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Let 7 : X — X’ be an unbranched normal covering of compact Klein surfaces of algebraic genus bigger than

one, and assume that X' is hyperelliptic.
e Let G < Aut(X) be the group of covering transformations: X' = X/G.

e Let hx : X' — X' be the hyperelliptic involution.



Let 7 : X — X’ be an unbranched normal covering of compact Klein surfaces of algebraic genus bigger than

one, and assume that X' is hyperelliptic.
e Let G < Aut(X) be the group of covering transformations: X' = X/G.

e Let hx : X' — X' be the hyperelliptic involution.

Problem: Find conditions on G for hx: to lift to X.

This means that there exists an automorphism f in X such that 7 f = hx/.




A compact Klein surface X is the orbit space X = S/(1) where

e S is a compact Riemann surface and

e 7:5 — S is an anticonformal involution.



A compact Klein surface X is the orbit space X = S/(r) where
e S is a compact Riemann surface and

e 7:S5 — S is an anticonformal involution.




The algebraic genus of X = S/(r) is the genus of S.

X" is a hyperelliptic Klein surface if it admits an involution hys : X’ — X’ such that X’/(hy/) has algebraic

genus zero, that is, X'/(hx) is either the closed disc or the projective plane.
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A morphism between Klein surfaces X — X' “differs from the corresponding concept for Riemann surfaces

principally in that X may “fold” along the boundary 0X' of X'.”



A morphism between the Klein surfaces X and X' is a continuous map f: X — X’ such that

i) f(0X)cC 9X’,

ii) given p € X, there exist charts (U, z),(V,w) with p € U and f(U) C V and an analytic function
F : z(U) — C such that the following diagram commutes:

U / -V
z w
A) = ¢ 2 ¢t
where ® is the folding map: d: C C+

a+bi — a+ |bli
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Unbranched normal coverings 7 : § — S’ of compact Riemann surfaces, S’ hyperelliptic.
e Maclachlan (1971), Farkas (1976): if S is hyperelliptic and © unbranched then G = Cy or Cy & Cs.

e Bujalance (1986): if 7 is unbranched and double then S is p-hyperelliptic, that is, S is a double covering
of a genus p surface S, for some p € {0,1,...,[(g —1)/2]}.

e Fuertes and Gonzélez-Diez (2006): equations for S, which is hyperelliptic.
e Accola (1994): for each n > 0 there exists an n-sheeted unbranched covering where S is also hyperelliptic.
e Turbek (1997): conditions for lifting the hyperelliptic involution, unbranched case.

e Costa and Turbek (2003): conditions for lifting involutions to branched coverings.



Normal coverings @ : X — X’ of compact Klein surfaces, X’ hyperelliptic.
e Bujalance, Etayo and Gamboa (1987): X is 1-hyperelliptic and 7 is unbranched.
e Kani (1987): classification of unbranched double coverings.

X hyperelliptic, branched coverings:
e Bujalance-C-Gamboa: topological and algebraic description

- when X is planar (2007), and

- when 7 is a double covering (2008).

e C-Hidalgo (2014): algebraic description of the general case.



Klein surfaces, automorphisms and NEC groups.
e An NEC group is a discrete subgroup I' < Isom™®(H) with H/T" compact.
e A compact Klein surface X of algebraic genus bigger than one can be written as

X =H/T where I' is a surface NEC group,

that is, its orientation preserving elements (# 1) act fixed point free.
e A (finite) group G is a group of automorphisms of X (X = H/T") if and only if

G ~T"/T, where I'" is an NEC group.



Unbranched normal coverings. m: X — X', there exists G < Aut(X) such that X' = X/G.

Let us write X = H/T and G = T"/T" where I, T” are NEC groups and T is a surface NEC group. Then

,:E_H/F_H

G T I




Unbranched normal coverings. m: X — X', there exists G < Aut(X) such that X' = X/G.

Let us write X = H/T and G = T"/T" where I, T” are NEC groups and T is a surface NEC group. Then

,:E_H/F_H

G T I

Unbranched: the orientation preserving elements of [V act fixed point free, that is, IV is a surface NEC group.

Therefore 17 uniformizes X'.
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Does ¢ normalize I'?

