The Non-Euclidean Euclidean Algorithm and Curve Lengths on Pairs of Pants

Jane Gilman
Rutgers-Newark

October 3, 2015

THE SET-UP

$$
\begin{aligned}
& G=\langle A, B\rangle, \text { a non-elementary subgroup of } \operatorname{Isom}\left(\mathbb{H}^{2}\right) \\
& \text { equivalently } \operatorname{PSL}(2, \mathbb{R}) .
\end{aligned}
$$

The $\operatorname{PSL}(2, \mathbb{R})$ geometric algorithm answers the questions as to whether G discrete or not discrete.

Theorem The G-Maskit Geometric $\operatorname{PSL}(2, \mathbb{R})$ Algorithm (1991)

Begin with A and B an ordered set of generators. There exists integers $\left[n_{1}, n_{2}, \ldots, n_{t}\right]$ such that the sequence
$(A, B) \rightarrow\left(B^{-1}, A^{-1} B^{n_{1}}\right) \rightarrow\left(B^{-n_{1}} A, B\left(A^{-1} B^{n_{1}}\right)^{n_{2}}\right) \rightarrow \cdots \rightarrow$ ($\tilde{A}, \tilde{B})$

Theorem The G-Maskit Geometric $\operatorname{PSL}(2, \mathbb{R})$ Algorithm (1991)

Begin with A and B an ordered set of generators. There exists integers $\left[n_{1}, n_{2}, \ldots, n_{t}\right]$ such that the sequence
$(A, B) \rightarrow\left(B^{-1}, A^{-1} B^{n_{1}}\right) \rightarrow\left(B^{-n_{1}} A, B\left(A^{-1} B^{n_{1}}\right)^{n_{2}}\right) \rightarrow \cdots \rightarrow$ ($\tilde{A}, \tilde{B})$
stops at a pair (\tilde{A}, \tilde{B}) after a finite number of replacements and says (i) G is discrete (ii) G is not discrete, or (iii) G is not free.

Theorem The G-Maskit Geometric $\operatorname{PSL}(2, \mathbb{R})$ Algorithm (1991)

Begin with A and B an ordered set of generators. There exists integers $\left[n_{1}, n_{2}, \ldots, n_{t}\right]$ such that the sequence
$(A, B) \rightarrow\left(B^{-1}, A^{-1} B^{n_{1}}\right) \rightarrow\left(B^{-n_{1}} A, B\left(A^{-1} B^{n_{1}}\right)^{n_{2}}\right) \rightarrow \cdots \rightarrow$ ($\tilde{A}, \tilde{B})$
stops at a pair (\tilde{A}, \tilde{B}) after a finite number of replacements and says (i) G is discrete (ii) G is not discrete, or (iii) G is not free.
replacement in a trace minimizing manner.

Theorem The G-Maskit Geometric $\operatorname{PSL}(2, \mathbb{R})$ Algorithm (1991)

Begin with A and B an ordered set of generators. There exists integers $\left[n_{1}, n_{2}, \ldots, n_{t}\right]$ such that the sequence
$(A, B) \rightarrow\left(B^{-1}, A^{-1} B^{n_{1}}\right) \rightarrow\left(B^{-n_{1}} A, B\left(A^{-1} B^{n_{1}}\right)^{n_{2}}\right) \rightarrow \cdots \rightarrow$ ($\tilde{A}, \tilde{B})$
stops at a pair (\tilde{A}, \tilde{B}) after a finite number of replacements and says (i) G is discrete (ii) G is not discrete, or (iii) G is not free.
replacement in a trace minimizing manner.

$$
\left(A_{t}, B_{t}\right) \rightarrow\left(B_{t}^{-1}, A_{t}^{-1} B_{t}^{n_{t}}\right)
$$

Theorem The G-Maskit Geometric $\operatorname{PSL}(2, \mathbb{R})$ Algorithm (1991)

