Isogenous decomposition of the Jacobian of generalized Fermat curves

Mariela Carvacho Bustamante

Departamento de Matemáticas
Universidad Técnica Federico Santa María
October 3th, 2015

This is a work in collaboration with

- Ruben Hidalgo, Universidad de la Frontera, Temuco, Chile
- Saul Quispe, Universidad de la Frontera, Temuco, Chile

Eckedal-Serre problem

(1) Given $g \geq 2$, Is there a closed Riemann surface X of genus g such that $J X$ is isogenous to the product of elliptic curves?
(2) Is there a bound on the genus g with the above decomposition property?

Eckedal-Serre problem

(1) Given $g \geq 2$, Is there a closed Riemann surface X of genus g such that $J X$ is isogenous to the product of elliptic curves?
(2) Is there a bound on the genus g with the above decomposition property?

In 1993, Ekedahl and Serre give examples for genus $g \leq 1297$ with some gaps.

- R. Nakajima. On splitting of certain Jacobian varieties. J. Math. Kyoto Univ. 47 No. 2 (2007), 391-415.
- T. Shaska. Families of genus two curves with many elliptic subcovers. arXiv: 109.0434.
- T. Yamauchi. On curves with split Jacobians. Communications in Algebra 36 (2008), 1419-1425
- T. Yamauchi. On \mathbb{Q}-simple factor of the Jacobian of modular curves. Yokohama J. of Math. 53 (2007), 149-160.
- J. Paulhus. Elliptic factors in Jacobians of low genus curves. Ph.D. Thesis, University of Illinois at Urbana-Champaign, (2007).

In 1993, Ekedahl and Serre give examples for genus $g \leq 1297$ with some gaps.

- R. Nakajima. On splitting of certain Jacobian varieties. J. Math. Kyoto Univ. 47 No. 2 (2007), 391-415.
- T. Shaska. Families of genus two curves with many elliptic subcovers. arXiv: 109.0434.
- T. Yamauchi. On curves with split Jacobians. Communications in Algebra 36 (2008), 1419-1425.
- T. Yamauchi. On \mathbb{Q}-simple factor of the Jacobian of modular curves. Yokohama J. of Math. 53 (2007), 149-160.
- J. Paulhus. Elliptic factors in Jacobians of low genus curves. Ph.D. Thesis, University of Illinois at Urbana-Champaign, (2007).
- Angel Carocca, Rubí E. Rodríguez and Anita Rojas Symmetric group actions on Jacobian varieties, Contemporary Mathematics 629, American Mathematical Society, Providence, RI (2014), 43-57.
- L. Beshaj, T. Shaska and C. Shor, On Jacobians of curves with superelliptic component. Riemann and Klein Surfaces, Automorphism, Symmetries and Moduli Spaces, 629 (2014).
- Patricio Barraza and Anita M. Rojas, The group algebra decomposition of Fermat curves of prime degree, Arch. Math. 104 (2015), 145-155.
- Ruben A. Hidalgo, Rubí E. Rodríguez A remark on the decomposition of the Jacobian variety of Fermat curves of prime degree. Arch. Math. 105 (2015), 333-341.

Generalized Fermat curves

A generalized Fermat curve of type (p, n), with $n+1 \geq r_{p}$ (with $r_{2}=4$, and $r_{p}=3$ for $p \geq 3$), is given by

$$
S:=C^{p}\left(\lambda_{1}, \ldots, \lambda_{n-2}\right)=\left\{\begin{array}{ccc}
x_{1}^{p}+x_{2}^{p}+x_{3}^{p} & = & 0 \\
\lambda_{1} x_{1}^{p}+x_{2}^{p}+x_{4}^{p} & = & 0 \\
\lambda_{2} x_{1}^{p}+x_{2}^{p}+x_{5}^{p} & = & 0 \\
\vdots & \vdots & \vdots \\
\lambda_{n-2} x_{1}^{p}+x_{2}^{p}+x_{n+1}^{p} & = & 0
\end{array}\right\} \subset \mathbb{P}^{n},
$$

where $\lambda_{1}, \ldots, \lambda_{n-2} \in \mathbb{C}-\{0,1\}$ and, for $i \neq j, \lambda_{i} \neq \lambda_{j}$.

Properties of S

The Riemann surface S has genus $g=1+\frac{\phi(p, n)}{2} \geq 1$ and it admits, as a group of conformal automorphisms, the generalized Fermat group $H_{0} \cong \mathbb{Z}_{p}^{n}$; generated by the transformations $a_{j}\left(\left[x_{1}: \cdots: x_{n+1}\right]\right)=\left[x_{1}: \cdots: x_{j-1}: \omega_{p} x_{j}: x_{j+1}: \cdots: x_{n+1}\right]$, , with $j=1, \ldots, n$, where $\omega_{p}=e^{2 \pi i / p}$.

We set $a_{n+1}=a_{1}^{-1} \cdots a_{n}^{-1}$, that is,

$$
a_{n+1}\left(\left[x_{1}: \cdots: x_{n+1}\right]\right)=\left[x_{1}: \cdots: x_{n}: \omega_{p} x_{n+1}\right] .
$$

Decomposition of the Jacobian of Generalized Fermat curves

Theorem

Let (S, H) be a generalized Fermat pair of type (p, n), where p is a prime integer. Then

$$
J S \cong_{i s o g .} \prod_{H_{r}} J S_{H_{r}}
$$

where H_{r} runs over all subgroups of H_{0} which are isomorphic to \mathbb{Z}_{p}^{n-1} and such that S / H_{r} has genus at least one, and $S_{H_{r}}$ is the underlying Riemann surface of the orbifold S / H_{r}.