If so, then conjugation by



Since I uniformizes X’ we have (hx/) = I", /I for some NEC group I'}. Let us write

[, =T"Ucl" withcé¢TI".

X X H/F H/F
T e e T
hX/ CF/
X! X! H/F/ H/P,

Does ¢ normalize I'?
If so, then conjugation by

What is the effect of conjugation by ¢ on the generators of I'?



Presentations of IV and I‘;l.

They depend on the topological type (g,k,d) of X':
e ¢ = topological genus;
e k& = number of boundary components,

e 0 = +1 if X’ is orientable, § = —1 otherwise.



Presentations of IV and I‘;l.

They depend on the topological type (g,k,d) of X':
e ¢ = topological genus;
e k& = number of boundary components,

e 0 = +1 if X’ is orientable, § = —1 otherwise.

We divide the study in five cases (due to restrictions on the topological type of a hyperelliptic Klein surface):

e 0=+1,9=0,k>3;

0=4+1,9>0,k=1;

0=+1,9>0k=2;

0=-1,g>0,k>0;

e5=-1,9g>0k=0.



Example: 6§ = +1, g =0, k > 3, thatis, X' = H/I" is a sphere with & holes.

' = (d,.... ¢, é,....¢ | &=[de]l=¢ ¢ =1).
SN—— S——
reflections  hyperbolic isometries
2
I < ;7, = < Co, - -, CoL | CiQ = (cici+1)2 = 1, Co = C2k>7 ?L/P, = <hX/>.
—_———
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Example: 6§ = +1, g =0, k > 3, thatis, X' = H/I" is a sphere with & holes.

I = (c,....c, e | &2=]
N—
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2
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We may permute cyclically the generating reflections ¢; € I and assume that
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Example: 6§ = +1, g =0, k > 3, thatis, X' = H/I" is a sphere with & holes.

)

' = (d,...,d, e, e c’-2:[c§,e;]:e’1~-e§€:1).
—_———

reflections  hyperbolic isometries
1’1/ 2 !/ 2 _ 2 _ 1 _ / I\/ _ h
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—_———
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We may permute cyclically the generating reflections ¢; € I and assume that . It follows that

/ /
Co;sCy -y Coha 17, ciye3,.. . cop1 €TV
So we choose

o ¢\ =c, dy=c3, ..., ¢, =cCop—1 as generating reflections of I".



Example: 6§ = +1, g =0, k > 3, thatis, X' = H/I" is a sphere with & holes.

/ / / / /
' = (d,...,c,, €,...,€
N—_—— ——
reflections  hyperbolic isometries
2
/ / 2 2 / /
I' « Fh:<Co,...,Cgk |Ci :(Cici+1) :]_, COZCQk>, Fh/I‘ :<hX’>'
—_———
reflections

We may permute cyclically the generating reflections ¢; € I and assume that . It follows that

/ /
Co;sCy -y Coha 17, ciye3,.. . cop1 €TV

So we choose
o ¢\ =c, dy=c3, ..., ¢, =cCop—1 as generating reflections of I".

Observe that cg;_o and cg; commute with cg; 1 = ¢,. So we choose:

o ¢ =coca, € =CaCy, ..., €, = Cop_2Co; as generating hyperbolic isometries of I'".

Observe that €] - - - €} = coco;.



Conjugation by ¢y € I'), — I'" has the following effect on the generators of I :

/ / _ _ _ / / \—1
® (. > CoCico = CoCai—1Cy = CoCj Cai—1 CoiCo = (€] ---€l) - - (e ---el)™ .

/ / _ _ _ / —1
® ¢, > Cpe;Co = CoC2i—2C2iCy = CoC2;iC2; C2;—2C2;Co = (61 s ei) : (ei) : (61 T



Conjugation by ¢y € I'), — I'" has the following effect on the generators of I :
/ / _ _ _ / / / /\—1
® (. > CoCico = CoCai—1Cy = CoCj Cai—1 CoiCo = (€] ---€l) - - (e ---el)™ .

o ¢ > coeicy = CoCai_2C2iCo = CoCaiCai Cai_2C2iCo = (€} -+~ €l) - (€)1 - (e} ---el)L.

