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THE SET-UP

G = 〈A,B〉,a non-elementary subgroup of Isom(H2),
equivalently PSL(2,R).

The PSL(2,R) geometric algorithm answers the questions as
to whether G discrete or not discrete.



Theorem The G-Maskit Geometric PSL(2,R) Algorithm
(1991)

Begin with A and B an ordered set of generators. There exists
integers [n1, n2, ..., nt ] such that
the sequence

(A,B)→ (B−1,A−1Bn1)→ (B−n1A,B(A−1Bn1)n2)→ · · · →
(Ã, B̃)

stops at a pair (Ã, B̃) after a finite number of replacements
and says (i) G is discrete (ii) G is not discrete, or (iii) G is not
free.

replacement in a trace minimizing manner.

(At ,Bt)→ (B−1t ,A−1t Bnt
t )

|Tr At| ≥ |Tr Bt| and |Tr Bt| ≥ |Tr B−ntt At|
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(Ã, B̃)
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The sequence of integers has been used to calculate:

(i) the
computational complexity of the algorithm (1997-G,
2003-Jiang); (ii) essential self-intersection numbers of
primitive curves (2001-G-Keen)...

Definition
(G-Keen 2002) The sequence [n1, ..., nt ] is termed the
F -sequence or the Fibonacci sequence of the algorithm.

• existence of such ni — in the proof that there is a
discreteness algorithm

• these numbers were never actually computed.

• interpretation of the algorithm as a non-Euclidean Euclidean
Algorithm =⇒ how to actually compute the ni .
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Notation for Algebraic and Geometric Quantities

Hyperbolic Transformation X

Axis AxX

Translation length TX

The matrix of X has a trace

Tr X.

Tr X and TX related by

cosh
TX

2
=

1

2
Tr X
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Theorem
The Non-Euclidean Euclidean Algorithm (G-2013)
If one applies the Euclidean algorithm to the non-Euclidean
translation lengths of the generators at each step, the output
is the F-sequence [n1, ..., nk ].

n1 = [
TA/2

TB/2
]

where [ ] denotes the greatest integer function and

n2 = [
TB

TD/2
] where D = A−1Bn1

and

nt = [
TAt/2

TBt/2
]

where (At ,Bt) is the pair of generators at step t in theorem 3.

when A and B are hyperbolics with disjoint axes and the
algorithm stops with such a pair.



DRAW



Given A and B hyperbolic transformations, let L be their
common perpendicular.

Let RM , denote the half-turn about (or reflection in) the
geodesic M

There are geodesics LA and LB perpendicular to the axes of A
and B such that

A = RL ◦ RLA and B = RL ◦ HRB

A−1B = RLA ◦ RLB
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LB separates L and LA

there are geodesics
LB2 , LB3 ....

perpendicular to the axis of B whose distance apart is half of
TB and such that

B = RLB ◦ RLB2 = RLB2 ◦ RLB3 = · · ·

We can take the smallest n such that LBn separates but LBn+1

does not.

Axes are common perpendiculars:

AB−1 = RLARLB

AB−2 = RLARLB2

AB−3 = RLARLB3

AB−4 = RLARLB4
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Replace (A,B) by

(AB−3,B)

but orient coherently, i.e reorient

(B−1,A−1B3)

Set
n1 = 3

Repeat:

(B−3A,B(A−1B3)n2)

and continue...
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Bounds using n:

If LBn separates L and LA, but LBn+1 does not, we have

n
TB

2
≤ TA

2
≤ (n + 1)

TB

2

=⇒ n = [
(TA)/2

(TB)/2
]

Proof: look at the configuration

Note that the length of the segment of the common
perpendicular to a pair of geodesics between the two geodeiscs
is the shortest of the length along any other geodesic between
the two geodesics.

