Examples of Belyĭ Maps for Elliptic Curves

PRiME 2015

Department of Mathematics
Purdue University

Summer Project Presentation
Purdue University

October 04, 2015

PURDUE

U N I V E R S I T Y

Riemann-Hurwitz Formula

Riemann-Hurwitz Genus Formula

Let $\beta: X \rightarrow Y$ be a rational map between Riemann surfaces. The Euler characteristics $\chi(X)=2-2 g_{X}$ and $\chi(Y)=2-2 g_{Y}$ are related by

$$
\chi(X)=\operatorname{deg}(\beta) \cdot \chi(Y)-\sum_{p \in X}\left(e_{p}-1\right)
$$

for some positive integers e_{p} called the ramification indices.

As a special case:

$$
\begin{array}{lll}
X=E(\mathbb{C}) \simeq \mathbb{T}^{2}(\mathbb{R}): & g_{X}=1 & \chi(X)=0 \\
Y=\mathbb{P}^{1}(\mathbb{C}) \simeq S^{2}(\mathbb{R}): & g_{Y}=0 & \chi(Y)=2
\end{array}
$$

Bely̌̌ Maps

Let E be an elliptic curve.
A rational function $\beta: E(\mathbb{C}) \hookrightarrow \mathbb{P}^{1}(\mathbb{C})$ is a map which is a ratio $\beta(x, y, z)=p(x, y, z) / q(x, y, z)$ in terms of relatively prime homogeneous polynomials $p(x, y, z), q(x, y, z) \in \mathbb{C}[x, y, z]$. Define its degree as the natural number
$\operatorname{deg}(\beta)=\max _{\omega \in \mathbb{P}^{1}(\mathbb{C})}|\{P \in E(\mathbb{C}) \mid \beta(P)=\omega\}|$

- $\omega \in \mathbb{P}^{1}(\mathbb{C})$ is said to be a critical value if $\left|\beta^{-1}(\omega)\right| \neq \operatorname{deg}(\beta)$.
- A Belyĭ map is a rational function β such that its collection of critical values ω is contained within the set $\{(0: 1),(1: 1),(1,0)\} \subseteq \mathbb{P}^{1}(\mathbb{C})$

Generating examples

Proposition

Every elliptic curve has degree 2,3 rational maps f with 4 critical values say $\left\{(0: 1),(1: 1),(1: 0),\left(\omega_{0}: 1\right)\right\}$

Corollary
Say $\omega_{0}=\frac{p}{q}$ is a rational number. Then the composition

$$
\beta: E(\mathbb{C}) \xrightarrow{f} \mathbb{P}^{1}(\mathbb{C}) \xrightarrow{h} \mathbb{P}^{1}(\mathbb{C})
$$

in terms of $h(\omega)=\omega^{p-q}(\omega-1)^{-p}\left(\omega-\frac{p}{q}\right)^{q}$ is a Belyı̆ map of $\operatorname{deg}(\beta)=\operatorname{deg}(f) \cdot \max \{|p|,|q|\}$

Degree 2 rational map

Proposition

Given an elliptic curve $E^{\prime}: y^{2} z=\left(x-e_{1} z\right)\left(x-e_{2} z\right)\left(x-e_{3} z\right)$, we have that a corresponding rational map $\beta: E(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ of $\operatorname{deg}(\beta)=2$ with critical values $\left\{(0: 1),(1: 1),(1: 0),\left(\omega_{0}: 1\right)\right\}$ is given by

$$
\beta(x, y, z)=\frac{e_{2}-e_{3}}{e_{2}-e_{1}} \cdot \frac{x-e_{1} z}{x-e_{3} z}
$$

Degree 3 rational map

Every elliptic curve can be written in the form $y^{2} z+A_{1} x y z+A_{3} y z^{2}=x^{3}$ for complex numbers A_{1} and A_{3}.