Begin with A and B an ordered set of generators. There exists integers $\left[n_{1}, n_{2}, \ldots, n_{t}\right]$ such that the sequence
$(A, B) \rightarrow\left(B^{-1}, A^{-1} B^{n_{1}}\right) \rightarrow\left(B^{-n_{1}} A, B\left(A^{-1} B^{n_{1}}\right)^{n_{2}}\right) \rightarrow \cdots \rightarrow$ ($\tilde{A}, \tilde{B})$
stops at a pair (\tilde{A}, \tilde{B}) after a finite number of replacements and says (i) G is discrete (ii) G is not discrete, or (iii) G is not free.
replacement in a trace minimizing manner.

$$
\left(A_{t}, B_{t}\right) \rightarrow\left(B_{t}^{-1}, A_{t}^{-1} B_{t}^{n_{t}}\right)
$$

$$
\left|\operatorname{Tr} \mathrm{A}_{\mathrm{t}}\right| \geq\left|\operatorname{Tr} \mathrm{B}_{\mathrm{t}}\right|
$$

Theorem The G-Maskit Geometric $\operatorname{PSL}(2, \mathbb{R})$ Algorithm (1991)

Begin with A and B an ordered set of generators. There exists integers $\left[n_{1}, n_{2}, \ldots, n_{t}\right]$ such that the sequence
$(A, B) \rightarrow\left(B^{-1}, A^{-1} B^{n_{1}}\right) \rightarrow\left(B^{-n_{1}} A, B\left(A^{-1} B^{n_{1}}\right)^{n_{2}}\right) \rightarrow \cdots \rightarrow$ ($\tilde{A}, \tilde{B})$
stops at a pair (\tilde{A}, \tilde{B}) after a finite number of replacements and says (i) G is discrete (ii) G is not discrete, or (iii) G is not free.
replacement in a trace minimizing manner.

$$
\left(A_{t}, B_{t}\right) \rightarrow\left(B_{t}^{-1}, A_{t}^{-1} B_{t}^{n_{t}}\right)
$$

$$
\left|\operatorname{Tr} A_{t}\right| \geq\left|\operatorname{Tr} B_{t}\right| \text { and }\left|\operatorname{Tr} B_{t}\right| \geq\left|\operatorname{Tr} B_{t}^{-n_{t}} A_{t}\right|
$$

The sequence of integers has been used to calculate:

The sequence of integers has been used to calculate: (i) the computational complexity of the algorithm (1997-G, 2003-Jiang);

The sequence of integers has been used to calculate: (i) the computational complexity of the algorithm (1997-G, 2003-Jiang); (ii) essential self-intersection numbers of primitive curves (2001-G-Keen)...

The sequence of integers has been used to calculate: (i) the computational complexity of the algorithm (1997-G, 2003-Jiang); (ii) essential self-intersection numbers of primitive curves (2001-G-Keen)...

Definition
(G-Keen 2002) The sequence $\left[n_{1}, \ldots, n_{t}\right]$ is termed the F-sequence or the Fibonacci sequence of the algorithm.

The sequence of integers has been used to calculate: (i) the computational complexity of the algorithm (1997-G, 2003-Jiang); (ii) essential self-intersection numbers of primitive curves (2001-G-Keen)...

Definition
(G-Keen 2002) The sequence $\left[n_{1}, \ldots, n_{t}\right]$ is termed the F-sequence or the Fibonacci sequence of the algorithm.

- existence of such n_{i} - in the proof that there is a discreteness algorithm

The sequence of integers has been used to calculate: (i) the computational complexity of the algorithm (1997-G, 2003-Jiang); (ii) essential self-intersection numbers of primitive curves (2001-G-Keen)...

Definition
(G-Keen 2002) The sequence $\left[n_{1}, \ldots, n_{t}\right]$ is termed the F-sequence or the Fibonacci sequence of the algorithm.

- existence of such n_{i} - in the proof that there is a discreteness algorithm
- these numbers were never actually computed.

The sequence of integers has been used to calculate: (i) the computational complexity of the algorithm (1997-G, 2003-Jiang); (ii) essential self-intersection numbers of primitive curves (2001-G-Keen)...

Definition
(G-Keen 2002) The sequence $\left[n_{1}, \ldots, n_{t}\right]$ is termed the F-sequence or the Fibonacci sequence of the algorithm.