Let i =N eI"/T' =G andy; =€/’ e I"/T' =G, i=1,...,k. They generate G and satisfy
Iu?: [ui7yi] = -y = 1.

If ¢y normalizes I' then conjugation by ¢y induces this automorphism of IV /T" = G:

N’i — (]/1 .. 'Vi) . ,u“Z . (yl .. ‘1/7;)_1,

V; — (Vl"‘Vi)'V'_l‘(Vl"'Vi)

-1
i .



Theorem. Let 7 : X — X' = X/G be an unbranched normal covering of compact Klein surfaces where X'
1s hyperelliptic and topologically is a sphere with k > 3 holes. The group G can be generated by 2k elements
M1y ooy [y V1, ..., Vg which satisfy

g = lpivil = =1, fori=1,... k.

In this situation, the hyperelliptic involution of X' lifts to X if and only if

/’l’i —> (Vl”'yi) Mz (Vl"‘Vi)_1;

v; — (Vl”'yi) 'V{l . (Vl"‘l/i)_l

s a group automorphism of G.



Theorem. Let 7 : X — X' = X/G be an unbranched normal covering of compact Klein surfaces where X'
1s hyperelliptic and topologically is a sphere with k > 3 holes. The group G can be generated by 2k elements

M1y ooy [y V1, ..., Vg which satisfy
w2 =l vl =vi---v=1, fori=1,... k.

In this situation, the hyperelliptic involution of X' lifts to X if and only if

/’l’i —> (Vl”'yi) Mz (Vl"‘Vi)_1;

v; — (Vl”'yi) 'V{l . (Vl"‘l/i)_l

s a group automorphism of G.

Corollary. If G is abelian then the hyperelliptic involution lifts to an automorphism of X.



Example: X' is orientable with two boundary components.

Theorem. Let m: X — X' = X/G be an unbranched normal covering of compact Klein surfaces where X' is
hyperelliptic and orientable with topological genus g > 0 and two boundary components. The group G can be
generated by 2g + 4 elements iy, ..., lg, V1,..., Vg, 1,12, €1, 2 Which satisfy

g

mo=1m; = [m,e1] = [, 2] = 16 H[Mz‘,%‘] =1
j=1

In this situation, the hyperelliptic involution of X' lifts to X if and only if

il (PO ) m, vi— - (vt Pioa) mic,
me (mler) mo - (mler)™h, v (m)ter) s en - () ter)
N2 — (7Tg_151) T (7Tg_151)_1, €a > (7Tg_151) €1 (7Tg_1€1)_1

is a group automorphism of G, where m; = vipvi_1pti—1 -+ - g and P = [py,vn] -+ [, vi)-
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Example: X' is orientable with two boundary components.

Theorem. Let m: X — X' = X/G be an unbranched normal covering of compact Klein surfaces where X' is
hyperelliptic and orientable with topological genus g > 0 and two boundary components. The group G can be
generated by 2g + 4 elements iy, ..., lg, V1,..., Vg, 1,12, €1, 2 Which satisfy

g

= [me1] = [, 22 = eren | [ wi] = 1.
j=1

In this situation, the hyperelliptic involution of X' lifts to X if and only if

fi = T (R__ll ',ui_l) i1, v (Vi_l : -Pi—l) Ti-1,
m — (71';181) ‘M2 - (7'('97151)71, €1 (71';181) - €9 (7'['97161)71,
o — (7Tg_1€1) “1y (7'['9_151)_1, Eg (7Tg_1€1) cE1 (7'(';151)_1
is a group automorphism of G, where m; = vipvi_1pti—1 -+ - g and P = [py,vn] -+ [, vi)-

If G is abelian then g > p; ', v vt e rr et earr eyt M Mo = 71

Corollary. If G is abelian and does not contain Cy & Cy then the hyperelliptic involution lifts to an automor-
phism of X.



With the above notations, n; =cI' € IV/T' =G for i =1,2 where ¢}, ¢, are representatives of the unique

conjugacy classes of elements of IV which fix points.
So, if n; # 1g then the covering 7: X — X/G folds along Fix(n;).

Corollary. IfG is abelian and the covering is unfolded then the hyperelliptic involution lifts to an automorphism
of X.



Thank you!