Theorem

Given an elliptic curve $E: y^{2} z+A_{1} x y z+A_{3} y z^{2}=x^{3}$, we have that a corresponding rational map $\beta: E(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ of $\operatorname{deg}(\beta)=3$ with critical values $\left\{(0: 1),(1: 1),(1: 0),\left(\omega_{0}: 1\right)\right\}$ is given by

$$
\beta(x, y, z)=\frac{\left(2 A_{1}^{3}-27 A_{3}-2 A_{1} \sqrt{A_{1}\left(A_{1}^{3}-27 A_{3}\right)}\right) y-27 A_{3}^{2} z}{\left(2 A_{1}^{3}-27 A_{3}+2 A_{1} \sqrt{A_{1}\left(A_{1}^{3}-27 A_{3}\right)}\right) y-27 A_{3}^{2} z} \quad \text { if } A_{1} \neq 0 .
$$

Dessins d'Enfant

Fix a Belyı̌ map $\beta(x, y, z)=p(x, y, z) / q(x, y, z)$ for $E(\mathbb{C})$. Denote the preimages

$$
\begin{array}{rlc}
B=\beta^{-1}((0: 1)) & = & \{P \in E(\mathbb{C}) \mid p(P)=0\} \\
W=\beta^{-1}((1: 1)) & = & \{P \in E(\mathbb{C}) \mid p(P)-q(P)=0\} \\
E & =\beta^{-1}([0,1]) & =\{P \in E(\mathbb{C}) \mid \beta(P) \in \mathbb{R} \text { and } 0 \leq \beta(P) \leq 1\}
\end{array}
$$

The bipartite graph (V, E) with vertices $V=B \cup W$ and edges E is called Dessins d'Enfant. We embed the graph on $E(\mathbb{C})$ in \mathbb{R}^{3}.

Degree Sequences

Proposition

Let $\beta: E(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ be a Bely̆ map. Then the sets

$$
\begin{aligned}
\left\{e_{P} \mid P \in B\right\} & & B & =\beta^{-1}((0: 1)) \\
\left\{e_{P} \mid P \in W\right\} & \text { in terms of } & W & =\beta^{-1}((1: 1)) \\
\left\{e_{P} \mid P \in F\right\} & & F & =\beta^{-1}((1: 0))
\end{aligned}
$$

are each integer partitions of $\operatorname{deg}(\beta)$ such that

$$
2 \operatorname{deg}(\beta)=\sum_{P \in B}\left(e_{P}-1\right)+\sum_{P \in W}\left(e_{P}-1\right)+\sum_{P \in F}\left(e_{P}-1\right) .
$$

These integer partitions are called the degree sequences of the Belyĭ map.

Unique degree sequences of Complete Bipartite Graphs

The only $K_{m, n}$ that can be drawn on the torus without edges crossing are $K_{3,3}, K_{3,4}, K_{3,5}, K_{3,6}, K_{4,4}$ (Ringel's Theorem). Recall Euler's formula

$$
|B|=m, \quad|W|=n, \quad|E|=m n, \quad \text { and } \quad|F|=m n-(m+n) .
$$

$K_{m, n}$	$\|B\|$	$\|W\|$	$\|F\|$	Degree Sequence
$K_{3,3}$	3	3	3	$\{\{3,3,3\}\{3,3,3\},\{3,3,3\}\}$
$K_{3,4}$	3	4	5	$\{\{4,4,4\}\{3,3,3,3\},\{4,2,2,2,2\}\}$
$K_{3,5}$	4	5	7	$\{\{5,5,5\}\{3,3,3,3,3\},\{3,2,2,2,2,2,2\}\}$
$K_{3,6}$	5	6	9	$\{\{6,6,6\}\{3,3,3,3,3,3\},\{2,2,2,2,2,2,2,2,2\}\}$
$K_{4,4}$	4	4	8	$\{\{4,5,5\}\{3,3,3,3,3\},\{2,2,2,2,2,2,2,2\}\}$