- existence of such n_{i} - in the proof that there is a discreteness algorithm
- these numbers were never actually computed.
- interpretation of the algorithm as a non-Euclidean Euclidean Algorithm \Longrightarrow how to actually compute the n_{i}.

Notation for Algebraic and Geometric Quantities

Notation for Algebraic and Geometric Quantities

Hyperbolic Transformation X
Axis $A x_{x}$
Translation length T_{X}
The matrix of X has a trace
$\operatorname{Tr} \mathrm{X}$.
$\operatorname{Tr} \mathrm{X}$ and T_{X} related by

$$
\cosh \frac{T_{X}}{2}=\frac{1}{2} \operatorname{Tr} \mathrm{X}
$$

Theorem

The Non-Euclidean Euclidean Algorithm (G-2013)
If one applies the Euclidean algorithm to the non-Euclidean translation lengths of the generators at each step, the output is the F-sequence $\left[n_{1}, \ldots, n_{k}\right]$.

$$
n_{1}=\left[\frac{T_{A} / 2}{T_{B} / 2}\right]
$$

where [] denotes the greatest integer function and

$$
n_{2}=\left[\frac{T_{B}}{T_{D} / 2}\right] \quad \text { where } \quad D=A^{-1} B^{n_{1}}
$$

and

$$
n_{t}=\left[\frac{T_{A_{t}} / 2}{T_{B_{t}} / 2}\right]
$$

where $\left(A_{t}, B_{t}\right)$ is the pair of generators at step t in theorem 3.

DRAW

Given A and B hyperbolic transformations, let L be their common perpendicular.

Given A and B hyperbolic transformations, let L be their common perpendicular.
Let R_{M}, denote the half-turn about (or reflection in) the geodesic M

Given A and B hyperbolic transformations, let L be their common perpendicular.
Let R_{M}, denote the half-turn about (or reflection in) the geodesic M
There are geodesics L_{A} and L_{B} perpendicular to the axes of A and B such that

$$
\begin{gathered}
A=R_{L} \circ R_{L_{A}} \text { and } B=R_{L} \circ H_{R_{B}} \\
A^{-1} B=R_{L_{A}} \circ R_{L_{B}}
\end{gathered}
$$

L_{B} separates L and L_{A}
L_{B} separates L and L_{A}
there are geodesics

$$
L_{B^{2}}, L_{B^{3} \ldots}
$$

perpendicular to the axis of B whose distance apart is half of T_{B} and such that
L_{B} separates L and L_{A}
there are geodesics

$$
L_{B^{2}}, L_{B^{3} \ldots} \ldots
$$

perpendicular to the axis of B whose distance apart is half of T_{B} and such that

$$
B=R_{L_{B}} \circ R_{L_{B^{2}}}
$$

L_{B} separates L and L_{A}
there are geodesics

$$
L_{B^{2}}, L_{B^{3} \ldots}
$$

perpendicular to the axis of B whose distance apart is half of T_{B} and such that

$$
B=R_{L_{B}} \circ R_{L_{B^{2}}}=R_{L_{B^{2}}} \circ R_{L_{B^{3}}}=\cdots
$$

L_{B} separates L and L_{A}
there are geodesics

$$
L_{B^{2}}, L_{B^{3} \ldots}
$$

perpendicular to the axis of B whose distance apart is half of T_{B} and such that

$$
B=R_{L_{B}} \circ R_{L_{B^{2}}}=R_{L_{B^{2}}} \circ R_{L_{B^{3}}}=\cdots
$$

We can take the smallest n such that $L_{B^{n}}$ separates but $L_{B^{n+1}}$ does not.
L_{B} separates L and L_{A}
there are geodesics

$$
L_{B^{2}}, L_{B^{3} \ldots}
$$

perpendicular to the axis of B whose distance apart is half of T_{B} and such that

$$
B=R_{L_{B}} \circ R_{L_{B^{2}}}=R_{L_{B^{2}}} \circ R_{L_{B^{3}}}=\cdots
$$

We can take the smallest n such that $L_{B^{n}}$ separates but $L_{B^{n+1}}$ does not.
Axes are common perpendiculars:

$$
\begin{aligned}
& A B^{-1}=R_{L_{A}} R_{L_{B}} \\
& A B^{-2}=R_{L_{A}} R_{L_{B} 2} \\
& A B^{-3}=R_{L_{A}} R_{L_{B} 3} \\
& A B^{-4}=R_{L_{A}} R_{L_{B^{4}}}
\end{aligned}
$$