Corollary
n is the n1 of the Euclidean Algorithm.
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The analogy: the Euclidean and the non-Euclidean algorithm

• We find the sequence [n1, ..., nt ] of the discreteness
algorithm by a combination of Euclidean or division algorithm
type of computations with hyperbolic lengths and hyperbolic
length replacements with the remainder term;

• we also at each step have an inequality rather than an
equality
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The Euclidean Algorithm to get the GCD:

Begin with a and a1
a = n1a1 + a2 and 0 ≤ a2 < a1

n1 = [
a

a1
]

a1 = n2a2 + a3 and 0 ≤ a3 < a2

n2 = [
a1
a2

]

...

aj−1 = njaj + aj+1

nj = [
aj−1
aj

]
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The Non-Euclidean Euclidean Algorithm:

Begin with a and a1
replace with TA and TA1

a = n1a1 + a2 and 0 ≤ TA2/2 ≤ a2 < a1

n1 = [
a

a1
] = [

TA/2

TA1/2
]

a1 = n2a2 + a3 and 0 ≤ TA3/2 ≤ a3 < a2
replace with TA1/2 and TA2/2 and replace the remainder with TA3/2

n2 = [
a1
a2

]= [
TA1/2

TA2/2
]

...

aj−1 = njaj + aj+1 0 ≤ TAj+1
/2 ≤ aj+1 < aj

replace with TAj−1
/2 and TAj

/2 and the remainder with TAj+1
/2

nj = [
aj−1
aj

]= [
TAj−1

/2

TAj
/2

]
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Note we have inequality rather than equality:

TAj+1
≤ njTAj

+ TAj+2



Implications: New Length Inequalities

When the algorithm stops and says that the group is discrete
and free, the quotient is a pair of pants and the stopping
generators are two of the three unique simple closed curves on
the surface. These three curves are the shortest curves on the
surface.

Three results:

1. F -sequences and Translation Lengths.

2. Minimal curve length and essential self-intersections

3. Seam Lengths and Intersections
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Theorem
(G, 2015) F -sequence and translation length If the algorithm
begins with (A,B) and ends with (Ã, B̃), all hyperbolic.

1

2
TA ≤ Πt

i=1(ni + 1)
1

2
TÃ



Proof:
Run the algorithm:

TA1 ≤ (n1 + 1)TA2

and
TA2 ≤ (n2 + 1)TA3

Whence

TA1 ≤ (n1 + 1)TA2 ≤ (n1 + 1)(n2 + 1)TA3

At the induction step:

TAj
≤ (nj + 1)TAj+1

,

The result follows by induction.



Proof:
Run the algorithm:

TA1 ≤ (n1 + 1)TA2

and
TA2 ≤ (n2 + 1)TA3

Whence

TA1 ≤ (n1 + 1)TA2 ≤ (n1 + 1)(n2 + 1)TA3

At the induction step:

TAj
≤ (nj + 1)TAj+1

,

The result follows by induction.



Proof:
Run the algorithm:

TA1 ≤ (n1 + 1)TA2

and
TA2 ≤ (n2 + 1)TA3

Whence

TA1 ≤ (n1 + 1)TA2 ≤ (n1 + 1)(n2 + 1)TA3

At the induction step:

TAj
≤ (nj + 1)TAj+1

,

The result follows by induction.



Proof:
Run the algorithm:

TA1 ≤ (n1 + 1)TA2

and
TA2 ≤ (n2 + 1)TA3

Whence

TA1 ≤ (n1 + 1)TA2 ≤ (n1 + 1)(n2 + 1)TA3

At the induction step:

TAj
≤ (nj + 1)TAj+1

,

The result follows by induction.



Proof:
Run the algorithm:

TA1 ≤ (n1 + 1)TA2

and
TA2 ≤ (n2 + 1)TA3

Whence

TA1 ≤ (n1 + 1)TA2 ≤ (n1 + 1)(n2 + 1)TA3

At the induction step:

TAj
≤ (nj + 1)TAj+1

,

The result follows by induction.



