
Motivation
Background

Cover group G = Q8

Galois theory of a quaternion group origami

Special Session on Automorphisms of Riemann Surfaces
and Related Topics

AMS Central Fall Sectional Meeting
Loyola University Chicago, Chicago, IL

Rachel Davis
Joint work with Professor Edray Goins

Purdue University

October 3, 2015
Davis AMS Central 1



Motivation
Background

Cover group G = Q8

Table of Contents

1 Motivation

2 Background

3 Cover group G = Q8

Davis AMS Central 2



Motivation
Background

Cover group G = Q8

Table of Contents

1 Motivation

2 Background

3 Cover group G = Q8

Davis AMS Central 3



Motivation
Background

Cover group G = Q8

φ : Y 7→ X X = Y = Gm = multiplicative group
= P1(C)− {0,∞}
φ : Y → X
φ : x 7→ xN

Fix a rational point p ∈ Gm (thought of in the target of the map
φ,X ).
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Consider the set V = φ−1(p) = {x ∈ Gm | φ(x) = p}, i.e.{
x ∈ Gm | xN = p

}
.

fp(x) = xN − p

First, consider the case that p = 1. Then V is the set of
(nonzero) solutions to fp(x) = xN − 1. These are the N th roots
of unity.
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Gal(Q(ζN)/Q) = (Z/NZ)×.
σi : ζN 7→ ζ i

N , (i ,N) = 1

Q(ζN)

Q

(Z/NZ)×
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When fp(x) = xN − p is irreducible, the picture becomes the
following:

Q( N
√

p, ζN)

Q(ζN)

Q

(Z/NZ)

(Z/NZ)×
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Gal(sf (xN − p)/Q) is a subgroup of AGL1(Z/NZ).

There is a Galois representation

ρN,p : GQ → AGL1(Z/NZ)

This is given by σ 7→
(

a b
0 1

)
such that σ(ζN) = ζp

N and

σ(
N√d)

N√d
= ζa

N , so a ∈ (Z/NZ)× and b ∈ (Z/NZ).
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Let E be an elliptic curve over Q.

Definition
An origami is a pair (C, f ) where C is a curve and f : C → E is
a map branched only above one point.

We study automorphisms of origamis and relate these to
polynomials over Q.
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Definition
A deck transformation or automorphism of a cover f : C → E is
a homeomorphism g : C → C such that f ◦ g = f .

Each deck transformation permutes the elements of each fiber.
This defines a group action of the the deck transformations on
the fibers.
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Let E be an elliptic curve over Q. Fix a positive integer N. We
define multiplication by N on E , denoted [N] to be adding a
point to itself N times. We define the N-division points of E :

E [N] =
{

P ∈ E(Q) : [N]P = O
}
.
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Facts:
The N-division points form a group that is isomorphic to
(Z/NZ)2. For example, E [2] ' (Z/2Z)2, a Klein 4-group.
The Galois group GQ sends division points to division
points.

We will write Q(E [N]) to mean the field obtained by adjoining all
of the coordinates of the N-division points of E to Q.
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The Galois group of Q(E [N]) over Q is a subgroup of
GL2(Z/NZ).

Q(E [N])

Q

≤ GL2(Z/NZ)
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For example, the Galois group of Q(E [2])/Q is a subgroup of
the automorphism group of E [2] and

Aut(Z/2Z× Z/2Z) ' S3.

After choice of basis,

Aut(Z/2Z× Z/2Z) ' GL2(Z/2Z).
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Let E be given by y2 = x3 + Ax + B. Fix a point P ∈ E(Q)
given by P = (z : w : 1). Consider the set

V = [N]−1P =
{

Q ∈ E(Q)|[N]Q = P
}
.

For example, when P = O, this set is the set of N-division
points.

This is no longer a group in general, but we can still adjoin the
coordinates of such points to Q and find the Galois group of the
extension.
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Q([N]−1P)

Q(E [N])

Q

(Z/NZ)2

GL2(Z/NZ)
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The Galois group of Q([N]−1P) over Q is a subgroup of the
affine general linear group

1→ (Z/NZ)2 → AGL2(Z/NZ)→ GL2(Z/NZ)→ 1

e.g. for N = 2

1→ (Z/2Z)2 → S4 → S3 → 1


 a b e

c d f
0 0 1

 : a,b, c,d ,e, f ∈ (Z/NZ) and ad − bc 6= 0



Davis AMS Central 18



Motivation
Background

Cover group G = Q8

There is a representation

ρN,P : GQ → AGL2(Z/NZ).