Replace (A, B) by

$$
\left(A B^{-3}, B\right)
$$

Replace (A, B) by

$$
\left(A B^{-3}, B\right)
$$

but orient coherently, i.e reorient

Replace (A, B) by

$$
\left(A B^{-3}, B\right)
$$

but orient coherently, i.e reorient

$$
\left(B^{-1}, A^{-1} B^{3}\right)
$$

Set

$$
n_{1}=3
$$

Replace (A, B) by

$$
\left(A B^{-3}, B\right)
$$

but orient coherently, i.e reorient

$$
\left(B^{-1}, A^{-1} B^{3}\right)
$$

Set

$$
n_{1}=3
$$

Repeat:

$$
\left(B^{-3} A, B\left(A^{-1} B^{3}\right)^{n_{2}}\right)
$$

Replace (A, B) by

$$
\left(A B^{-3}, B\right)
$$

but orient coherently, i.e reorient

$$
\left(B^{-1}, A^{-1} B^{3}\right)
$$

Set

$$
n_{1}=3
$$

Repeat:

$$
\left(B^{-3} A, B\left(A^{-1} B^{3}\right)^{n_{2}}\right)
$$

and continue...

Bounds using n :

Bounds using n :

If $L_{B^{n}}$ separates L and L_{A}, but $L_{B^{n+1}}$ does not, we have

Bounds using n :

If $L_{B^{n}}$ separates L and L_{A}, but $L_{B^{n+1}}$ does not, we have

$$
n \frac{T_{B}}{2} \leq \frac{T_{A}}{2} \leq(n+1) \frac{T_{B}}{2}
$$

Bounds using n :

If $L_{B^{n}}$ separates L and L_{A}, but $L_{B^{n+1}}$ does not, we have

$$
\begin{gathered}
n \frac{T_{B}}{2} \leq \frac{T_{A}}{2} \leq(n+1) \frac{T_{B}}{2} \\
\Longrightarrow n=\left[\frac{\left(T_{A}\right) / 2}{\left(T_{B}\right) / 2}\right]
\end{gathered}
$$

Bounds using n :

If $L_{B^{n}}$ separates L and L_{A}, but $L_{B^{n+1}}$ does not, we have

$$
\begin{aligned}
n \frac{T_{B}}{2} & \leq \frac{T_{A}}{2} \leq(n+1) \frac{T_{B}}{2} \\
& \Longrightarrow n=\left[\frac{\left(T_{A}\right) / 2}{\left(T_{B}\right) / 2}\right]
\end{aligned}
$$

Proof: look at the configuration

Bounds using n :

If $L_{B^{n}}$ separates L and L_{A}, but $L_{B^{n+1}}$ does not, we have

$$
\begin{aligned}
n \frac{T_{B}}{2} & \leq \frac{T_{A}}{2} \leq(n+1) \frac{T_{B}}{2} \\
& \Longrightarrow n=\left[\frac{\left(T_{A}\right) / 2}{\left(T_{B}\right) / 2}\right]
\end{aligned}
$$

Proof: look at the configuration
Note that the length of the segment of the common perpendicular to a pair of geodesics between the two geodeiscs is the shortest of the length along any other geodesic between the two geodesics.

Bounds using n :

If $L_{B^{n}}$ separates L and L_{A}, but $L_{B^{n+1}}$ does not, we have

$$
\begin{aligned}
n \frac{T_{B}}{2} & \leq \frac{T_{A}}{2} \leq(n+1) \frac{T_{B}}{2} \\
& \Longrightarrow n=\left[\frac{\left(T_{A}\right) / 2}{\left(T_{B}\right) / 2}\right]
\end{aligned}
$$

Proof: look at the configuration
Note that the length of the segment of the common perpendicular to a pair of geodesics between the two geodeiscs is the shortest of the length along any other geodesic between the two geodesics.