$K_{3,4}:\{\{4,4,4\}\{3,3,3,3\},\{4,2,2,2,2\}\}$

Examples of Bely̌̆ Maps on Noam Elkies Webpage

Noam Elkies of Harvard University maintains a webpage which lists several examples of Belyı̆ maps: http://www.math.harvard.edu/~elkies/nature.html. The following examples appear on the paper:

$$
\begin{array}{ll}
E: y^{2}=x^{3}+1 & \beta(x, y)=\frac{y+1}{2} \\
E: y^{2}=x^{3}+5 x+10 & \beta(x, y)=\frac{(x-5) y+16}{32} \\
E: y^{2}=x^{3}-120 x+740 & \beta(x, y)=\frac{(x+5) y+162}{324} \\
E: y^{2}+15 x y+128 y=x^{3} & \beta(x, y)=\frac{\left(y-x^{2}-17 x\right)^{3}}{2^{14} y}
\end{array}
$$

Examples of Belyĭ Maps on Noam Elkies' Webpage

$$
\begin{aligned}
& E: y^{2}+x y+y=x^{3}+x^{2}+35 x-28 \\
& \beta(x, y)=\frac{4\left(9 x y-x^{3}-15 x^{2}-36 x+32\right)}{3125}
\end{aligned}
$$

And

$$
\begin{aligned}
& E: y^{2}=x^{3}-15 x-10 \\
& \beta(x, y)=\frac{\left(3 x^{2}+12 x+5\right) y+\left(-10 x^{3}-30 x^{2}-6 x+6\right)}{-16(9 x+26)}
\end{aligned}
$$

Examples of Bely̌̆ Maps on different papers

In Leonardo Zapponi's "On the Bely̆̌ degree(s) of a curve defined over a number field" (although the term " 6 Y " should be " 12 Y ") there is the following example of a Bely̌ map:

$$
E: y^{2}=x^{3}+x^{2}+16 x+180 \quad \beta(x, y)=\frac{x^{2}+4 y+56}{108}
$$

In Lily Khadjavi and Victor Scharaschkin's "Bely̌̆ Maps, Elliptic Curves and the $A B C$ Conjecture" one can find this other example of a Belyı̆ map:

$$
E: y^{2}=x^{3}-x \quad \beta(x, y)=x^{2}
$$

Verifying a rational function is a Bely̌ Map

Given an elliptic curve:
$E(\mathbb{C})=\left\{(x, y) \in \mathbb{C}^{2} \mid y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right\}$
We verify that $\beta(x, y)$ is a Belyĭ map for $E(\mathbb{C})$ following the next steps

- Compute the maps degree.
- Name $f(x, y)=y^{2}+a_{1} x y+a_{3} y-\left(x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right)$ and solve $f(x, y)=0, \beta(x, y)-\omega=0\left(\right.$ for any $\omega \in \mathbb{P}^{1}(\mathbb{C})$) in terms of x and y.
- Compute the number of possible solutions and name that number the degree of the map.
- Compute a potential list of critical values.
- Name $\bar{f}(y)=f(x, y), \bar{\beta}(y)=\beta(x, y)-\omega$ and take the resultant of \bar{f} and $\bar{\beta}$ because

Theorem

There exist $y \in \mathbb{C}$ satisfying $f(y)=g(y)=0$ if and only if $\operatorname{Res}(f, g)=0$

- Name $h(x)=\operatorname{Res}(f, g)$ and check for which x it has repeated roots by looking when its discriminant vanishes.
- Determine which of the potential critical values are critical values.
- Compute the number of elements in the inverse image of $\omega=\beta(x, y)$ for x such that $h(x)=0$.

Degree Sequences of Belyı̆ maps

By the Degree sequences proposition we have that:

- There do not exist any Belyı̆ maps of $\operatorname{deg}(\beta)=2$.
- Every Belyĭ map of $\operatorname{deg}(\beta)=3$ or 4 has one of the following degree sequences, as illustrated by the accompanying examples:

$$
\begin{array}{rll}
\{\{3\},\{3\},\{3\}\} & E: y^{2}=x^{3}+1 & \beta(x, y)=\frac{y+1}{2} \\
\{\{1,3\},\{4\},\{4\}\} & E: y^{2}=x^{3}+x^{2}+16 x+180 & \beta(x, y)=\frac{x^{2}+4 y+56}{108} \\
\{\{2,2\},\{4\},\{4\}\} & E: y^{2}=x^{3}-x & \beta(x, y)=x^{2}
\end{array}
$$

