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Let π : X → X ′ be an unbranched normal covering of compact Klein surfaces of algebraic genus bigger than

one, and assume that X ′ is hyperelliptic.

• Let G < Aut(X) be the group of covering transformations: X ′ = X/G.

• Let hX′ : X ′ → X ′ be the hyperelliptic involution.
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• Let G < Aut(X) be the group of covering transformations: X ′ = X/G.

• Let hX′ : X ′ → X ′ be the hyperelliptic involution.

Problem: Find conditions on G for hX′ to lift to X.

This means that there exists an automorphism f in X such that πf = hX′π.
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• S is a compact Riemann surface and

• τ : S → S is an anticonformal involution.
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The algebraic genus of X = S/〈τ〉 is the genus of S.

X ′ is a hyperelliptic Klein surface if it admits an involution hX′ : X ′ → X ′ such that X ′/〈hX′〉 has algebraic

genus zero, that is, X ′/〈hX′〉 is either the closed disc or the projective plane.
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A morphism between Klein surfaces X → X ′ “differs from the corresponding concept for Riemann surfaces

principally in that X may “fold” along the boundary ∂X ′ of X ′.”



A morphism between the Klein surfaces X and X ′ is a continuous map f:X → X ′ such that

i) f(∂X) ⊂ ∂X ′,

ii) given p ∈ X, there exist charts (U, z), (V,w) with p ∈ U and f(U) ⊂ V and an analytic function

F : z(U)→ C such that the following diagram commutes:
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where Φ is the folding map: Φ : C → C+

a+ bi 7→ a+ |b|i.
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Unbranched normal coverings π : S → S′ of compact Riemann surfaces, S′ hyperelliptic.

• Maclachlan (1971), Farkas (1976): if S is hyperelliptic and π unbranched then G = C2 or C2 ⊕ C2.

• Bujalance (1986): if π is unbranched and double then S is p-hyperelliptic, that is, S is a double covering

of a genus p surface S, for some p ∈ {0, 1, . . . , [(g − 1)/2]}.

• Fuertes and González-Diez (2006): equations for S, which is hyperelliptic.

• Accola (1994): for each n > 0 there exists an n-sheeted unbranched covering where S is also hyperelliptic.

• Turbek (1997): conditions for lifting the hyperelliptic involution, unbranched case.

• Costa and Turbek (2003): conditions for lifting involutions to branched coverings.



Normal coverings π : X → X ′ of compact Klein surfaces, X ′ hyperelliptic.

• Bujalance, Etayo and Gamboa (1987): X is 1-hyperelliptic and π is unbranched.

• Kani (1987): classification of unbranched double coverings.

X hyperelliptic, branched coverings:

• Bujalance-C-Gamboa: topological and algebraic description

- when X is planar (2007), and

- when π is a double covering (2008).

• C-Hidalgo (2014): algebraic description of the general case.



Klein surfaces, automorphisms and NEC groups.

• An NEC group is a discrete subgroup Γ < Isom±(H) with H/Γ compact.

• A compact Klein surface X of algebraic genus bigger than one can be written as

X = H/Γ where Γ is a surface NEC group,

that is, its orientation preserving elements ( 6= 1) act fixed point free.

• A (finite) group G is a group of automorphisms of X (X = H/Γ) if and only if

G ' Γ′/Γ, where Γ′ is an NEC group.



Unbranched normal coverings. π : X → X ′, there exists G < Aut(X) such that X ′ = X/G.

Let us write X = H/Γ and G = Γ′/Γ where Γ,Γ′ are NEC groups and Γ is a surface NEC group. Then
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Unbranched: the orientation preserving elements of Γ′ act fixed point free, that is, Γ′ is a surface NEC group.

Therefore Γ′ uniformizes X ′.



Since Γ′ uniformizes X ′ we have 〈hX′〉 = Γ′h/Γ
′ for some NEC group Γ′h. Let us write

Γ′h = Γ′ ∪ cΓ′ with c /∈ Γ′.
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If so, then conjugation by c induces an automorphism of Γ′/Γ = G.
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Does c normalize Γ?

If so, then conjugation by c induces an automorphism of Γ′/Γ = G.

What is the effect of conjugation by c on the generators of Γ′?
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They depend on the topological type (g, k, δ) of X ′ :

• g = topological genus;

• k = number of boundary components,

• δ = +1 if X ′ is orientable, δ = −1 otherwise.
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h.

They depend on the topological type (g, k, δ) of X ′ :

• g = topological genus;

• k = number of boundary components,

• δ = +1 if X ′ is orientable, δ = −1 otherwise.

We divide the study in five cases (due to restrictions on the topological type of a hyperelliptic Klein surface):

• δ = +1, g = 0, k ≥ 3;

• δ = +1, g > 0, k = 1;

• δ = +1, g > 0, k = 2;

• δ = −1, g > 0, k > 0;

• δ = −1, g > 0, k = 0.



Example: δ = +1, g = 0, k ≥ 3, that is, X ′ = H/Γ′ is a sphere with k holes.

