1/15

イロト 不得 トイヨト イヨト 二日

Isogenous decomposition of the Jacobian of generalized Fermat curves

Mariela Carvacho Bustamante

Departamento de Matemáticas Universidad Técnica Federico Santa María

October 3th, 2015

This is a work in collaboration with

- Ruben Hidalgo, Universidad de la Frontera, Temuco, Chile
- Saul Quispe, Universidad de la Frontera, Temuco, Chile

Motivation ●○○ Eckedal-Serre problem Generalized Fermat curves

Main result

Eckedal-Serre problem

• Given $g \ge 2$, Is there a closed Riemann surface X of genus g such that JX is isogenous to the product of elliptic curves?

Is there a bound on the genus g with the above decomposition property?

Motivation ●○○ Eckedal-Serre problem Generalized Fermat curves

Main result

Eckedal-Serre problem

- Given $g \ge 2$, Is there a closed Riemann surface X of genus g such that JX is isogenous to the product of elliptic curves?
- Is there a bound on the genus g with the above decomposition property?

In 1993, Ekedahl and Serre give examples for genus $g \leq 1297$ with some gaps.

- R. Nakajima. On splitting of certain Jacobian varieties. J. Math. Kyoto Univ. 47 No. 2 (2007), 391-415.
- T. Shaska. Families of genus two curves with many elliptic subcovers. arXiv: 109.0434.
- T. Yamauchi. On curves with split Jacobians. Communications in Algebra 36 (2008), 1419-1425.
- T. Yamauchi. On Q-simple factor of the Jacobian of modular curves. Yokohama J. of Math. **53** (2007), 149-160.
- J. Paulhus. Elliptic factors in Jacobians of low genus curves. Ph.D. Thesis, University of Illinois at Urbana-Champaign, (2007).

Motivation ○●○	Main result
Examples	

In 1993, Ekedahl and Serre give examples for genus $g \leq 1297$ with some gaps.

- R. Nakajima. On splitting of certain Jacobian varieties. J. Math. Kyoto Univ. 47 No. 2 (2007), 391-415.
- T. Shaska. Families of genus two curves with many elliptic subcovers. arXiv: 109.0434.
- T. Yamauchi. On curves with split Jacobians. Communications in Algebra 36 (2008), 1419-1425.
- T. Yamauchi. On Q-simple factor of the Jacobian of modular curves. Yokohama J. of Math. **53** (2007), 149-160.
- J. Paulhus. Elliptic factors in Jacobians of low genus curves. Ph.D. Thesis, University of Illinois at Urbana-Champaign, (2007).

Motivation ○○●	Generalized Fermat curves
Examples	

- Angel Carocca, Rubí E. Rodríguez and Anita Rojas Symmetric group actions on Jacobian varieties, Contemporary Mathematics 629, American Mathematical Society, Providence, RI (2014), 43-57.
- L. Beshaj, T. Shaska and C. Shor, On Jacobians of curves with superelliptic component. Riemann and Klein Surfaces, Automorphism, Symmetries and Moduli Spaces, 629 (2014).
- Patricio Barraza and Anita M. Rojas, The group algebra decomposition of Fermat curves of prime degree, Arch. Math. 104 (2015), 145-155.
- Ruben A. Hidalgo, Rubí E. Rodríguez A remark on the decomposition of the Jacobian variety of Fermat curves of prime degree. Arch. Math.105 (2015), 333-341.

Generalized Fermat curves ●○ Main result

Generalized Fermat curves

A generalized Fermat curve of type (p, n), with $n + 1 \ge r_p$ (with $r_2 = 4$, and $r_p = 3$ for $p \ge 3$), is given by

$$S := C^{p}(\lambda_{1}, \dots, \lambda_{n-2}) = \left\{ \begin{array}{rrrr} x_{1}^{p} + x_{2}^{p} + x_{3}^{p} & = & 0\\ \lambda_{1}x_{1}^{p} + x_{2}^{p} + x_{4}^{p} & = & 0\\ \lambda_{2}x_{1}^{p} + x_{2}^{p} + x_{5}^{p} & = & 0\\ \vdots & \vdots & \vdots & \vdots\\ \lambda_{n-2}x_{1}^{p} + x_{2}^{p} + x_{n+1}^{p} & = & 0 \end{array} \right\} \subset \mathbb{P}^{n},$$

where $\lambda_1, \ldots, \lambda_{n-2} \in \mathbb{C} - \{0, 1\}$ and, for $i \neq j$, $\lambda_i \neq \lambda_j$.

< □ > < @ > < 글 > < 글 > < 글 > 三 · ○ Q (~ 6/15

Motivation 000	Generalized Fermat curves ○●	Main result
Properties		

Properties of S

The Riemann surface S has genus $g = 1 + \frac{\phi(p,n)}{2} \ge 1$ and it admits, as a group of conformal automorphisms, the generalized Fermat group $H_0 \cong \mathbb{Z}_p^n$; generated by the transformations

$$a_j([x_1:\cdots:x_{n+1}]) = [x_1:\cdots:x_{j-1}:\omega_p x_j:x_{j+1}:\cdots:x_{n+1}],$$
,
with $j = 1, \ldots, n$, where $\omega_p = e^{2\pi i/p}$.
We set $a_{n+1} = a_1^{-1}\cdots a_n^{-1}$, that is,

$$a_{n+1}([x_1:\cdots:x_{n+1}]) = [x_1:\cdots:x_n:\omega_p x_{n+1}].$$

Decomposition of the Jacobian of Generalized Fermat curves

Theorem

Let (S,H) be a generalized Fermat pair of type (p,n), where p is a prime integer. Then

$$JS \cong_{isog.} \prod_{H_r} JS_{H_r},$$

where H_r runs over all subgroups of H_0 which are isomorphic to \mathbb{Z}_p^{n-1} and such that S/H_r has genus at least one, and S_{H_r} is the underlying Riemann surface of the orbifold S/H_r .