Corollary
n is the n_{1} of the Euclidean Algorithm.

The analogy: the Euclidean and the non-Euclidean algorithm

The analogy: the Euclidean and the non-Euclidean algorithm

- We find the sequence $\left[n_{1}, \ldots, n_{t}\right]$ of the discreteness algorithm by a combination of Euclidean or division algorithm type of computations with hyperbolic lengths and hyperbolic length replacements with the remainder term;

The analogy: the Euclidean and the non-Euclidean algorithm

- We find the sequence $\left[n_{1}, \ldots, n_{t}\right]$ of the discreteness algorithm by a combination of Euclidean or division algorithm type of computations with hyperbolic lengths and hyperbolic length replacements with the remainder term;
- we also at each step have an inequality rather than an equality

The Euclidean Algorithm to get the GCD:

The Euclidean Algorithm to get the GCD:
Begin with a and a_{1}
$a=n_{1} a_{1}+a_{2}$ and $0 \leq a_{2}<a_{1}$

$$
n_{1}=\left[\frac{a}{a_{1}}\right]
$$

$$
a_{1}=n_{2} a_{2}+a_{3} \text { and } 0 \leq a_{3}<a_{2}
$$

$$
n_{2}=\left[\frac{a_{1}}{a_{2}}\right]
$$

$$
a_{j-1}=n_{j} a_{j}+a_{j+1}
$$

$$
n_{j}=\left[\frac{a_{j-1}}{a_{j}}\right]
$$

The Non-Euclidean Euclidean Algorithm:

The Non-Euclidean Euclidean Algorithm:
Begin with a and a_{1} replace with T_{A} and $T_{A_{1}}$
$a=n_{1} a_{1}+a_{2} \quad$ and $\quad 0 \leq T_{A_{2}} / 2 \leq a_{2}<a_{1}$

$$
n_{1}=\left[\frac{a}{a_{1}}\right]=\left[\frac{T_{A} / 2}{T_{A_{1}} / 2}\right]
$$

$$
a_{1}=n_{2} a_{2}+a_{3} \quad \text { and } \quad 0 \leq T_{A_{3}} / 2 \leq a_{3}<a_{2}
$$

replace with $T_{A_{1}} / 2$ and $T_{A_{2}} / 2$ and replace the remainder with $T_{A_{3}} / 2$

$$
n_{2}=\left[\frac{a_{1}}{a_{2}}\right]=\left[\frac{T_{A_{1}} / 2}{T_{A_{2}} / 2}\right]
$$

$$
a_{j-1}=n_{j} a_{j}+a_{j+1} \quad 0 \leq T_{A_{j+1}} / 2 \leq a_{j+1}<a_{j}
$$

replace with $T_{A_{j-1}} / 2$ and $T_{A_{j}} / 2$ and the remainder with $T_{A_{j+1}} / 2$

$$
n_{j}=\left[\frac{a_{j-1}}{a_{j}}\right]=\left[\frac{T_{A_{j-1}} / 2}{T_{A_{i} / 2}}\right]
$$

Note we have inequality rather than equality:

$$
T_{A_{j+1}} \leq n_{j} T_{A_{j}}+T_{A_{j+2}}
$$

Implications: New Length Inequalities

When the algorithm stops and says that the group is discrete and free, the quotient is a pair of pants and the stopping generators are two of the three unique simple closed curves on the surface. These three curves are the shortest curves on the surface.

