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¢:Y— XX=Y=Gpn= multiplicative group
=P'(C) - {0, 00}

o:Y—=>X

¢ x—xN

Fix a rational point p € Gp, (thxought of in the target of the map
¢, X).
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Considerthe set V =¢""(p) = {x € Gy | ¢(x) = p},i.e.
{xeGmn | xN=p}.

fo(X) = x

-p

First, consider the case that p = 1. Then V is the set of
(nonzero) solutions to fy(x) = x¥ — 1. These are the N roots
of unity.
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Gal(Q(¢n)/Q) = (Z/NZ)*.
oj (N O (1, N) =1

Q<) X
| (z/NZ)*
//
J
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Motivation

When fy(x) = xN — p s irreducible, the picture becomes the

following:
Q¥P.cn)
(Z/NZ)
Q(¢w)
(Z/NZ)*
0 \
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@ Gal(sf(xN — p)/Q) is a subgroup of AGL{(Z/NZ).

@ There is a Galois representation

PNp G@ — AGL (Z/NZ)

@ This is given by o — < g 119 ) such that o(¢n) = ¢§ and

o( V) _ (&,soae (Z/NZ)* and b e (Z/NZ)
Va — >N '
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Background

Let E be an elliptic curve over Q.

Definition

An origami is a pair (C, f) where Cisacurveand f: C — E is
a map branched only above one point.

We study automorphisms of origamis and relate these to
polynomials over Q.
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Background

Definition

A deck transformation or automorphism of a cover f: C — E is
a homeomorphism g : C — C such that fo g =f.

Each deck transformation permutes the elements of each fiber.
This defines a group action of the the deck transformations on
the fibers.
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Background

Let E be an elliptic curve over Q. Fix a positive integer N. We
define multiplication by N on E, denoted [N] to be adding a
point to itself N times. We define the N-division points of E:

E[N]={P<c E(QQ): [N]P=0}.
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Background

Facts:
@ The N-division points form a group that is isomorphic to
(Z/NZ)?. For example, E[2] ~ (Z/2Z)?, a Klein 4-group.
@ The Galois group Gg sends division points to division
points.

We will write Q( E[N]) to mean the field obtained by adjoining all
of the coordinates of the N-division points of E to Q.
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Background

The Galois group of Q(E[N]) over Q is a subgroup of
GL2(Z/NZ).

Q(E[N])

)
/ < GLZ(Z/NZ)
/
/

e/
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Background

For example, the Galois group of Q(E[2])/Q is a subgroup of
the automorphism group of E[2] and

Aut(Z/27 x 7.J2Z) ~ Sz.
After choice of basis,

Aut(Z/2Z x 7./27) ~ GLy(Z/2Z).
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Background

Let E be given by y? = x3 + Ax + B. Fix a point P € E(Q)
given by P = (z: w: 1). Consider the set

=[NP ={Q € E(Q)|[N]Q=P}.
For example, when P = O, this set is the set of N-division

points.

This is no longer a group in general, but we can still adjoin the
coordinates of such points to Q and find the Galois group of the
extension.
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Background

Q(INI'P)

(Z/NZ)?
Q(E[NT])

GLy(Z/NZ)
Q
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Background

The Galois group of Q([N]~'P) over Q is a subgroup of the
affine general linear group

1 = (Z/NZ)? — AGLy(Z/NZ) — GLp(Z/NZ) — 1

e.g. for N =2

{
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1 — (Z/272)% — Sy — S5 — 1

b
d
0

o0 Q
— - ®

) -a,b,c,d, e, fe(Z/NZ)and adbc;«éo}



Background

There is a representation
PN,P : G@ — AGLQ(Z/NZ).
@ Let Ty, T, is a basis for E[N].
@ Suppose o(T1) = aTy @ cTr and o(T2) = bTy ® dT>.

@ Choose any Q € Q such that [N]Q = P.
@ Suppose o(Q) o Q= eTy @ fT>.