イロン (四) (日) (日) (日) (日) (日)

9/15

The cyclic *p*-gonal curves S_{H_r} runs over all curves of the form

$$y^p = \prod_{j=1}^r (x - \mu_j)^{\alpha_j},$$

where $\{\mu_1, \ldots, \mu_r\} \subset \{\infty, 0, 1, \lambda_1, \ldots, \lambda_{n-2}\}, \mu_i \neq \mu_j \text{ if } i \neq j, \alpha_j \in \{1, 2, \ldots, p-1\}$ satisfying the following. (i) If every $\mu_j \neq \infty$, then $\alpha_1 = 1, \alpha_2 + \cdots + \alpha_r \equiv p-1 \mod (p);$ (ii) If some $\lambda_a = \infty$, then

 $\alpha_1 + \dots + \alpha_{a-1} + \alpha_{a+1} + \dots + \alpha_r \equiv p - 1 \mod (p).$

About the proof

Kani-Rosen docomposition theorem (1989)

Theorem

Let S be a closed Riemann surface of genus $g \ge 1$ and let $H_1, \ldots, H_r < \operatorname{Aut}(S)$ such that:

D
$$H_iH_j = H_jH_i$$
, for all $i, j = 1, ..., r$;

2 there are integers n_1, \ldots, n_r satisfying that

i.
$$\sum_{i,j=1}^{r} n_i n_j g_{H_i H_j} = 0$$
, and

ii. for every $i = 1, \ldots, r$, it also holds that $\sum_{j=1}^{r} n_j g_{H_i H_j} = 0$.

Then

$$\prod_{n_i>0} \left(JS_{H_i}\right)^{n_i} \cong_{isog.} \prod_{n_j<0} \left(JS_{H_j}\right)^{-n_j}$$

<ロ > < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < m > < 0 < 0 10/15

Corollary

Let S be a closed Riemann surface of genus $g\geq 1$ and let $H_1,\ldots,H_s<{\rm Aut}(S)$ such that:

1
$$H_iH_j = H_jH_i$$
, for all $i, j = 1, ..., s$;

$$\textbf{2} \ g_{H_i H_j} = 0, \text{ for } 1 \le i < j \le s$$

3
$$g = \sum_{j=1}^{s} g_{H_j}$$
.

Then

$$JS \cong_{isog.} \prod_{j=1}^{s} JS_{H_j}.$$

About the proof

Counting formula

Lemma

Let $q \geq 2$ and $r \geq 2$ be integers and let $\psi_q(r)$ be the number of different tuples $(\alpha_2, \ldots, \alpha_r)$ so that $\alpha_j \in \{1, 2, \ldots, q-1\}$, and $\alpha_2 + \cdots + \alpha_r \equiv -1 \mod (q)$. Then

$$\psi_q(r) = (-1)^{r+1} \left(\frac{(1-q)^{r-1} - 1}{q} \right).$$

13/15

proof

Let us consider a tuple $(\alpha_2, \ldots, \alpha_{r-1}, \alpha_r)$, where $\alpha_j \in \{1, \ldots, q-1\}$ and $\alpha_2 + \cdots + \alpha_r \equiv -1 \mod (q)$. Since α_r is not congruent to 0 mod q, we must have that $\alpha_2 + \cdots + \alpha_{r-1}$ cannot be congruent to $-1 \mod q$. But this last sum can be congruent to any value inside $\{0, 1, \ldots, q-2\}$. We also note that α_r gets uniquely determined by $\alpha_1, \ldots, \alpha_{r-1}$. In this way,

$$\psi_q(r) = (q-1)^{r-2} - \psi_q(r-1)$$

This recurrence asserts that

Motivation

About the proof

$$\psi_q(r) = \sum_{k=2}^r (-1)^k (q-1)^{r-k}$$

= $(-1)^r \sum_{k=2}^r (1-q)^{r-k}$
= $(-1)^r \sum_{k=0}^{r-2} (1-q)^k$
= $(-1)^{r+1} \left(\frac{(1-q)^{r-1}-1}{q}\right)$

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の へ () 14/15

Motivation	Generalized Fermat curves	Main result ○○○○○●
About the proof		

We will need the following equality, to write the genus of a generalized Fermat curve as the sum of the genus of cyclic gonal curves (we will use this for the prime case).

Lemma

Let $n,q \geq 2$ be integers with $n+1 \geq r_q$, where $r_2 = 4$ and $r_q = 3$ for $q \geq 3$. Then

$$1 + \frac{\phi(q,n)}{2} = \sum_{r=r_q}^{n+1} \binom{n+1}{r} \frac{(r-2)(q-1)}{2} \psi_q(r).$$

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><15/15