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Eckedal-Serre problem

Eckedal-Serre problem

@ Given g > 2, Is there a closed Riemann surface X of genus g
such that JX is isogenous to the product of elliptic curves?
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Motivation
°

Eckedal-Serre problem

Eckedal-Serre problem

@ Given g > 2, Is there a closed Riemann surface X of genus g
such that JX is isogenous to the product of elliptic curves?

@ |s there a bound on the genus g with the above decomposition
property?
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Examples

In 1993, Ekedahl and Serre give examples for genus g < 1297 with
some gaps.
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Generalized Fermat curves
°

Generalized Fermat curves

Generalized Fermat curves

A generalized Fermat curve of type (p,n), withn+1> 17,
(with ro =4, and 7, = 3 for p > 3), is given by

o + b + xg = 0
Ml + b + o) =0

S .= Cp(/\l,---,)\n—z) — )\gx‘?—}-xg—l—xg =0 c P,
An—2al +ab+ap = 0

where A\1,..., A2 € C—{0,1} and, for i # j, \; # A;.
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Generalized Fermat curves
°

Properties

Properties of S

The Riemann surface S has genus g =1 + @ >1andit

admits, as a group of conformal automorphisms, the generalized
Fermat group Ho = Zj; generated by the transformations

aj(fzr - rxpg1]) =@ @1 Wy T e T,
with 7 =1,...,n, where w, = e2mi/p,

We set a, 1 =a;'---a;", that is,

anyr([zr -t Tpp]) =@t Ty WpTpga)-
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Main result

Decomposition of the Jacobian of Generalized Fermat
curves

Let (S, H) be a generalized Fermat pair of type (p,n), where p is a
prime integer. Then

JS g'isog. H JSHM
H,

where H, runs over all subgroups of Hy which are isomorphic to
Zg_l and such that S/H, has genus at least one, and Sy, is the
underlying Riemann surface of the orbifold S/ H,..
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The cyclic p-gonal curves Sy, runs over all curves of the form

r

v =[] — )™,

j=1
where {,U,l, c ,,UJT} C {O0,0, 1, Ayens R )\n,Q}, o5 75 iy if 4 7& 7
aj; € {1,2,...,p — 1} satisfying the following.

(i) If every puj # 00, thenag =1, o +---+a, =p—1
mod (p);

(ii) If some A\, = oo, then
a1+t g1+ Q1+ + o =p—1 mod (p).
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Main result
©00000

About the proof

Kani-Rosen docomposition theorem (1989)

Let S be a closed Riemann surface of genus g > 1 and let
Hy,...,H, < Aut(S) such that:

(1) HiHj = HjHl', for al/z',j = 1,...,7‘,

@ there are integers nq, . ..,n, satisfying that
. r
i. Zi,j:l nin;gm,u, =0, and
ii. foreveryi=1,...,r, it also holds that Z;Zl nigm,H, = 0.
Then

IT TSu)™ iog. T (7Sm,)™™

n; >0 n; <0
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Main result
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About the proof

Corollary

Let S be a closed Riemann surface of genus g > 1 and let
Hy,...,Hs < Aut(S) such that:

©® H,H; =H;H; foralli,j=1,...,s;
® gu,a; =0, for 1 <i<j<s
© 9= Z§:1 gH; -
Then .
IS Zis0g. [ [ 758,

J=1
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Main result
00000

About the proof

Counting formula

Lemma

Let ¢ > 2 and r > 2 be integers and let 14(r) be the number of
different tuples (o, ..., o) so that a; € {1,2,...,q — 1}, and
ag + -+ a, =—1 mod (q). Then

) = (- (L2221,
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Main result
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About the proof

proof

Let us consider a tuple (as,...,ar—1,a;), where
a;€{l,...,¢q—1}and s +--- + @, = —1 mod (g). Since a, is
not congruent to 0 mod ¢, we must have that ag + -+ + a1
cannot be congruent to —1 mod ¢. But this last sum can be
congruent to any value inside {0, 1,...,q — 2}. We also note that
a, gets uniquely determined by ag,...,a,—1. In this way,

Ye(r) = (g — 1)7“72 — thg(r —1)
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Main result
000000

About the proof

This recurrence asserts that

Yo(r) = Y (=DMg-1)"

k=2
= Y-t
k=2
r—2
= (U Y-
k=0
_ _1\r+1 (1_Q)T71_1
R ( q )
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About the proof

We will need the following equality, to write the genus of a
generalized Fermat curve as the sum of the genus of cyclic gonal

curves (we will use this for the prime case).

Lemma

Let n,q > 2 be integers withn +1 > r,, where ro =4 and ry = 3

for ¢ > 3. Then

1+

¢(q,n)

2

n+1

=2

r=rq

(

n+1
T

)

(r—2)(¢-1)

2

Pq(r).

Main result
00000e
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