Implications: New Length Inequalities

When the algorithm stops and says that the group is discrete and free, the quotient is a pair of pants and the stopping generators are two of the three unique simple closed curves on the surface. These three curves are the shortest curves on the surface.
Three results:

1. F-sequences and Translation Lengths.

Implications: New Length Inequalities

When the algorithm stops and says that the group is discrete and free, the quotient is a pair of pants and the stopping generators are two of the three unique simple closed curves on the surface. These three curves are the shortest curves on the surface.
Three results:

1. F-sequences and Translation Lengths.
2. Minimal curve length and essential self-intersections

Implications: New Length Inequalities

When the algorithm stops and says that the group is discrete and free, the quotient is a pair of pants and the stopping generators are two of the three unique simple closed curves on the surface. These three curves are the shortest curves on the surface.
Three results:

1. F-sequences and Translation Lengths.
2. Minimal curve length and essential self-intersections
3. Seam Lengths and Intersections

Theorem
(G, 2015) F-sequence and translation length If the algorithm begins with (A, B) and ends with ($\tilde{A}, \tilde{B})$, all hyperbolic.

$$
\frac{1}{2} T_{A} \leq \Pi_{i=1}^{t}\left(n_{i}+1\right) \frac{1}{2} T_{\tilde{A}}
$$

Proof:
Run the algorithm:

Proof:

Run the algorithm:

$$
T_{A_{1}} \leq\left(n_{1}+1\right) T_{A_{2}}
$$

Proof:

Run the algorithm:

$$
T_{A_{1}} \leq\left(n_{1}+1\right) T_{A_{2}}
$$

and

$$
T_{A_{2}} \leq\left(n_{2}+1\right) T_{A_{3}}
$$

Proof:

Run the algorithm:

$$
T_{A_{1}} \leq\left(n_{1}+1\right) T_{A_{2}}
$$

and

$$
T_{A_{2}} \leq\left(n_{2}+1\right) T_{A_{3}}
$$

Whence

$$
T_{A_{1}} \leq\left(n_{1}+1\right) T_{A_{2}} \leq\left(n_{1}+1\right)\left(n_{2}+1\right) T_{A_{3}}
$$

Proof:

Run the algorithm:

$$
T_{A_{1}} \leq\left(n_{1}+1\right) T_{A_{2}}
$$

and

$$
T_{A_{2}} \leq\left(n_{2}+1\right) T_{A_{3}}
$$

Whence

$$
T_{A_{1}} \leq\left(n_{1}+1\right) T_{A_{2}} \leq\left(n_{1}+1\right)\left(n_{2}+1\right) T_{A_{3}}
$$

At the induction step:

$$
T_{A_{j}} \leq\left(n_{j}+1\right) T_{A_{j+1}}
$$

Proof:

Run the algorithm:

$$
T_{A_{1}} \leq\left(n_{1}+1\right) T_{A_{2}}
$$

and

$$
T_{A_{2}} \leq\left(n_{2}+1\right) T_{A_{3}}
$$

Whence

$$
T_{A_{1}} \leq\left(n_{1}+1\right) T_{A_{2}} \leq\left(n_{1}+1\right)\left(n_{2}+1\right) T_{A_{3}}
$$

At the induction step:

$$
T_{A_{j}} \leq\left(n_{j}+1\right) T_{A_{j+1}}
$$

The result follows by induction.

View the algorithm as an unwinding procedure. Run the algorithm backwards as a winding procedure.

View the algorithm as an unwinding procedure. Run the algorithm backwards as a winding procedure.
Can wind or unwind: go from (A, B) to (\tilde{A}, \tilde{B}) or from (\tilde{A}, \tilde{B}) to (A, B)

View the algorithm as an unwinding procedure. Run the algorithm backwards as a winding procedure.
Can wind or unwind: go from (A, B) to (\tilde{A}, \tilde{B}) or from (\tilde{A}, \tilde{B}) to (A, B)
Unwinding sequence $\left[n_{1}, \ldots, n_{t}\right] \Longrightarrow$ winding sequence $\left[-n_{t}, \ldots,-n_{1}\right]$.

View the algorithm as an unwinding procedure. Run the algorithm backwards as a winding procedure.
Can wind or unwind: go from (A, B) to (\tilde{A}, \tilde{B}) or from (\tilde{A}, \tilde{B}) to (A, B)
Unwinding sequence $\left[n_{1}, \ldots, n_{t}\right] \Longrightarrow$ winding sequence $\left[-n_{t}, \ldots,-n_{1}\right]$.
often write with positive integers and simply note winding.