The cyclic p-gonal curves $S_{H_{r}}$ runs over all curves of the form

$$
y^{p}=\prod_{j=1}^{r}\left(x-\mu_{j}\right)^{\alpha_{j}}
$$

where $\left\{\mu_{1}, \ldots, \mu_{r}\right\} \subset\left\{\infty, 0,1, \lambda_{1}, \ldots, \lambda_{n-2}\right\}, \mu_{i} \neq \mu_{j}$ if $i \neq j$, $\alpha_{j} \in\{1,2, \ldots, p-1\}$ satisfying the following.
(i) If every $\mu_{j} \neq \infty$, then $\alpha_{1}=1, \alpha_{2}+\cdots+\alpha_{r} \equiv p-1$ $\bmod (p)$;
(ii) If some $\lambda_{a}=\infty$, then

$$
\alpha_{1}+\cdots+\alpha_{a-1}+\alpha_{a+1}+\cdots+\alpha_{r} \equiv p-1 \bmod (p)
$$

Kani-Rosen docomposition theorem (1989)

Theorem

Let S be a closed Riemann surface of genus $g \geq 1$ and let $H_{1}, \ldots, H_{r}<\operatorname{Aut}(S)$ such that:
(1) $H_{i} H_{j}=H_{j} H_{i}$, for all $i, j=1, \ldots, r$;
(2) there are integers n_{1}, \ldots, n_{r} satisfying that
i. $\sum_{i, j=1}^{r} n_{i} n_{j} g_{H_{i} H_{j}}=0$, and
ii. for every $i=1, \ldots, r$, it also holds that $\sum_{j=1}^{r} n_{j} g_{H_{i} H_{j}}=0$.

Then

$$
\prod_{n_{i}>0}\left(J S_{H_{i}}\right)^{n_{i}} \cong_{i s o g} \prod_{n_{j}<0}\left(J S_{H_{j}}\right)^{-n_{j}}
$$

Corollary

Let S be a closed Riemann surface of genus $g \geq 1$ and let $H_{1}, \ldots, H_{s}<\operatorname{Aut}(S)$ such that:
(1) $H_{i} H_{j}=H_{j} H_{i}$, for all $i, j=1, \ldots, s$;
(2) $g_{H_{i} H_{j}}=0$, for $1 \leq i<j \leq s$
(3) $g=\sum_{j=1}^{s} g_{H_{j}}$.

Then

$$
J S \cong_{i s o g .} \prod_{j=1}^{s} J S_{H_{j}}
$$

Counting formula

Lemma

Let $q \geq 2$ and $r \geq 2$ be integers and let $\psi_{q}(r)$ be the number of different tuples $\left(\alpha_{2}, \ldots, \alpha_{r}\right)$ so that $\alpha_{j} \in\{1,2, \ldots, q-1\}$, and $\alpha_{2}+\cdots+\alpha_{r} \equiv-1 \bmod (q)$. Then

$$
\psi_{q}(r)=(-1)^{r+1}\left(\frac{(1-q)^{r-1}-1}{q}\right)
$$

proof

Let us consider a tuple $\left(\alpha_{2}, \ldots, \alpha_{r-1}, \alpha_{r}\right)$, where $\alpha_{j} \in\{1, \ldots, q-1\}$ and $\alpha_{2}+\cdots+\alpha_{r} \equiv-1 \bmod (q)$. Since α_{r} is not congruent to $0 \bmod q$, we must have that $\alpha_{2}+\cdots+\alpha_{r-1}$ cannot be congruent to $-1 \bmod q$. But this last sum can be congruent to any value inside $\{0,1, \ldots, q-2\}$. We also note that α_{r} gets uniquely determined by $\alpha_{1}, \ldots, \alpha_{r-1}$. In this way,

$$
\psi_{q}(r)=(q-1)^{r-2}-\psi_{q}(r-1)
$$

This recurrence asserts that

$$
\begin{aligned}
\psi_{q}(r) & =\sum_{k=2}^{r}(-1)^{k}(q-1)^{r-k} \\
& =(-1)^{r} \sum_{k=2}^{r}(1-q)^{r-k} \\
& =(-1)^{r} \sum_{k=0}^{r-2}(1-q)^{k} \\
& =(-1)^{r+1}\left(\frac{(1-q)^{r-1}-1}{q}\right)
\end{aligned}
$$

We will need the following equality, to write the genus of a generalized Fermat curve as the sum of the genus of cyclic gonal curves (we will use this for the prime case).

Lemma

Let $n, q \geq 2$ be integers with $n+1 \geq r_{q}$, where $r_{2}=4$ and $r_{q}=3$ for $q \geq 3$. Then

$$
1+\frac{\phi(q, n)}{2}=\sum_{r=r_{q}}^{n+1}\binom{n+1}{r} \frac{(r-2)(q-1)}{2} \psi_{q}(r)
$$

