution for the Jacobi problem are points xi , yi we have
that: ∂xi

∂wj
= ρV−1 and V−1 is the inverse matrix to the matrix

defined by: sij =
x ij
yj
.



Hyperelliptic curve - Thomae second formula -

Derivation Outline

For hyper-elliptic curves if we form a partition of 2g + 1 such
one part contains g points and the other g + 1 Then we know
that

∑g
i=1 ei − K∞ (K∞ is the vector of Riemann constants )is

a non vanishing even characteristics whose first derivative
vanishes! This is exactly the situation I described above. Note
that y 2 =

∏2g+1
i=1 (x − λi) is a double cover of CP1 and hence

any function that has double poles and zeros at the branch
points collapses to a function on the Sphere. Writing such
functions as quotients of theta and carrying the procedure we
outlined above results in the following theorem:



Thomae formula

Let v1, . . . , vg be the normalized holomorphic integrals. Let
I1 = {e1, . . . eg−1} be the set of any g − 1 branch points and
KP0 be the vector of Riemann constants which base point is
branch point P0 3 I then,

ε(I1) =

g−1∑
j=1

∫ ej

P0

dvj − KP0

. is non-singular odd half-period which characteristic we
denote as [ε]

∂

∂vj
θ[ε(I1)] = ε

√
detA

2g+2πg
∆(I1)1/4∆(J1)1/4

g∑
i=1

Aj ,isg−j(I1),

(4)

j = 1, . . . , g ,
(5)



Thomae Formula - Continued

where A be the g × g matrix of a-periods with entries Ai ,j ,
∆(I1), ∆(J1) are Vandermonde determinants and built on
branch points indexed from sets I1, J1, sg−j(I1) are
elementary symmetric functions of degree g − j , finally ε is
8-th root of unity.



What happens with other cyclic cover

For other cyclic covers the non-vanishing divisors on the
branch points appear more than once in the non-vanishing
divisors except of one case that I am aware of. So the mapping
isn’t clean and I it’s not clear how to generalize this process
when the point on a Riemann surface appears more than once.
For the case y 3 =

∏s
i=1(x − pi)

∏s−1
j=1 (x − qi) I carried out the

process as non-vanishing divisors are of a particular simple
form. We are verifying the formula numerically currently



What’s next

The interesting thing is the general case and for that we first
need Thomae type formulas. For cyclic covers ( Abelian as
well) the groups that act on the space of invariant divisors and
hence on the sections of the corresponding line bundles can be
decomposed into one-dimensional eigenspaces. This is crucial
to find divisors for which Thomae formula is obtained. But in
general the irreducible representations we have aren’t one
dimensional so I not sure how to approach the problem.
Perhaps somebody in the audience will be able to meet the
challenge?