Primitive curves and rationals

Primitive curves and rationals

Theorem
(G-Keen 2002) Primitive curves correspond to rational numbers. A primitive curve will have a winding sequence [m_{1}, \ldots, m_{t}] for some integer t. Label the curve γ_{r} where r is the rational with continued fraction entries $\left[0, m_{1}, \ldots, m_{r}\right]$

Theorem 0.3 can be rewritten as
Theorem
(Winding and Curve Lengths)
Let W be a curve corresponding to a primitive word in G that is not conjugate to a stopping generator.
Let $L(W)$ be its length and
$\left[n_{1}, \ldots, n_{t}\right]$ its winding sequence.
Assume that $L\left(S_{0}\right)$ is the longest length of any simple closed curve on the surface. Then

$$
\left(\Pi_{i=1}^{t} n_{i}\right) L\left(S_{0}\right) \leq L(W) \leq\left(\Pi_{i=1}^{t}\left(n_{i}+1\right)\right) L\left(S_{0}\right) .
$$

Essential self-intersections for primitive

 curves
Essential self-intersections for primitive

curves

Definition
If W is any closed curve on a pair of pants, it will have a certain number of essential self-intersections, that is, self-intersections along seams of the pair of pants.
All other self-intersection are trailing intersections.
Denote the number of essential self-intersections by

$$
\operatorname{Int}(W)
$$

Essential self-intersections for primitive

curves

Definition
If W is any closed curve on a pair of pants, it will have a certain number of essential self-intersections, that is, self-intersections along seams of the pair of pants.
All other self-intersection are trailing intersections.
Denote the number of essential self-intersections by

$$
\operatorname{Int}(W)
$$

or by

$$
\operatorname{Int}(r)
$$

if $\boldsymbol{W}=\gamma_{r}$ where γ_{r} is the curve with winding sequence [m_{1}, \ldots, m_{t}] and r is the rational with continued fraction entries $\left[0, m_{1}, \ldots, m_{t}\right]$

Inductive formula for $\operatorname{Int}(r)$
Theorem
(G-Keen 2002) (inductive formula for $\operatorname{Int}(r)$)
We let $\operatorname{Int}(r)$ denote the number of essential self-intersections of the curve with winding sequence $\left[n_{1}, \ldots, n_{t}\right]$, where r the corresponding rational and $r_{k}=\left[n_{0}, \ldots, n_{k}\right]$ its k-th approximent. Let $r_{k}=p_{k} / q_{k}$ where p_{k} is the numerator and q_{k} the denominator of the approximent and r_{k} is given in lowest terms.

Then the essential self-intersection numbers are given inductively as follows:

$$
\operatorname{Int}\left(\alpha_{0}\right)=0, \operatorname{lnt}\left(\beta_{0}\right)=0, \operatorname{Int}\left(\alpha_{0}^{-1} \beta_{0}\right)=0, \operatorname{Int}\left(\alpha_{0} \beta_{0}\right)=1, \operatorname{Int}\left(\alpha_{0} \beta_{0}^{2}\right)=
$$

$$
\begin{gathered}
\operatorname{Int}_{p_{k+1} / q_{k+1}}= \\
1+n_{k+1} \cdot \operatorname{Int}_{p_{k} / q_{k}}+\operatorname{Int}_{p_{k-1} / q_{k-1}}
\end{gathered}
$$

Theorem
(G-2015) (Essential self-intersection number and curve length) If $L(\gamma)$ denotes the length of a curve γ and α_{0} is the shortest simple closed curve on the surface with γ_{0}, the longest,

$$
\ln t(r) \times L\left(\alpha_{0}\right) \leq L\left(\gamma_{r}\right) \leq(\operatorname{lnt}(r+1)) \times L\left(\gamma_{0}\right)
$$

Theorem
(G-2015) (Essential self-intersection number and curve length) If $L(\gamma)$ denotes the length of a curve γ and α_{0} is the shortest simple closed curve on the surface with γ_{0}, the longest,

$$
\ln t(r) \times L\left(\alpha_{0}\right) \leq L\left(\gamma_{r}\right) \leq(\operatorname{lnt}(r+1)) \times L\left(\gamma_{0}\right)
$$

Proof.