Degree Sequences of Bely̌̌ maps

- Every Belyı̆ map of $\operatorname{deg}(\beta)=5$ has one of the following degree sequences, as illustrated by the accompanying examples:

$\{\{1,4\},\{1,4\},\{5\}\}$	$E: y^{2}=x^{3}+5 x+10$	$\beta(x, y)=\frac{(x-5) y+16}{32}$
$\{\{2,3\},\{2,3\},\{5\}\}$	$E: y^{2}=x^{3}-120 x+740$	$\beta(x, y)=\frac{(x+5) y+162}{324}$
$\{\{1,4\},\{2,3\},\{5\}\}$	$?$	$?$
$\{\{1,2,2\},\{5\},\{5\}\}$	$?$	$?$
$\{\{1,1,3\},\{5\},\{5\}\}$	$?$	$?$

Belyĭ Maps cant have Degree 2

Riemann Hurwitz Genus Formula for Belyĭ Maps on the torus

$$
2 \operatorname{deg}(\beta)=\sum_{P \in \beta^{-1}(0)}\left(e_{P}-1\right)+\sum_{P \in \beta^{-1}(1)}\left(e_{P}-1\right)+\sum_{P \in \beta^{-1}(\infty)}\left(e_{P}-1\right)
$$

- Critical Point when $e_{P}=2$.
- $4=(2-1)+(2-1)+(2-1)+(2-1)$
- 4 critical points $\Rightarrow 4$ critical values
- Not a Bely̆̌ map.

Degree 3 Belyĭ Map

Set $E: y^{2}=x^{3}+A x+B$ and $\beta(x, y)=\frac{a y+b x+c}{d y+e x+f}=\omega$

- Solve for y in terms of x and substitute into E.
- Factor $p(x)=\left(x-x_{1}\right)^{e_{1}} \cdots\left(x-x_{n}\right)^{e_{n}}$.
- Define y_{k} for $\beta\left(x_{k}, y_{k}\right)=\omega$ and $e_{p}=e_{k}$ for $P=\left(x_{k}, y_{k}\right)$.
- Have repeated roots when $\omega=0,1, \infty$.
$2 \operatorname{deg}(\beta)=\sum_{P \in \beta^{-1}(0)}\left(e_{P}-1\right)+\sum_{P \in \beta^{-1}(1)}\left(e_{P}-1\right)+\sum_{P \in \beta^{-1}(\infty)}\left(e_{P}-1\right)$
- $\omega=0,1, \infty$:

$$
p(x)=\left(x-x_{1}\right)^{3} \Rightarrow e_{1}=3
$$

- $\{\{3\},\{3\},\{3\}\}$

Database

Theorem (Zapponi)

There are only finitely many $\overline{\mathbb{Q}}$-isomorphism classes of elliptic curves of a given bounded Belyı̆ degree.

Corollary

For a given positive integer N, there exists only finitely many $j_{0} \in \mathbb{C}$ such that there exists an elliptic curve E and a Belyı̆ map $\beta: E(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ with $j(E)=j_{0}$ and $\operatorname{deg}(\beta)=N$.

Database

Given an integer N, we want to compute

- Elliptic curves E.
- Belyĭ maps $\beta: E(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ with $\operatorname{deg}(\beta)=N$.
- Dessin d'Enfant of β

Acknowledgments

- Dr. Edray Herber Goins
- Hongshan Li
- Avi Steiner
- Dr. Steve Bell
- Dr. David Goldberg
- Dr. Lazslo Lempert
- Dr. Joel and Mrs. Ruth Spira
- Dr. Uli Walther
- Dr. Mark Ward
- Dr. Lowell W. Beineke
- Dr. Gregery Buzzard / Department of Mathematics
- College of Science
- UREP-C / Universidad Nacional de Colombia
- National Science Foundation

Thank You!

Questions?