Γ′ = 〈 c′1, . . . , c′k,︸ ︷︷ ︸
reflections

e′1, . . . , e
′
k︸ ︷︷ ︸

hyperbolic isometries

| c′i
2

= [c′i, e
′
i] = e′1 · · · e′k = 1〉.

Γ′
2
/ Γ′h = 〈 c0, . . . , c2k︸ ︷︷ ︸

reflections

| ci2 = (cici+1)2 = 1, c0 = c2k〉, Γ′h/Γ
′ = 〈hX′〉.
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• c′1 = c1, c
′
2 = c3, . . . , c

′
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Observe that c2i−2 and c2i commute with c2i−1 = c′i. So we choose:

• e′1 = c0c2, e
′
2 = c2c4, . . . , e

′
k = c2k−2c2k as generating hyperbolic isometries of Γ′.

Observe that e′1 · · · e′i = c0c2i.



Conjugation by c0 ∈ Γ′h − Γ′ has the following effect on the generators of Γ′ :

• c′i 7→ c0c
′
ic0 = c0c2i−1c0 = c0c2i c2i−1 c2ic0 = (e′1 · · · e′i) · c′i · (e′1 · · · e′i)−1.
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′
ic0 = c0c2i−2c2ic0 = c0c2ic2i c2i−2c2ic0 = (e′1 · · · e′i) · (e′i)−1 · (e′1 · · · e′i)−1.
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Let µi = c′iΓ ∈ Γ′/Γ = G and νi = e′iΓ ∈ Γ′/Γ = G, i = 1, . . . , k. They generate G and satisfy

µ2
i = [µi, νi] = ν1 · · · νk = 1.

If c0 normalizes Γ then conjugation by c0 induces this automorphism of Γ′/Γ = G:

µi 7→ (ν1 · · · νi) · µi · (ν1 · · · νi)−1,

νi 7→ (ν1 · · · νi) · ν−1
i · (ν1 · · · νi)−1.



Theorem. Let π : X → X ′ = X/G be an unbranched normal covering of compact Klein surfaces where X ′

is hyperelliptic and topologically is a sphere with k ≥ 3 holes. The group G can be generated by 2k elements

µ1, . . . , µk, ν1, . . . , νk which satisfy

µ2
i = [µi, νi] = ν1 · · · νk = 1, for i = 1, . . . , k.

In this situation, the hyperelliptic involution of X ′ lifts to X if and only if

µi 7→ (ν1 · · · νi) · µi · (ν1 · · · νi)−1,

νi 7→ (ν1 · · · νi) · ν−1
i · (ν1 · · · νi)−1

is a group automorphism of G.



Theorem. Let π : X → X ′ = X/G be an unbranched normal covering of compact Klein surfaces where X ′

is hyperelliptic and topologically is a sphere with k ≥ 3 holes. The group G can be generated by 2k elements

µ1, . . . , µk, ν1, . . . , νk which satisfy

µ2
i = [µi, νi] = ν1 · · · νk = 1, for i = 1, . . . , k.

In this situation, the hyperelliptic involution of X ′ lifts to X if and only if

µi 7→ (ν1 · · · νi) · µi · (ν1 · · · νi)−1,

νi 7→ (ν1 · · · νi) · ν−1
i · (ν1 · · · νi)−1

is a group automorphism of G.

Corollary. If G is abelian then the hyperelliptic involution lifts to an automorphism of X.



Example: X ′ is orientable with two boundary components.

Theorem. Let π : X → X ′ = X/G be an unbranched normal covering of compact Klein surfaces where X ′ is

hyperelliptic and orientable with topological genus g > 0 and two boundary components. The group G can be

generated by 2g + 4 elements µ1, . . . , µg, ν1, . . . , νg, η1, η2, ε1, ε2 which satisfy

η2
1 = η2

2 = [η1, ε1] = [η2, ε2] = ε1ε2

g∏
j=1

[µi, νi] = 1.

In this situation, the hyperelliptic involution of X ′ lifts to X if and only if

µi 7→ π−1
i−1 ·

(
P−1
i−1 · µ−1

i

)
πi−1, νi 7→ π−1

i−1 ·
(
ν−1
i · Pi−1

)
πi−1,

η1 7→ (π−1
g ε1) · η2 · (π−1

g ε1)−1, ε1 7→ (π−1
g ε1) · ε2 · (π−1

g ε1)−1,

η2 7→ (π−1
g ε1) · η1 · (π−1

g ε1)−1, ε2 7→ (π−1
g ε1) · ε1 · (π−1

g ε1)−1.

is a group automorphism of G, where πi = νiµiνi−1µi−1 · · · ν1µ1 and Pi = [µ1, ν1] · · · [µi, νi].
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Corollary. If G is abelian and does not contain C2 ⊕C2 then the hyperelliptic involution lifts to an automor-

phism of X.



With the above notations, ηi = c′iΓ ∈ Γ′/Γ = G for i = 1, 2 where c′1, c
′
2 are representatives of the unique

conjugacy classes of elements of Γ′ which fix points.

So, if ηi 6= 1G then the covering π : X → X/G folds along Fix(ηi).

Corollary. If G is abelian and the covering is unfolded then the hyperelliptic involution lifts to an automorphism

of X.



Thank you!