Let T1, T2 is a basis for E [N].
Suppose σ(T1) = aT1 ⊕ cT2 and σ(T2) = bT1 ⊕ dT2.

Choose any Q ∈ Q such that [N]Q = P.
Suppose σ(Q)	Q = eT1 ⊕ fT2.

Then the top representation is given by

σ 7→

 a b e
c d f
0 0 1
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Multiplication by 2

E : y2 = x3 + Ax + B

The formula for the x-coordinate of [2]P = P ⊕ P
(P = (z : w : 1)) is the following:

x4 − 2Ax2 − 8Bx + A2

4(x3 + Ax + B)
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Proposition

Fix a rational point P = (z : w : 1). Consider the extension
FP = Q(sf ([2]−1P)) over Q, where FP/Q is given by the
splitting field of the quartic

fE ,P(x) = (x4 − 2Ax2 − 8Bx + A2)− 4z(x3 + Ax + B).

If this polynomial is irreducible, then Q(sf (FE ,P))/Q is an
S4-extension. Note that S4 = AGL2(Z/2Z).
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The example
1→ V4 → S4 → S3 → 1

is a specific case of a more general theory. Take the semidirect
product of a group and its automorphism group where the
action of the quotient on the automorphism group of the normal
subgroup is the identity.

1→ G→ Hol(G)→ Aut(G)→ 1
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Question: What about non-abelian deck groups G?
Example: Q8 group of quaternions, non-abelian group of order
8.

An origami with the example deck group is studied in a paper
titled, "An extraordinary origami curve" by Herrlich and
Schithüsen.
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f = 8

e =
8 · 4

2
= 16

v =
8 · 4
4 · 2

= 4

Formula for Euler characteristic:

2− 2g = v − e + f

=⇒ g = 3
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Riemann-Hurwitz formula

f : Y → Z

Then

2g(Y )− 2 = deg(f ) · (2g(Z )− 2) +
∑
z∈Z

(ez − 1)

Using the formula, with g(Y ) = 3 g(Z ) = 1, we see that there
are 4 points in Y above the 2-division points in Z , each with
ramification degree 2.
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In fact, Herrlich and Schithüsen give that Y : y4 = x3 + Ax + B.
This is an example of a superelliptic curve. The map

Y → Z

is given by
(x , y) 7→ (x , y2)

.
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Let g be the composition Y → Z → X . To find the g−1(P)
points, we give a formula for multiplication by 2 in terms of the
y -coordinates.

φ2 − zψ2
2

degree 4 in x
ω2 − wψ3

2

degree 6 in x (We will think of y as part of the coefficients).
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The resultant polynomial for P = (z : w : 1) is
y4 − 8wy3 + 6(2Az + 3B)y2 −∆ = 0. Plugging in y2 instead of
y gives

fE ,P = y8 − 8wy6 + 6(2Az + 3B)y4 −∆
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Theorem (D., Goins)

Fix a rational point P = (z : w : 1). Consider the extension
FP = Q(sf (fE ,P))/Q given by the splitting field of the polynomial
fE ,P . If the polynomial is irreducible, then

Gal(Q(fE ,P)/Q) = Hol(Q8).
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Q(sf (fE ,P))

Q

≤ Hol(Q8)
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1→ Q8 → Hol(Q8)→ Aut(Q8) ' S4 → 1

Therefore, Hol(Q8) is a specific group of order 192. Let
∆ = −16(4A3 + 27B2).
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f1 = y4 + 4∆y3 + (512B2∆− 2048Bz3∆ + 2048Bw2∆

+ 2048z6∆− 4096z3w2∆ + 2048w4∆ + 6∆2)y2

+ 1769472w8∆2 + 331776B2z6∆2 − 884736B2z3w2∆2+

3538944B2w4∆2 + 512B2∆3 − 512B2∆2 − 1327104Bz9∆2

+ 18432w4∆3 + 2654208Bz6w2∆2 + 1327104Bz3w4∆2

− 1024Bz3∆3 + 10240Bw2∆3 − 35224100536320w6z3∆2

+ 49313740750848w4z6∆2 + 1327104z12∆2

− 5750784z9w2∆2 + 9289728z6w4∆2 + 2304z6∆3−
6635520z3w6∆2 − 9216z3w2∆3 + ∆4
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Does L1 really depend on P? There is an isomorphism from L1
the the splitting field of x4 − 4∆x − 12A∆. This is a special
polynomial because it defines the S4 extension contained
inside of Q(E [4]). What about L2?
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Thank you. Questions?
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