Then the top representation is given by
a b e

c—~| ¢ d f )
0 0 1
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Background

Multiplication by 2

E:y>’=x3+Ax+B

The formula for the x-coordinate of 2]P = P& P
(P=(z:w:1))is the following:

x* — 2Ax% — 8Bx + A?
4(x3 + Ax + B)
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Background

Proposition

Fix a rational point P = (z : w : 1). Consider the extension
Fp = Q(sf([2]~'P)) over Q, where Fp/Q is given by the
splitting field of the quartic

fe p(x) = (x* — 2Ax® — 8Bx + A?) — 4z(x® + Ax + B).

If this polynomial is irreducible, then Q(sf(Fg p))/Q is an
S4-extension. Note that Sy = AGL>(Z/2Z).
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Background

The example
1>V, — 84— S — 1

is a specific case of a more general theory. Take the semidirect
product of a group and its automorphism group where the
action of the quotient on the automorphism group of the normal
subgroup is the identity.

1 — G — Hol(G) — Aut(G) — 1
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Background

Question: What about non-abelian deck groups G?
Example: Qg group of quaternions, non-abelian group of order
8.

An origami with the example deck group is studied in a paper
titled, "An extraordinary origami curve" by Herrlich and
Schithtsen.
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Cover group G = Qg

f=8
e:ﬂ:m

8-4
v_4f§_4

Formula for Euler characteristic:
2-2g=v—e+f

= g=3

PEVH] AMS Central



Cover group G = Qg

Riemann-Hurwitz formula

f:Y—>Zz
Then
29(Y) —2 =deg(f)- (29(2) —2) + Y _(e:

zeZ

Using the formula, with g(Y) = 3 g(Z) = 1, we see that there
are 4 points in Y above the 2-division points in Z, each with
ramification degree 2.
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Cover group G = Qg

In fact, Herrlich and Schithiisen give that Y : y* = x3 + Ax + B.
This is an example of a superelliptic curve. The map

Y - Z

is given by
(x,¥) = (x.¥?)
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Cover group G = Qg

Let g be the composition Y — Z — X. To find the g—'(P)
points, we give a formula for multiplication by 2 in terms of the
y-coordinates.

b2 — 21

degree 4 in x
wp — W3

degree 6 in x (We will think of y as part of the coefficients).
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Cover group G = Qg

The resultant polynomial for P = (z: w: 1) is
y* — 8wy® 4+ 6(2Az + 3B)y? — A = 0. Plugging in y? instead of
y gives

fep=y® —8wy® +6(2Az +3B)y* — A
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Cover group G = Qg

Theorem (D., Goins)

Fix a rational point P = (z : w : 1). Consider the extension
Fp = Q(sf(fe,p))/Q given by the splitting field of the polynomial
fe p. If the polynomial is irreducible, then

Gal(Q(fe,7)/Q) = Hol(Q).
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Cover group G = Qg

Q(Sf(fE’P)
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Cover group G = Qg

1— Qg — HO](Qs) — Aut(og) ~ Sy — 1

Therefore, Hol(Qg) is a specific group of order 192. Let
A = —16(4A3 + 27B?).
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Cover group G = Qg

fi = y* + 4Ay° + (512B? A — 2048Bz° A + 2048Bw? A
+20482°5A — 409622 WPA + 2048w*A + 6A2)y?
+1769472w8 A2 + 331776 B228 A2 — 884736B2 23 w2 A%+

3538944B°w*A2 + 512B2A3% — 512B2A2 — 1327104Bz°A\?
+ 18432w* A3 + 2654208 Bz5wW? A2 + 1327104Bz3w* A?
—1024Bz3 A% + 10240Bw?A® — 35224100536320w8 23 A2
+ 49313740750848w*z8 A2 + 132710422 A2

— 57507842°w? A2 + 928972825 w* A2 + 230428 A3
66355202°w8 A% — 921628w2 A3 + A*
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Cover group G = Qg

Does L, really depend on P? There is an isomorphism from L;
the the splitting field of x* — 4Ax — 12AA. This is a special
polynomial because it defines the S, extension contained
inside of Q(E[4]). What about L,?
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Cover group G = Qg

Thank you. Questions?
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