Basically bounded the number times the curve might go around the shortest simple curve and the longest simple curve.

The algorithm stops at a convex right hexagon whose sides project to the three shortest curves on the surface and to the three longest seams on the pair of pants. If the alternating sides have length $x \leq y \leq z$, then the length of the seam L opposite the shortest side x satisfies:

$$
\cosh L=\frac{\cosh x+\cosh y \cosh z}{\sinh y \sinh x}
$$

The algorithm stops at a convex right hexagon whose sides project to the three shortest curves on the surface and to the three longest seams on the pair of pants. If the alternating sides have length $x \leq y \leq z$, then the length of the seam L opposite the shortest side x satisfies:

$$
\cosh L=\frac{\cosh x+\cosh y \cosh z}{\sinh y \sinh x}
$$

Theorem (Maximal Seam Length) (G-2015) Let L_{0} be the common perpendicular to the axes of A_{0} and B_{0} and λ_{0} its image on the quotient. If ρ_{i} is the distance along the L_{0} between its intersection with the axis of $A_{0} B_{0}^{i}$ and and $A_{0} B_{0}^{i+1}$, then

$$
\lim _{i=1}^{\infty} \Sigma_{t \rightarrow \infty} \rho_{i}=L\left(L_{0}\right)
$$

The algorithm stops at a convex right hexagon whose sides project to the three shortest curves on the surface and to the three longest seams on the pair of pants. If the alternating sides have length $x \leq y \leq z$, then the length of the seam L opposite the shortest side x satisfies:

$$
\cosh L=\frac{\cosh x+\cosh y \cosh z}{\sinh y \sinh x}
$$

Theorem (Maximal Seam Length) (G-2015) Let L_{0} be the common perpendicular to the axes of A_{0} and B_{0} and λ_{0} its image on the quotient. If ρ_{i} is the distance along the L_{0} between its intersection with the axis of $A_{0} B_{0}^{i}$ and and $A_{0} B_{0}^{i+1}$, then

$$
\begin{gathered}
\lim _{i=1}^{\infty} \Sigma_{t \rightarrow \infty} \rho_{i}=L\left(L_{0}\right) \\
\cosh \left(\lim _{i=1}^{\infty}\left(\Sigma_{t \rightarrow \infty} \rho_{i}\right)\right)=\frac{\cosh x+\cosh y \cosh z}{\sinh y \sinh x}
\end{gathered}
$$

The algorithm stops at a convex right hexagon whose sides project to the three shortest curves on the surface and to the three longest seams on the pair of pants. If the alternating sides have length $x \leq y \leq z$, then the length of the seam L opposite the shortest side x satisfies:

$$
\cosh L=\frac{\cosh x+\cosh y \cosh z}{\sinh y \sinh x}
$$

Theorem (Maximal Seam Length) (G-2015) Let L_{0} be the common perpendicular to the axes of A_{0} and B_{0} and λ_{0} its image on the quotient. If ρ_{i} is the distance along the L_{0} between its intersection with the axis of $A_{0} B_{0}^{i}$ and and $A_{0} B_{0}^{i+1}$, then

$$
\begin{gathered}
\lim _{i=1}^{\infty} \Sigma_{t \rightarrow \infty} \rho_{i}=L\left(L_{0}\right) \\
\cosh \left(\lim _{i=1}^{\infty}\left(\Sigma_{t \rightarrow \infty} \rho_{i}\right)\right)=\frac{\cosh x+\cosh y \cosh z}{\sinh y \sinh x}
\end{gathered}
$$

Proof Look at the figure.

These Nielsen transformations are not automorphisms of the appropriate surface, the double of the pair of pants.

These Nielsen transformations are not automorphisms of the appropriate surface, the double of the pair of pants.

Some of this translates to $\operatorname{PSL}(2, \mathbb{C})$ or \mathbb{H}^{3}

These Nielsen transformations are not automorphisms of the appropriate surface, the double of the pair of pants.

Some of this translates to $\operatorname{PSL}(2, \mathbb{C})$ or \mathbb{H}^{3} Details TBA