Proof:
Run the algorithm:

TA1 ≤ (n1 + 1)TA2

and
TA2 ≤ (n2 + 1)TA3

Whence

TA1 ≤ (n1 + 1)TA2 ≤ (n1 + 1)(n2 + 1)TA3

At the induction step:

TAj
≤ (nj + 1)TAj+1

,

The result follows by induction.



View the algorithm as an unwinding procedure. Run the
algorithm backwards as a winding procedure.

Can wind or unwind: go from (A,B) to (Ã, B̃) or from (Ã, B̃)
to (A,B)

Unwinding sequence [n1, ..., nt ] =⇒ winding sequence
[−nt , ...,−n1].

often write with positive integers and simply note winding.
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Primitive curves and rationals

Theorem
(G-Keen 2002) Primitive curves correspond to rational
numbers. A primitive curve will have a winding sequence
[m1, ...,mt ] for some integer t. Label the curve γr where r is
the rational with continued fraction entries [0,m1, ...,mr ]
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Theorem 0.3 can be rewritten as

Theorem
(Winding and Curve Lengths)
Let W be a curve corresponding to a primitive word in G that
is not conjugate to a stopping generator.
LetL(W ) be its length and
[n1, ..., nt ] its winding sequence.
Assume that L(S0) is the longest length of any simple closed
curve on the surface. Then

(Πt
i=1ni)L(S0) ≤ L(W ) ≤ (Πt

i=1(ni + 1))L(S0).



Essential self-intersections for primitive
curves

Definition
If W is any closed curve on a pair of pants, it will have a
certain number of essential self-intersections, that is,
self-intersections along seams of the pair of pants.

All other self-intersection are trailing intersections.
Denote the number of essential self-intersections by

Int(W )

or by
Int(r)

if W = γr where γr is the curve with winding sequence
[m1, ...,mt ] and r is the rational with continued fraction
entries [0,m1, ...,mt ]
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Inductive formula for Int(r)

Theorem
(G-Keen 2002) (inductive formula for Int(r))

We let Int(r) denote the number of essential self-intersections
of the curve with winding sequence [n1, ..., nt ], where r the
corresponding rational and rk = [n0, ..., nk ] its k-th
approximent. Let rk = pk/qk where pk is the numerator and
qk the denominator of the approximent and rk is given in
lowest terms.

Then the essential self-intersection numbers are given
inductively as follows:

Int(α0) = 0, Int(β0) = 0, Int(α−10 β0) = 0, Int(α0β0) = 1, Int(α0β
2
0) = 2

Intpk+1/qk+1
=

1 + nk+1 · Intpk/qk + Intpk−1/qk−1



Theorem
(G-2015) (Essential self-intersection number and curve
length) If L(γ) denotes the length of a curve γ and α0 is the
shortest simple closed curve on the surface with γ0, the
longest,

Int(r)× L(α0) ≤ L(γr ) ≤ (Int(r + 1))× L(γ0)

Proof.
Basically bounded the number times the curve might go
around the shortest simple curve and the longest simple
curve.
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The algorithm stops at a convex right hexagon whose sides
project to the three shortest curves on the surface and to the
three longest seams on the pair of pants. If the alternating
sides have length x ≤ y ≤ z , then the length of the seam L
opposite the shortest side x satisfies:

cosh L =
cosh x + cosh y cosh z

sinh y sinh x
.

Theorem (Maximal Seam Length) (G-2015) Let L0 be the
common perpendicular to the axes of A0 and B0 and λ0 its
image on the quotient. If ρi is the distance along the L0
between its intersection with the axis of A0B

i
0 and and

A0B
i+1
0 , then

∞
lim
i=1

Σt→∞ρi = L(L0)

cosh(
∞

lim
i=1

(Σt→∞ρi)) =
cosh x + cosh y cosh z

sinh y sinh x

Proof Look at the figure.
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These Nielsen transformations are not automorphisms of the
appropriate surface, the double of the pair of pants.

Some of this translates to PSL(2,C) or H3 Details TBA
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